文科立体几何知识点方法总结高三复习

文科立体几何知识点方法总结高三复习
文科立体几何知识点方法总结高三复习

立体几何知识点整理(文科)

一.直线和平面的三种位置关系:

1. 线面平行

l

符号表示:

2. 线面相交

符号表示:

3. 线在面内

符号表示:

二.平行关系:

1.线线平行:

方法一:用线面平行实现。

方法二:用面面平行实现。

方法

用线

直实

现。

若α

α⊥

⊥m

l,,则m

l//。

方法四:用向量方法:

若向量和向量共线且l、m不重合,则m

l//。

2.线面平行:

方法一:用线线平行实现。

方法二:用面面平行实现。

方法三:用平面法向量实现。

若n为平面α的一个法向量,l

n⊥且α

?

l,则

α

//

l。

3.面面平行:

方法一:用线线平行实现。

β

α

α

β

//

'

,'

,

'

//

'

//

?

?

?

?

?

?

?

?

?

?

且相交

且相交

m

l

m

l

m

m

l

l

方法二:用线面平行实现。

三.垂直关系:

1. 线面垂直:

方法一:用线线垂直实现。

方法二:用面面垂直实现。

2. 面面垂直:

方法一:用线面垂直实现。

方法二:计算所成二面角为直角。

3.线线垂直:

方法一:用线面垂直

实现。

方法二:三垂线定理及其逆定理。

方法三:用向量方法:

若向量和向量的数量积为0,则m

l⊥。

三.夹角问题。

(一)异面直线所成的角:

(1) 范围:]

90

,

0(?

?

(2)求法:

方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。(常用到余弦定理)

余弦定理:

(计算结果可能是其补角

)

θ

c

b

a

l

方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): (二) 线面角

(1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[??

当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。

步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角

(1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。 (2)范围:]180,0[?? (3)求法: 方法一:定义法。

步骤1:作出二面角的平面角(三垂线定理),并证明。 步骤2:解三角形,求出二面角的平面角。 方法二:截面法。 步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。 步骤2:解三角形,求出二面角。

方法三:坐标法(计算结果可能与二面角互补)。 步骤一:计算121212

cos n n n n n n ?=

?

步骤二:判断θ与12n n 的关系,可能相等或者互补。 四.距离问题。 1.点面距。 方法一:几何法。

步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。

步骤2:计算线段PO 的长度。(直接解三角形;等体积法和等面积法;换点法)

2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。

如图,m 和n 为两条异面直线,α?n 且α//m ,

则异面直线m 和n 之间的距离可转化为直线m 与平面α之间的距离。 方法二:直接计算公垂线段的长度。 方法三:公式法。

如图,AD 是异面直线m 和n 的公垂线段,

'//m m ,则异面直线m 和n 之间的距离为:

高考题典例

考点1 点到平面的距离例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D

为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;

(Ⅲ)求点C 到平面1A BD 的距离.考点2 异面直线的距离

A

B

C D

O F

例2 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为

AB BC 、的中点,求CD 与SE 间的距离.

考点3 直线到平面的距离

例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到

平面11D GB 的距离 考点4 异面直线所成的角

例4如图,在Rt AOB △中,π6

OAB ∠=,斜边4AB =.Rt AOC

△可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面

角.D 是AB 的中点.

(I )求证:平面COD ⊥平面AOB ;

(II )求异面直线AO 与CD 所成角的大小. 考点5 直线和平面所成的角

例5. 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,22BC =,3SA SB ==.

(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小. 考点6 二面角

例6.如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥ (II )求二面角B AC P --的大小. 考点7 利用空间向量求空间距离和角

例7. 如图,已知1111ABCD A B C D -是棱长为3的正方体, 点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面; (2)若点G 在BC 上,2

3

BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求

证:EM ⊥平面11BCC B ;

(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ

<一>常用结论

1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线

平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.

B

A C

D

O

G

H D

C

S

B

P

2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面

面平行.

3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面

垂直.

4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的

射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉

.

8.异面直线所成角:cos |cos ,|a b θ==

21

||||||

a b a b x ?=

?+

(其中θ(090θ<≤)为异面直线a b ,

所成角,,a b 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin

||||

AB m

arc AB m β?=(m 为平面α的法向量).

10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角

cos

||||m n arc m n θ?=或cos ||||

m n

arc m n π?-(m ,n 为平面α,β的法向量).

