(完整版)概率统计难题选解(一)

合集下载

概率难题汇编及答案解析0001

概率难题汇编及答案解析0001

概率难题汇编及答案解析一、选择题1 .布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是(4 A.-92C.—31D.-3【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果, 的情况,再利用概率公式求解即可求得答案.【详解】可求得两次都摸到白球开蜡白E1红/K A\/T\S白红白白红白白红则共有9种等可能的结果,两次都摸到白球的有4种情况,4• ••两次都摸到白球的概率为-9故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同.搅均后从中随机一次模出两个球,这两个球都是红球的概率是(1 A. 21B. 31D. 4【答案】A【解析】【分析】列举出所有情况,看两个球都是红球的情况数占总情况数的多少即可. 【详解】画树形图得:解:画树状图得:一共有12种情况,两个球都是红球的有 6种情况,故这两个球都是红球相同的概率是12=1 故选A . 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结 果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此 题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3.岐山县各学校开展了第二课堂的活动 ,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加 ,则小斌和小宇选到同一活动的概率是(等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可. 【详解】所以小斌和小宇两名同学选到同一课程的概率 故选B. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列 出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成 的事件.用到的知识点为:概率 =所求情况数与总情况数之比.4.下列事件是必然事件的是()A .某彩票中奖率是1%,买100张一定会中奖/1\A\ A\ A\白红红白红红白红红红红红 1B.-3 1C.-61A.-2【答案】B 【解析】 【分析】1D.-9A 、B 、C 表示)展示所有9种(国学诗词组、 B/1\ A B CC共有9种等可能的结果数,'篮球足球组、陶艺茶艺组分别用A. B. C 表示)C/1\ABC3,画树状图为:A/"TVS 直右•• •这两辆汽车行驶方向共有 种,2• ••一辆向右转,一辆向左转的概率为-9故选:B .B .长度分别是3cm,5cm,6cm 的三根木条能组成一个三角形 C. 打开电视机,正在播放动画片 D. 2018年世界杯德国队一定能夺得冠军【答案】B 【解析】 【分析】必然事件就是一定发生的事件,即发生的概率是 【详解】1的事件.A 、 某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B 、 由于6-5< 3< 5+6,所以长度分别是 3cm , 5cm , 6cm 的三根木条能组成一个三角形, 属于必然事件,符合题意;C 打开电视机,正在播放动画片,属于随机事件,不符合题意;D 、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意. 故选:B .【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相 同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是2A -■ 3【答案】B 【分析】可以采用列表法或树状图求解•可以得到一共有 种结果数,根据概率公式计算可得. 【详解】画树形图”如图所示:9种情况,一辆向右转, 一辆向左转有2左宣右I9种可能的结果, 其中一辆向右转,一辆向左转的情况有【点睛】此题考查了树状图法求概率•解题的关键是根据题意画出树状图,再由概率=所求情况数 与总情况数之比求解6.在一个不透明的布袋中,红色、黑色、白色的小球共有 同•乐乐通过多次摸球试验后发现, 则口袋中白色球的个数很可能是(白色球的个数是50? (1 27%- 43%)= 15个, 故选:B. 【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键7.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加 其中一个社团,那么征征和舟舟选到同一社团的概率是(3 9考点:简单事件的概率.&如图,在菱形 ABCD 中,AC 与BD 相交于点0•将菱形沿EF 折叠,使点C 与点0重 合.若在菱形ABCD 内任取一点,则此点取自阴影部分的概率为()50个,除颜色外其他完全相摸到红色球、黑色球的频率分别稳定在27%和 43%,A . 20【答案】B 【解析】 【分析】由频率得到红色球和黑色球的概率, 【详解】B . 15 C. 10 D . 5用总数乘以白色球的概率即可得到个数2 A .3【答案】C 【解析】 1 B .21C.-3 1D.-4【分析】 【详解】用数组(X , Y )中的X 表示征征选择的社团, 丫表示舟舟选择的社团. A , B , C 分别表示航模、彩绘、泥塑三个社团, 于是可得到(A ,A ),( A ,A ),( C ,B ),(A ,A ),( B , (C , C ),B ),(c, B ) ,( A ,C ),( B, A ),( B ,B ),( B ,C ),( C , 共9中不同的选择结果,而征征和舟舟选到同一社团的只有C )三种, 所以,所求概率为1,故选C.9•••此点取自阴影部分的概率为-AC BD 2故选C.. 