高一数学函数的基本性质2

合集下载

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质高一数学第三章函数的基本性质知识要点函数是数学中的基本概念之一,它在数学和实际问题的求解中起到重要的作用。

本文将介绍高一数学第三章中关于函数的基本性质,帮助大家更好地理解和掌握这一知识点。

一、函数定义函数是一种特殊的关系,表示一个集合中的每个元素都与另一个集合中的唯一元素相对应。

函数可以用符号表示,例如:f(x) = 2x + 1其中f表示函数名,x表示自变量,2x + 1表示函数的表达式,它们之间用等号连接。

二、函数的定义域和值域定义域是指函数的自变量的所有可能取值的集合,通常用D表示。

在上面的函数例子中,自变量x可以取任意实数值,所以定义域为全体实数。

值域是指函数的因变量的所有可能取值的集合,通常用R表示。

同样以例子函数f(x) = 2x + 1为例,它的值域是全体实数。

三、函数的奇偶性如果对于定义域内的任意一个实数x,都有f(-x) = f(x),则函数f(x)是偶函数;如果对于定义域内的任意一个实数x,都有f(-x) = -f(x),则函数f(x)是奇函数;如果一个函数既不是偶函数也不是奇函数,则称其为非奇非偶函数。

四、函数的图像与性质函数的图像是函数在平面直角坐标系上的几何表示。

函数的图像可以通过绘制函数的各个点来获得。

函数的图像具有以下性质:1. 对称性:偶函数的图像以y轴为对称轴,奇函数的图像以原点为对称中心;2. 单调性:如果对于定义域内的两个实数x1和x2,若x1 < x2,则有f(x1) < f(x2),则称函数f(x)在该区间上是递增的;如果x1 < x2,则有f(x1) > f(x2),则称函数f(x)在该区间上是递减的;3. 最值:函数在定义域上的最大值称为最大值,函数在定义域上的最小值称为最小值;4. 零点:函数的零点是指使得f(x) = 0的自变量取值。

五、函数的初等函数性质初等函数是指常见的基本函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

高一数学函数的基本性质

高一数学函数的基本性质

第 1 页共13 页函数的基本性质一、知识梳理1.奇偶性(1)定义:设函数y =)(x f 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x f =-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 内任意一个x ,都有D x,且)(x g =)(x g ,那么这个函数叫做偶函数.(2)如果函数)(x f 不具有上述性质,则)(x f 不具有奇偶性.如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数.函数是奇函数或是偶函数的性质称为函数的奇偶性,函数的奇偶性是函数的整体性质.(3)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x 也一定在定义域内.即定义域是关于原点对称的点集.(4)图象的对称性质:一个函数是奇函数当且仅当它的图象关于原点对称;一个函数是偶函数的当且仅当它的图象关于y 轴对称.(5)奇偶函数的运算性质:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(6)奇(偶)函数图象对称性的推广:若函数)(x f 的图象关于直线a x 对称,则)2()(a x f x f ;若函数)(x f 的图象关于点)0,(a 对称,则)2()(a xf x f .2.单调性(1)定义:一般地,设函数()y f x 的定义域为A ,区间I A .如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调增函数,I 称为()yf x 的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当12x x 时,都有12()()f x f x ,那么就说()yf x 在区间I 上是单调减函数,I 称为()yf x 的单调减区间.(2)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.。

高一数学第2课-函数的基本性质

高一数学第2课-函数的基本性质

第2讲 函数的基本性质一、要点精讲1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为偶函数。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否 ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 = 0,则f (x )是奇函数。

(3)函数的图像与性质:奇函数的图象关于 对称;偶函数的图象关于 对称; 2.单调性(1)定义:注意:① 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;② 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是 或是 ,那么就说函数y =f (x )在这一区间具有 ,区间D 叫做y =f (x )的 。