12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所

成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则

,A B d =||AB AB AB =?221()x x =-+14.异面直线间的距离: ||

||

CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

15.点B 到平面α的距离:||

||

AB n d n ?=

(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2

2

2

2

()222a b c a b c a b b c c a ++=+++?+?+?

17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有

222

2123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=.

(立体几何中长方体对角线长的公式是其特例)

.

18. 面积射影定理 'cos S S θ

=.(

平面多边形及其射影的面积分别是S 、'

S ,它们所在平面所成锐二面角的θ).

19. 球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组

合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径

,. 20.?求点到面的距离的常规方法是什么?(直接法、体积法)

〈二〉温馨提示:

1.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及义?

① 异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.

② 直线的倾斜角、到的角、与的夹角的取值范围依次是

③ 反正弦、反余弦、反正切函数的取值范围分别是.

〈三〉解题思路:

1、平行垂直的证明主要利用线面关系的转化:

线面平行的判定: a

b b a a ∥,面,∥面???ααα a

b

α

线面平行的性质:

三垂线定理(及逆定理): 线面垂直: 面面垂直:

2、三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90° (2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A ∈α作或证AB ⊥β于B ,作BO ⊥棱于O ,连AO ,则AO ⊥棱l ,∴∠AOB 为所求。)

三类角的求法:

①找出或作出有关的角。 ②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)

高中数学立体几何 空间距离

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.

4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点.

(1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;

【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.

(2)在Rt △BEF 中,BF =

a 23

,BE =a 21, 所以EF 2=BF 2-BE 2=a 2

12,即EF =a 22

.

由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为

a 2

2

. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .

∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .

∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.

∵CE =23

,∴CF =FD =2

1,∠EFC =90°,EF =

2221232

2

=??? ??-???

? ??. ∴AB 、CD 的距离是

2

2

. 【解后归纳】 求两条异面直线之间的距离的基本方法:

(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =

3

2BE =332332=

?. 又AB =1,且∠AOB =90°,∴AO =363312

22=???

?

??-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】

在梯形ABCD 中,AD ∥BC ,∠ABC =

2

π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面

ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离. 【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC ,

例1题图

例2题图

例3题图

B

A

C

D

∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin

55

,AD =3a ,∴AF =5

3a , 在Rt △P AF 中tan ∠PF A =

3

5

35=

=a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,

∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,

∴PB =2a ,∴AH =

a 2

2. 【例5】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中

AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.

∴DF=C 1H=2. .622

2

=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,

由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ?面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.

在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离. 解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).

∵AEC 1F 为平行四边形,

(II )设1n 为面AEC 1F 的法向量,)1,,(,1y x n ADF n =故可设不垂直于平面显然

111),3,0,0(n CC CC 与设又=的夹角为a ,则1111433

cos ||||

CC n CC n α?=

=

? ∴C 到平面AEC 1F 的距离为.11

33

4333343cos ||1=?==αCC d 【例6】

正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

(1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离. 解:(1)连结BD ,D B 1,由三垂线定理可得:AC D B ⊥1, 所以D B 1就是1B 点到直线AC 的距离。 在BD B Rt 1?中,6810222211=-=-=

BC C B BB 34=BD .

2122121=+=∴B B BD D B .

(2)因为AC 与平面BD 1C 交于AC的中点D, 设E BC C B =?11,则1AB //DE ,所以1AB //平面BD C 1, 所以1AB 到平面BD 1C 的距离等于A点到平面BD 1C 的距离,等于C点到平面BD 1C 的距离,也就等于三棱 锥1BDC C -的高, BDC C BDC C V V --=11 ,

13

1

311CC S hS BDC BDC ??=∴,131312=

∴h ,即直线1AB 到平面BD 1C 的距离是131312. 【解后归纳】 求空间距离注意三点:

1

A

1

A 1.常规遵循一作二证三计算的步骤; 2.多用转化的思想求线面和面面距离;

3.体积法是一种很好的求空间距离的方法.

【范例4】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;

(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;

(3)AE 等于何值时,二面角D 1—EC —D 的大小为4

π

.

解析:法1

(1)∵AE ⊥面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E

(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2,

故.2

121,232152211=??==-??=

??BC AE S S ACE C AD 而 (3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE ,

∴∠DHD 1为二面角D 1—EC —D 的平面角.