【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积 某个事件所占有的面积 m 表示这个事件发生的结果数, 件的概率为:Pmn9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出 一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球•两次都摸到黄球的概 率是( )c.5D.-8【解析】 【分析】根据菱形的表示出菱形 ABCD 的面积,由折叠可知 形CEOF 的面积,然后根据概率公式计算即可 .【详解】EF 是△BCD 的中位线,从而可表示出菱1 菱形ABCD 的面积=—AC BD ,2•••将菱形沿EF 折叠,使点C 与点0重合,••• EF 是△BCD 的中位线,••• EF=1BD,11•••菱形 CEOF 的面积=—0C EF -AC BD ,2 - •••阴影部分的面积=1AC 2 BD 1AC BD8|ACBD3-AC BD .8 n 表示所有等可能的结果数,用然后利用概率的概念计算出这个事4A.-1B.-32 C.-91D.-9B.-5A.-3【答【答案】A 【解析】【分析】 首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然 后利用概率公式求解即可求得答案•注意此题属于放回实验. 【详解】 画树状图如下:共有 9种等可能结果,其中两次都摸到黄球的有 4种结果,•••两次都摸到黄球的概率为49故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识•注意画树状图与列表法可以不重复不遗 漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上 完成的事件;解题时要注意此题是放回实验还是不放回实验.10.动物学家通过大量的调查估计:某种动物活到 20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是( )【解析】 【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公 式解答即可. 【详解】 解:设共有这种动物 x 只,则活到20岁的只数为0.8X ,活到30岁的只数为0.3X , 故现年20岁到这种动物活到30岁的概率为 故选:B .【点睛】本题考查概率的简单应用,用到的知识点为:概率3A.-5【答案】BB .35C.-83D.—10=所求情况数与总情况数之比. 由树状图可知,11.下列事件中,属于不可能事件的是( )A. 某个数的绝对值大于 0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540 ° D.长分别为3, 4, 6的三条线段能围成一个三角形【答案】C 【解析】 【分析】直接利用随机事件以及确定事件的定义分析得出答案. 【详解】故答案选C. 【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定 事件.12. 有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字 个球放入不透明的袋中搅匀, 为奇数的概率是(【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况 数,然后根据概率公式即可得出答案. 【详解】根据题意画树状图如下:•••一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2 1•••这两个球上的数字之积为奇数的概率是—=1 12 6故选A . 【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意A 、B 、C 、D 、 某个数的绝对值大于 0,是随机事件,故此选项错误; 某个数的相反数等于它本身,是随机事件,故此选项错误; 任意一个五边形的外角和等于 540 °是不可能事件,故此选项正确; 长分别为3,4, 6的三条线段能围成一个三角形,是必然事件,故此选项错误. 2,3,5,6,将这四 不放回地从中随机连续抽取两个,则这两个球上的数字之积1A.-6【答案】A B .2 C.—31 D.—4木木3 563562362种情况,此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.181 11113. 由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动 两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说A. 两个转盘转出蓝色的概率一样大B. 如果A 转盘转出了蓝色,那么 B 转盘转出蓝色的可能性变小了C. 先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同 1 6【答案】D 【解析】由于共有6种等可能结果,而出现红色和蓝色的只有 1种,所以游戏者配成紫色的概率为16故选D .14•小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字 1, 2, 3, 4, 5, 6).记甲立方体朝上一面上的数字为X 、乙立方体朝上一面朝上的数字为y ,这6y=-上的概率为()XD .