(3)判断函数单调性的方法(ⅰ)定义法:利用定义严格判断(ⅱ)利用已知函数的单调性如若()f x 、)(x g 为增函数,则①()f x +)(x g 为 ;②1()f x 为 (()f x >0);为 (()f x ≥0);④-()f x 为 (ⅲ)利用复合函数【y = f (u ),其中u =g(x ) 】的关系判断单调性:复合函数的单调性法则是“ ” (ⅳ)图象法(ⅴ)利用奇偶函数的性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; 3.最值:利用函数单调性的判断函数的最大(小)值的方法:○1 利用二次函数的性质(配方法)求函数的最大(小)值; ○2 利用图象求函数的最大(小)值; ○3 利用函数单调性的判断函数的最大(小)值: 4.周期性(1)定义:如果存在一个 常数T ,使得对于函数定义域内的 ,都有 ,则称f (x )为周期函数;(2)f (x+T )= f (x )常常写作),2()2(Tx f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为||ωT 。

高一数学的函数知识点归纳

高一数学的函数知识点归纳

高一数学的函数知识点归纳在高一的数学学习中,函数是一个非常重要的知识点。

函数的概念在数学中具有广泛的应用,并且在之后的学习中也会经常用到。

因此,熟练掌握函数的相关知识对于学习数学是非常重要的。

一、函数的定义和表示方式函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素上。

函数可以用多种不同的方式来表示,包括文字描述、图像、表格和公式等。

函数的定义通常形式为“y=f(x)”,其中x是自变量,y是因变量,f(x)表示函数的定义域和值域之间的关系。

二、函数的基本性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是函数输出的所有可能值的集合。

2. 单调性:函数的单调性指函数在自变量增大的过程中是否单调递增或单调递减。

如果函数在整个定义域上都是单调递增,则称为严格递增函数;如果函数在整个定义域上都是单调递减,则称为严格递减函数。

3. 奇偶性:函数的奇偶性指函数图像是否对称于y轴。

如果对于任意x∈定义域,f(-x)=-f(x),则函数为奇函数;如果对于任意x∈定义域,f(-x)=f(x),则函数为偶函数。

4. 周期性:函数的周期性指函数图像是否在某个区间内重复出现。

如果存在一个正数T,对于任意正整数n,有f(x+Tn)=f(x),则函数具有周期T。

三、常见的函数类型1. 线性函数:线性函数是函数图像为一条直线的函数,表示为f(x)=kx+b,其中k和b为常数。

线性函数的图像是直线,且斜率为k,截距为b。

2. 幂函数:幂函数是形如f(x)=x^a的函数,其中a为常数。

幂函数的图像形状与a的正负和大小有关,当a为正数时,图像从左上方逼近x轴,当a为负数时,图像从右上方逼近x轴。

3. 指数函数:指数函数是形如f(x)=a^x的函数,其中a为正常数且不等于1。

指数函数的图像具有一定的特点,包括过点(0,1)、严格递增或递减等。

4. 对数函数:对数函数是指数函数的反函数,表示为f(x)=loga(x),其中a为正常数且不等于1。

函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)

函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)
问题3:.你能归纳求二次函数最值的方法吗?
[答案] 求解二次函数最值问题的方法:
(1)确定对称轴与抛物线的开口方向并作图.
(2)在图象上标出定义域的位置.
(3)观察函数图象,通过函数的单调性写出最值.
新知生成
二次函数 具有对称性、增减性、最值等性质,即对于 ,①其图象是抛物线,关于直线 成轴对称图形;②若 ,则函数在区间 上单调递减,在区间 上单调递增;③若 ,则函数在区间 上单调递增,在区间 上单调递减;④若 ,则当 时, 有最小值,为 ,若 ,则当 时, 有最大值,为 .
A. , B. , C. , D. ,
C
[解析] 由图可得,函数 在 处取得最小值,最小值为 ,在 处取得最大值,最大值为2,故选C.
3.函数 在区间 上的最大值、最小值分别是( ).A. , B. , C. , D.以上都不对
B
[解析] 因为 ,且 ,所以当 时, ;当 时, .故选B.
(2) 求函数 的最大值.
[解析] 当 时, , ;当 时, , ;当 时, , .综上所述, .
1.函数 在 上的图象如图所示,则此函数在 上的最大值、最小值分别为( ).
A. , B. , C. ,无最小值 D. ,
C
[解析] 观察图象可知,图象的最高点坐标是 ,故其最大值是3;无最低点,即该函数不存在最小值.故选C.
×
(2) 若函数有最值,则最值一定是其值域中的一个元素.( )