设AE=x ,则BE=2-x

高考文科数学核心考点总结

高考文科数学核心考点总结 导读:本文高考文科数学核心考点总结,仅供参考,如果觉得很不错,欢迎点评和分享。 高考文科数学核心考点 考点一:集合与简易逻辑 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联

系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面向量 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型. 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目. 考点五:立体几何与空间向量 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

打印:高考立体几何知识点总结

一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何 体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱四棱柱平行六面体直平行六面体长方体正四棱 柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等; 棱柱的面积和体积公式 ch S= 直棱柱侧 (c是底周长,h是高)S直棱柱表面 = c·h+ 2S底V棱柱 = S底·h 2 、棱锥的结构特征 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的结构特征 Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 ' 2 S ch = 正棱椎 (c为底周长,'h为斜高) 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱 A B C D P O H

高中数学(文科)立体几何知识点总结

l立体几何知识点整理(文科)l // m l //m m 直线和平面的三种位置关系:一.αl 1. 线面平行 方法二:用面面平行实现。l//l //αl符号表示: 2. 线面相交βl lαAα方法三:用平面法向量实现。符号表示:

n 为平若面线在面内3. 的一个法向量,ln n l ll //且。,则l αα符号表示: 二.平行关系:线线平行:1.方法一:用线面平行实现。3. 面面平行:l mβl //l方法一:用线线平行实现。l'l // ml m'αl // l 'm m // m'm//且相交l , m且相交l ' , m'方法二:用面面平行实现。//l βl // mlγm m α方法二:用线面平行实现。 方法三:用线面垂直实现。 l // l, m l // m //m //若。,则l l , m且相交mβ方法四:用向量方法:m l l // m。若向量和向量共线且l、m不重合,则α 2.线面平行: 方法一:用线线平行实现。1/11

l C A方法三:用向量方法: Bα l m l m ,则的数量积为和向量若向量0。三.垂直关系:

夹角问题。三.线面垂直:1.异面直线所成的角:一)(方法一:用线线垂直实现。(0 ,90 ]范围:(1) ACl ABl 求法:(2)P n l ABAC A方法一:定义法。AθO AC, ABα:平移,使它们相交,找到夹角。步骤1 方法二:用面面垂直实现。)常用到余弦定理步骤2:解三角形求出角。( 余弦定理:βl lm a c222c ab l m, l m cosθ2ab bα )计算结果可能是其补角( 面面垂直:2.方法二:向量法。转化为向量 方法一:用线面垂直实现。 C的夹角βl lθl:)(计算结果可能是其补角 BA AB ACαcos AB AC方法二:计算所成二面角为直角。 线面角)(二线线垂直:3. 上任取一点(1) 定义:直线l ,作(交点除外)P方法一:用线面垂直实现。 内,则连结AO AO 为斜线PA 在面于O,PO l l m PAO 图中(与面)为直线l l所成的角。的射影,m

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高考立体几何知识点总结

立体几何知识点总结(二) 一.点、直线、平面之间的关系 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (4)、垂直于同一平面的两直线平行。 (5) 平行四边形两组对边平行,三角形中位线平行底边,,,,,, 2、线线垂直的判断: (1)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 (2)相交直线两直线可组成三角形利用勾股定理证垂直。 (3)一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断: (1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (2)、两个平面平行,其中一个 平面内的直线必平行于另一个平 面。

4、线面垂直的判断: (1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 5、面面平行的判断: (1)一个平面内的两条相交直线分别平行于另一个平面, 这两个平面平行: 线面平行面面平行 (2)垂直于同一条直线的两个平面平行。 6、面面垂直的判断: (1)一个平面经过另一个平面的垂线,这两个平面互相垂直。 7,体积的求法 (1)三棱锥换底换高 (2)其他图形根据情况适用公式或分割成几个图形

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

文科立体几何知识点方法总结高三复习终审稿)

文科立体几何知识点方法总结高三复习 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

立体几何知识点整理(文科) 一. 直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行 实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行 m l m l// // ? ? ? ? ? ? = ? = ? β γ α β 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则 m l//。 方法四:用向量方法: 若向量和向量共线且l、 m不重合,则 m //。 2.线面平行: 方法一:用线线平行 实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实 现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若为平面α的一个法向量,⊥且 α ? l,则α // l。 3.面面平行: 方法一:用线线平行实现。 l