游戏者配成紫色的概率为A 、 A 盘转出蓝色的概率为 如果A 转盘转出了蓝色,由于A 、B 两个转盘是相互独立的,先转动 游戏者配成紫色的概率相同,此选项错误; D 、画树状图如下:B 、C 、 1 1 —、B 盘转出蓝色的概率为 -,此选项错误;23那么 B 转盘转出蓝色的可能性不变,此选项错误;X 、 样就确定点P 的一个坐标(X , y ),那么点P 落在双曲线【答案】C 【解析】 画树状图如下:6•••一共有36种等可能结果,点 P 落在双曲线y=—上的有(1, 6),( 2, 3),( 3,x2),( 6, 1),•••点P 落在双曲线y=—上的概率为: —=-•故选C.x 36 915.下列说法:① “明天降雨的概率是 50%”表示明天有半天都在降雨; ② 无理数是开方开不尽的数;其中正确的个数有(A . 1个【答案】A 【解析】 【分析】① 根据概率的定义即可判断;② 根据无理数的概念即可判断;③ 根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断. 【详解】① “明天降雨的概率是 50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错 误;③若a 为实数,则 a 0是不可能事件; ④16的平方根是4,用式子表示是用B . 2个D . 4个②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:•••共准备了 100张抽奖券,设一等奖••• 1张抽奖券中奖的概率是:10 20 30= 0.6,100故选:D . 【点睛】本题考查了概率公式:随机事件 A 的概率P (A )=事件A 可能出现的结果数除以所有可能 出现的结果数.17.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此 圆的内接正方形中的概率是().A. d2【答案】D 【解析】 【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得. 【详解】•••半径为2的圆内接正方形边长为 2^2,•••圆的面积为4n 正方形的面积为 8, 故选D .④16的平方根是 综上,正确的只有 故选:A . 【点睛】本题主要考查概率, 4,用式子表示是 护64,故错误;③,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数 的概念,绝对值的非负性,平方根的形式是解题的关键.16.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则 1张抽奖券中奖的概率是()A . 0.1【答案】D【解析】B . 0.2 C. 0.3 D . 0.610个,二等奖20个,三等奖 30个.B. 2则石子落在此圆的内接正方形中的概率是旦_24【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.18.如图,在AABC中,AB= AC, / BAC= 90°直角/ EPF的顶点P是BC的中点,两边PE PF分别交AB, AC于点E, F,现给出以下四个结论:(1 )AE= CF; (2)AEPF是等1腰直角三角形;(3)S四边形AEPF=—S ABC;(4)当/ EPF在AABC内绕顶点P旋转时始终有2EM AP.(点E不与A、B重合),上述结论中是正确的结论的概率是(【答案】D【解析】△AEP^A CFP然后能推理得到选项A, B, C都是正确的,当EF= APAP2 2PF2,由AP的长为定值,而PF的长为变化值可知选项正确•从而求出正确的结论的概率.【详解】解:••• AB= AC, / BAC= 90°1•- EAP - BAC 45 ,2(1 )在△AEP 与ACFP 中,•••/ EAP=/ C= 45°, AP= CP•••△ AEP^A CFPAP 丄BC CP .2/ APE=/ CPF= 90° -/ APF,••• AE= CF. ( 1)正确;(2)由(1)知,△AEP^A CFP, ••• PE= PF,又•••/ EPF= 90°•••△ EPF是等腰直角三角形.(2)正确;(3)•••△ AEP^^ CFP 同理可证△APF^△ BPE1…S四边形AEPF ^/AEP S vAPF Sg PF S B PE? S VABC •A. 1个B. 3个1C.-43D.—4【分析】根据题意,容易证明始终相等时,可推出点P是BC的中点,(3)正确;(4)当EF = AP 始终相等时,由勾股定理可得:EF22PF 2则有:AP22PF 2,••• AP 的长为定值,而 PF 的长为变化值, ••• AP 2与2PF 2不可能始终相等,即EF 与AP 不可能始终相等,(4)错误, 综上所述,正确的个数有 3个,3故正确的结论的概率是 一4故选:D . 【点睛】用到的知识点为:概率 =所求情况数与总情况数之比;解决本题的关键是利用证明三角形全 等的方法来得到正确结论.【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、打开电视,正在播放《新闻联播》 ”是随机事件,故本选项错误; B 、一组数据的波 动越大,方差越大,故本选项错误; C 数据1 , 1, 2, 2, 3的众数是1和2,故本选项错 误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.).打开电视,正在播放《新闻联播》 ”是必然事件一组数据的波动越大,方差越小数据1, 1, 2, 2, 3的众数是3想了解某种饮料中含色素的情况,宜采用抽样调查19.下列说法中正确的是(A .B . D .20.从一副(54张)扑克牌中任意抽取一张,正好为 2 A . 一 27 【答案】A 【解析】 【分析】用K 的扑克张数除以一副扑克的总张数即可求得概率.1 B.-4C.K 的概率为()1541D.-2【详解】解:•一副扑克共54张,有4张K, •••正好为K的概率为—=-2.54 27故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件mA出现m种结果,那么事件A的概率P (A)=—n。