(3) 若函数的值域是确定的,则它一定有最值.( )
×
(4) 函数调递减,则函数 在区间 上的最大值为 .( )

自学检测
2.函数 在 上的图象如图所示,则此函数的最小值、最大值分别是( ).

高一数学必修一多项式函数的基本性质

高一数学必修一多项式函数的基本性质

高一数学必修一多项式函数的基本性质多项式函数是高中数学中的重要内容之一,掌握多项式函数的基本性质对于研究数学和解决实际问题具有重要意义。

本文将介绍多项式函数的一些基本性质。

一、多项式函数的定义多项式函数是指由常数和变量的乘积再进行有限次的加法运算所得到的函数。

它由若干项组成,每一项包含一个系数和变量的幂次。

多项式函数的一般形式可表示为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$$其中,$a_n, a_{n-1}, \ldots, a_1, a_0$ 是常数,$x$ 是变量,$n$ 是非负整数,称为多项式的次数。

二、多项式函数的性质1. 多项式函数的次数:多项式函数的次数等于其中最高次幂的指数,记作 $\deg f(x)$。

例如,$f(x) = 2x^3 + 5x^2 - 3x + 1$ 的次数为 3。

2. 多项式函数的零次项和首项:多项式函数 $f(x)$ 中次数为$n$ 的项称为首项,系数为 $a_n$;次数为 0 的项称为常数项或零次项,系数为 $a_0$。

3. 多项式函数的导函数:多项式函数 $f(x)$ 的导函数是将每一项的幂次减 1,然后再乘以原来的系数。

例如,$f(x) = 2x^3 + 5x^2 - 3x + 1$ 的导函数为 $f'(x) = 6x^2 + 10x - 3$。

4. 多项式函数的奇偶性:若多项式函数中的所有项都是偶次项或奇次项,则多项式函数为偶函数或奇函数。

若多项式函数中同时存在奇次项和偶次项,则多项式函数既不是偶函数也不是奇函数。

例如,$f(x) = x^4 - x^2$ 是偶函数,$g(x) = x^3 - x$ 是奇函数。

5. 多项式函数的图像特征:多项式函数的图像是连续的、光滑的曲线。

对于 $n$ 次多项式函数 $f(x)$,当 $n$ 是奇数时,图像的起始方向和终止方向相反;当 $n$ 是偶数时,图像的起始方向和终止方向相同。

高一必修二每章知识点公式总结

高一必修二每章知识点公式总结

高一必修二每章知识点公式总结第一章:函数与导数1. 函数概念函数是一种特殊的关系,将自变量的值映射到因变量的值上,通常表示为y=f(x),其中x为自变量,y为因变量。