βααβ//',',' //'//???? ? ?????且相交且相交m l m l m m l l 方法二:用线面 平行实现。 βαβαα //,////??? ? ???且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥???? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥???? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥???? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量和向量的数量积为0,则 m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交, 找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ

知识点-立体几何知识点常见结论汇总

知识点-立体几何知识点常见结论汇总

————————————————————————————————作者:————————————————————————————————日期: 2

O A B C D E F 垂 立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. (2) 底边长和侧棱长都相等的三棱锥叫做正四面体. A B C O 外 I K H E F D A B C M 内 A B C D E F G 重

知识点立体几何知识点常见结论总结

立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. A B C O I K H E F D A B C M A B C D E F G

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结 1、 多面体(棱柱、棱锥)的结构特征 (1)棱柱: ①定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围 成的几何体叫做棱柱。 棱柱斜棱柱直棱柱正棱柱; 四棱柱平行六面体直平行六面体 长方体正底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是正多边形 侧棱垂直于底面 侧棱不垂直于底面

棱长都相等 四棱柱正方体。 ②性质:Ⅰ、侧面都是平行四边形;Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 (2)棱锥: ①定义:有一个面是多边形,其余各面是有 一个公共顶点的三角形,由这些面 围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质: Ⅰ、平行于底面的截面和底面相似, 截面的边长和底面的对应边边长的比 等于截得的棱锥的高与原棱锥的高的 比; 它们面积的比等于截得的棱锥的高与 原棱锥的高的平方比;

截得的棱锥的体积与原棱锥的体积的 比等于截得的棱锥的高与原棱锥的高 的立方比; Ⅱ、正棱锥性质:各侧面都是全等的等腰三 角形;通过四个直角三角形POH Rt ?,POB Rt ?, PBH Rt ?,BOH Rt ?实现边,高,斜高间的换算 2、 旋转体(圆柱、圆锥、球)的结构特征 A B C D O H P

(2)性质: ①任意截面是圆面(经过球心的平面,截得 的圆叫大圆,不经 过球心的平面截得 的圆叫 小圆) ②球心和截面圆心的连线垂直于截面,并且 2d 2 =,其中R为球半径,r为截 r- R 面半径,d为球心的到截面的距离。 3、柱体、锥体、球体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。

高中文科数学知识点总结

高中文科数学知识点总结 高中文科数学知识点总结 篇一: 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。?此外,基础内容还增加了向量、算法、概率、统计等内容。选修课程有4个系列:系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。系列3:由6个专题组成。选修3—1:数学史选讲。选修3—2:信息安全与密码。选修3—3:球面上的几何。选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。选修4—1:几何证明选讲。选修4—2:矩阵与变换。选修4—3:数列与差分。 选修4—4:坐标系与参数方程。选修4—5:不等式选讲。选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与 指数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

高中数学立体几何知识点整理

三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积rh S π2=圆柱侧'2 1ch S =正棱锥侧面积rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥 '1()3 V S S h =台'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

高考立体几何知识点详细总结

八、立体几何 一、立体几何网络图: (1)线线平行的判断: ⑴平行于同一直线的两直线平行。 ⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线和交线平行。 ⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑿垂直于同一平面的两直线平行。 (2)线线垂直的判断: ⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜 线垂直。 ⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影 垂直。 ⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 ⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断: ⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。 ⒀垂直于同一条直线的两个平面平行。 (6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。 二、其他定理: (1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系:相交;平行;异面; 直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况); 平面与平面的位置关系:相交;;平行; (3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等; 如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的 锐角(或直角)相等; (4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相 等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。(6)异面直线的判定:①反证法; ②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。 (7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。 (8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。 (9)如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面。 三、唯一性定理: (1)过已知点,有且只能作一直线和已知平面垂直。 (2)过已知平面外一点,有且只能作一平面和已知平面平行。 (3)过两条异面直线中的一条能且只能作一平面与另一条平行。 四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所 o90 o 0≤ <α 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??????=?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ????? (三) 面面平行:6方法一:线线平 行?面面平行 βααβ//',','//' //??? ???????且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////??? ???=?A m l m l m l I , 方法三:8线面垂直?面面平行 βαβα面面面面//?? ??⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?????⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 α α⊥??? ? ???? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥???????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥???? ?⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

相关文档
最新文档