概率统计参考答案(习题一)

概率统计参考答案(习题一)

概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。

解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。

(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。

则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。

2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。

3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。

解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。

4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。

《概率论与数理统计》第三版--课后习题答案.-(1)

《概率论与数理统计》第三版--课后习题答案.-(1)

习题一:1.1 写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2);解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:;(7)在单位圆内任取两点, 观察这两点的距离;解:;(8)在长为的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:;1.2(1)A 与B 都发生, 但C 不发生; ;(2)A 发生, 且B 与C 至少有一个发生;;(3)A,B,C 中至少有一个发生; ;(4)A,B,C 中恰有一个发生;;(5)A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生;;(7) A;B;C 中至多有两个发生;(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。

1.3 设样本空间, 事件=,具体写出下列各事件:(1); (2) ; (3) ; (4)(1);(2) =;(3) =;(4) =1.6 按从小到大次序排列, 并说明理由.解:由于故,而由加法公式,有:1.7解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8解:(1) 由于,故显然当时P(AB) 取到最大值。

概率统计经典考题难题

概率统计经典考题难题

概率统计经典考题难题本文将探讨概率统计中的经典考题难题,旨在提供解题思路和方法。

以下是一些难题的介绍和解答方式。

难题一:事件的独立性问题描述已知事件A和事件B独立发生的概率分别为P(A)和P(B)。

现已发生了事件A,请计算在已知事件A发生的情况下,事件B发生的条件概率P(B|A)。

解答方式根据事件的独立性定义,事件A和事件B的独立发生意味着P(B|A)等于P(B)。

因此,在已知事件A发生的情况下,事件B发生的条件概率为P(B)。

难题二:条件概率问题描述某工厂生产两种型号的产品,A型和B型,其中A型产品的次品率为3%,B型产品的次品率为5%。

已知一个随机抽取的产品是次品,请计算这个产品是A型产品的概率。

解答方式根据条件概率公式,设事件A为取到A型产品,事件B为取到次品,要求的是P(A|B)。

根据题意,P(B|A)为A型产品为次品的概率,即3%;P(B)为随机抽取的产品为次品的概率,即(3%+5%)。

代入条件概率公式可得:P(A|B) = P(B|A) * P(A) / P(B)代入数值计算,得到这个产品是A型产品的概率。

难题三:二项分布问题描述甲乙两个运动员进行射击比赛,已知甲乙两个运动员的命中率分别为p和q。

比赛规则是,先由甲射击一次,再由乙射击一次,如此交替直至有一人命中。

如果甲乙两人的命中率相等,求乙获胜的概率。

解答方式设甲乙两人的命中率均为p=q,且p+q=1。

定义事件A为乙获胜,事件B为甲获胜。

由于比赛规则是交替射击,乙获胜的条件为第1次甲不中,第2次乙中,第3次甲不中,第4次乙中...以此类推。

根据二项分布的概率计算公式,乙获胜的概率为:P(A) = (1-p) * p + (1-p) * (1-p) * p + (1-p) * (1-p) * (1-p) * p + ...使用数学归纳法可以证明此数列的和收敛于p/(2-p)。

根据以上推导,当甲乙两人的命中率相等时,乙获胜的概率为p/(2-p)。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案在概率统计学中,试题和答案的准确性和清晰度非常重要。