2. 定义域和值域定义域是自变量可能取值的范围,对于有理函数而言,需要考虑分母为零的情况。

值域是函数在定义域上取到的所有可能值。

3. 函数的基本性质a) 奇偶性:f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。

b) 单调性:f'(x)>0,函数递增;f'(x)<0,函数递减。

c) 最值:通过求导或者化简函数表达式,可以得到函数的最值。

d) 零点:函数取零值的点叫做零点,通过解方程f(x)=0,可以求得函数的零点。

4. 极值和最值a) 极值:函数在一定区间内取得的最大值或最小值。

通过求导,可以找到函数的驻点,再通过二阶导数判定其为极大值、极小值还是无极值。

b) 最值:函数在定义域上取得的最大值或最小值。

第二章:三角函数1. 基本概念a) 正弦函数sin(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角所确定。

b) 余弦函数cos(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角的余弦值。

c) 正切函数tan(x):tan(x) = sin(x)/cos(x),在直角三角形中,tan(x)表示斜边与对边之比。

2. 基本性质a) 周期性:sin(x)和cos(x)的周期均为2π,tan(x)的周期为π。

b) 奇偶性:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。

c) 值域:-1 ≤ sin(x) ≤ 1,-1 ≤ cos(x) ≤ 1,tan(x)的值域为全体实数。

3. 三角函数的图像与性质a) 正弦函数的图像:周期为2π,对称于x轴。

当x=0时,取得最小值-1;当x=π/2时,取得最大值1。

高一数学必修2 函数的基本性质——奇偶性

高一数学必修2 函数的基本性质——奇偶性

高一数学必修2函数的基本性质——奇偶性(一)、基本概念及知识体系:教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。

教学重点:熟练判别函数的奇偶性。

教学难点:理解奇偶性。

教学过程:一、复习准备:1.提问:什么叫增函数、减函数?★2.指出f(x)=2x 2-1的单调区间及单调性。

→变题:|2x 2-1|的单调区间★3.对于f(x)=x 、f(x)=x 2、f(x)=x 3、f(x)=x 4,分别比较f(x)与f(-x)。

二、讲授新课:1.教学奇函数、偶函数的概念:①给出两组图象:()f x x =、1()f x x=、3()f x x =;2()f x x =、()||f x x =. 发现各组图象的共同特征 → 探究函数解析式在函数值方面的特征② 定义偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).③ 探究:仿照偶函数的定义给出奇函数(odd function )的定义.(如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。

④ 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) ⑤ 练习:已知f(x)是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。

2.教学奇偶性判别:●例1:判别下列函数的奇偶性:f(x)=34x 、f(x)=43x 、f(x)=-4x 6+5x 2、f(x)=3x +31x 、f(x)=2x 4-+3。

★ 判别下列函数的奇偶性:f(x)=|x +1|+|x -1| f(x)=23x 、f(x)=x +x 1、 f(x)=21xx +、f(x)=x 2,x ∈[-2,3] ③ 小结奇偶性判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法判别f(x)与f(-x)的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为母亲的奋斗,我们家终于摆脱了生活贫窘的巨大压力。但那时,工地没有再建基地的安排,我们一家人还住在牛毛毡房里,父亲当时只有七十来块钱的工资,买房是不可能;母亲咬着牙,还要 为购买房子继续地拼搏下去。体育赌场
人们常说,个人、家庭的命运总是跟国家的命运紧紧相连,这话一点不假,我们家重大转机很快就来了。当时国家重点工程安康水电站的建设如火如荼,但专用铁路囿于大量需要开凿的隧洞制约一 时跟不上趟,电站工程急需的砂、石原料用量非常巨大,施工单位旋即发动后备力量组织砂石运输。这些“后备”力量就是工程单位己去 找车,往电站工地输送砂石原料,车主与原材料之间约定的差价,就是家属们的劳动收入,但“约定”大都会在现实面前发生很多动摇,家属们包车的劳动收入波动性大,并不稳定。当时所称的车,大 都是小型翻斗车,四个轮子,盘式方向,装满料的小斗可以自动朝前翻缷的那种。
沧海横流,方显英雄本色,母亲很快投入进了国家建设的热潮之中。八十年代,个体机动车辆还很少,母亲起早贪黑,脚不沾地地在安康城周边地区寻找车辆,有了车辆,又忙着寻找原材料,在我 的记忆中,那段时间母亲似乎连喘气的空隙也没有。
相关文档
最新文档