下面将给出一系列关于概率统计的试题和详细的解答,以帮助读者更好地理解和应用概率统计的基本概念和技巧。

试题一:基础概率计算某餐厅有3个主菜,每个主菜又有4种不同的配菜。

如果顾客在选择主菜和配菜时是随机的,那么一个顾客会选择哪种搭配的概率是多少?解答一:根据概率统计的基本原理,计算顾客选择搭配的概率可以使用“事件数除以样本空间”的方法。

在这个问题中,总共有3个主菜和4种配菜,所以样本空间的大小为3 × 4 = 12。

而一个顾客选择一种特定的搭配可以有1种选择,因此事件数为1。

因此,顾客选择某种搭配的概率为1/12。

试题二:概率的加法规则某班级有25名男生和15名女生。

从中随机选择一名学生,那么选择一名男生或选择一名女生的概率分别是多少?解答二:根据概率统计的加法规则,选择一名男生或选择一名女生的概率可以通过计算每个事件的概率然后相加来得到。

在这个问题中,男生和女生分别属于两个互斥事件,因此可以直接相加。

男生的概率为25/40,女生的概率为15/40。

因此,选择一名男生或选择一名女生的概率为25/40 + 15/40 = 40/40 = 1。

试题三:条件概率计算某电子产品的退货率是0.05,而该产品是有瑕疵的情况下才会退货。

对于一台已经退货的产品,有0.02的概率是有瑕疵的。

那么一台被退货且有瑕疵的电子产品占所有退货产品的比例是多少?解答三:根据条件概率的定义,求一台被退货且有瑕疵的电子产品占所有退货产品比例的问题,可以用有瑕疵且被退货的产品数除以所有被退货的产品数来得到。

假设有1000台电子产品被退货,根据退货率的定义,有5%的产品会被退货,即退货的产品数为0.05 * 1000 = 50台。

而在这50台退货产品中,有2%有瑕疵,即有瑕疵且被退货的产品数为0.02 * 50 = 1台。

因此,一台被退货且有瑕疵的电子产品占所有退货产品的比例为1/50,即0.02。

(完整版)概率的运算经典难题

(完整版)概率的运算经典难题

(完整版)概率的运算经典难题在概率论中,有一些经典的难题,这些问题涉及到了概率的运算和计算。

本文将介绍其中一些难题,展示了概率运算的一些困难和挑战。

蒙提霍尔问题蒙提霍尔问题是一个经典的概率难题,引发了许多争议和困惑。

问题的描述是这样的:有三扇门,其中一扇门后面有一辆汽车,而另外两扇门后是羊。

参赛者首先选择一扇门,主持人看见后会打开一扇有羊的门,然后参赛者可以选择是否更换选项。

问题是:参赛者更换选择后获胜的概率是否增加?这个问题经常被人们感到困惑的原因在于直觉与概率计算的差异。

直觉上,参赛者更换选择后获胜的概率应该保持不变,但实际上更换选择后的获胜概率是增加的。

概率计算可以解释为,初始选择时,参赛者获胜的概率是1/3,而更换选择后,获胜的概率将增加到2/3。

生日问题生日问题是另一个经典的概率难题,用于说明概率计算中的一些意外结果。

问题的描述是:在一个房间里,至少需要多少人才能使得至少有两个人生日相同的概率超过50%?这个问题看似简单,但其中的计算结果却让人惊讶。

根据概率计算,只需要23个人就能使得有两个人生日相同的概率超过50%。

这是因为在23个人中存在着253种不同的生日配对可能性,其中只有一种情况下没有相同的生日。

而对于一个具有365天的年份来说,这个结果是相当令人吃惊的。

蒙特卡洛方法除了这些经典难题,蒙特卡洛方法也是概率计算中的一种重要策略。

蒙特卡洛方法是一种基于统计模拟的计算方法,通过生成大量的随机样本来估计概率值。

蒙特卡洛方法的优势在于它可以应对复杂问题和无法通过直接计算得出概率的情况。

通过模拟随机事件的发生,蒙特卡洛方法可以估计复杂系统的概率分布。

这种方法在金融、工程、物理等领域都得到了广泛的应用。

以上介绍了一些概率运算中的经典难题和策略。

通过学习和了解这些问题,我们可以更好地理解概率计算并且应用于实际场景中。

概率难题汇编及答案

概率难题汇编及答案
求出使得一次函数y=(-m+1)x+11-m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的数,然后直接利用概率公式求解即可求得答案.
【详解】
解:∵一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限,﹣m+1<0,11﹣m>0,
∴1<m<11,
∴符合条件的有:2,5,7,8,
把分式方程 =3x+ 去分母,整理得:3x2﹣16x﹣mx=0,
【详解】
A.购买一张彩票中奖,属于随机事件,不合题意;
B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;
C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;
D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;
故选D.
【点睛】
本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.
【答案】A
【解析】
【分析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为 ,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
A
B
C
A
(A,A)
(B,A)(Biblioteka ,A)B(A,B)

概率论与数理统计(浙大) 习题答案 第1章

概率论与数理统计(浙大) 习题答案 第1章

第一章 概率论的基本概念1 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)解 }100 , ,1 ,0|{n i ni S ⋅⋅⋅==, 其中n 为小班人数(2)同时掷三颗骰子 记录三颗骰子点数之和 解 S ={3 4, ⋅⋅⋅ 18}.(3)生产产品直到得到10件正品为止, 记录生产产品的总件数解 S ={10, 11, 12, ⋅⋅⋅ , n , ⋅⋅⋅ }(4)对某工厂出厂的产品进行检查, 合格的记上“正品”, 不合格的记上“次品”, 如连续查出2个次品就停止检查, 或检查4个产品 停止检查, 记录检查的结果.解 S ={00, 100, 0100, 0101, 1010, 0110,1100, 0111, 1011, 1101, 1110, 1111}其中0表示次品 1表示正品.(5)在单位圆内任意取一点 记录它的坐标解 S ={(x y )|x 2+y 2<1}.(6)将一尺之棰成三段 观察各段的长度解 S ={(x y z )|x >0 y >0 z >0 x +y +z =1} 其中x y z 分别表示第一、二、三段的长度2. 设A , B , C 为三事件, 用A , B , C 的运算关系表示下列各事件.(1)A 发生, B 与C 不发生解 表示为: A B C 或A -(AB +AC )或A -(B C )(2)A , B 都发生, 而C 不发生解 表示为: AB C 或AB -ABC 或AB -C(3)A , B , C 中至少有一个发生解 表示为: A +B +C(4)A , B , C 都发生解 表示为: ABC(5)A , B , C 都不发生解 表示为: ⎺A B C 或S - (A +B +C)或C B A ⋃⋃(6)A , B , C 中不多于一个发生解 即A , B , C 中至少有两个同时不发生相当于⎺A B B C ⎺A C 中至少有一个发生. 故表示为: ⎺A B B C ⎺A C .(7)A , B , C 中不多于二个发生解 相当于: A B C 中至少有一个发生.故表示为: A B C 或ABC(8)A , B , C 中至少有二个发生.解 相当于: AB , BC , AC 中至少有一个发生.故表示为: AB +BC +AC3 设A , B 是两事件且P (A )=0.6, P (B )=0.7. 问 (1)在什么条件下P (AB )取得最大值, 最大值是多少?(2)在什么条件下P (AB )取得最小值, 最小值是多少?解 (1)因为P (AB )=P (A )+P (B )-P (A B ) 且P (A )<P (B )≤P (A B ) 所以当A B 时 P (A B )=P (B ) P (AB )取到最大值, 最大值为P (AB )=P (A )=0.6(2)当A B =S 时, P (AB )取到最小值, 最小值为P (AB )=0.6+0.7-1=0.3.4 设A , B , C 是三事件, 且P (A )P (B )P (C )1/4 P (AB )P (BC )0, P (AC )1/8. 求A , B , C 至少有一个发生的概率.解 P (A , B , C 至少有一个发生)=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) (3/4)(1/8)05/85 在一标准英语字典中有55个由两个不同的字母所组成的单词, 若从26个英文字母中任取两个字母予以排列, 问能排成上述单词的概率是多少?解 记A 表“能排成上述单词” 因为从26个任选两个来排列, 排法有226A 种. 每种排法等可能. 字典中的二个不同字母组成的单词: 55个 所以1301155)(226==A AP6 在房间里有10人. 分别佩戴从1号到10号的纪念章, 任选3人记录其纪念章的号码.(1)求最小的号码为5的概率解 记“三人纪念章的最小号码为5”为事件A . 因为10人中任选3人为一组: 选法有310C 种, 且每种选法等可能. 又事件A相当于: 有一人号码为5, 其余2人号码大于5. 这种组合的种数有251C ⨯ 所以1211)(31025=⨯=C C AP (2)求最大的号码为5的概率.解 记“三人中最大的号码为5”为事件B , 同上 10人中任选3人, 选法有310C 种, 且每种选法等可能, 又事件B 相当于:有一人号码为5, 其余2人号码小于5, 选法有241C ⨯种 所以2011)(31024=⨯=C C BP 7 某油漆公司发出17桶油漆, 其中白漆10桶、黑漆4桶, 红漆3桶. 在搬运中所有标签脱落, 交货人随意将这些标签发给顾客, 问一个定货4桶白漆, 3桶黑漆和2桶红漆顾客, 能按所订颜色如数得到定货的概率是多少?解 记所求事件为A .在17桶中任取9桶的取法有310C 种, 且每种取法等可能. 取得4白3黑2红的取法有2334410C C C ⨯⨯ 故2431252)(6172334410=⨯⨯=C C C C A P8 在1500个产品中有400个次品, 1100个正品, 任意取200个.(1)求恰有90个次品的概率解 用A 表示取出的产品恰有90个次品 在1500个产品中任取200个, 取法有2001500C 种, 每种取法等可能. 200个产品恰有90个次品, 取法有110110090400C C 种 因此2001500110110090400)(C C C A P= (2)至少有2个次品的概率.解 用B 表示至少有2个次品 B 0表示不含有次品, B 1表示只含有一个次品 同上, 200个产品不含次品, 取法有2001100C 种, 200个产品含一个次品, 取法有19911001400C C种 因为B B 0B 1且B 0, B 1互不相容 所以P (B )1P (B )1[P (B 0)P (B 1)]20015002001100199110014001C C C C +-=9 从5双不同鞋子中任取4只, 这4只鞋子中至少有2只配成一双的概率是多少?解 样本空间所含的样本点数为410C 用A 表示4只全中至少有2支配成一对 则A 表示4只全不配对 A 所包含的样本点数为4452⨯C (先从5双鞋中任取4双 再从每双中任取一只) 因此2182)(410445=⋅=C C AP 21132181)(1)(=-=-=A P AP10 在11张卡片上分别写上Probabitity 这11个字母 从中任意连抽7张 求其排列结果为Abitity的概率解 所有可能的排列构成样本空间 其中包含的样本点数为711P 用A 表示正确的排列 则A 包含的样本点数为411111*********=C C C C C C C 则0000024.04)(711==P A P11 将3个球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3解 记A i 表示杯中球的最大个数为i 个( i =1, 2, 3)三只球放入四只杯中, 放法有43种, 每种放法等可能 对A 1: 必须三球放入三杯中, 每杯只放一球. 放法4×3×2种. 故1664234)(31=⨯⨯=A P 对A 2: 必须三球放入两杯, 一杯装一球, 一杯装两球. 放法有3423⨯⨯C 种. 故169434)(3232=⨯⨯=C A P 对A 3: 必须三球都放入一杯中. 放法有4种.16144)(33==A P 12 将50只铆钉随机地取来用在10个部件, 其中有3个铆钉强度太弱, 每个部件用3只铆钉, 若将三个强度太弱的铆钉都装在一个部件上, 则这个部件强度就太弱, 问发生一个部件强度太弱的概率是多少?解 记A 表示10个部件中有一个部件强度太弱.把随机试验E 看作是用三个钉一组, 三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序. 但10组钉铆完10个部件要分先后次序)对E : 铆法有323344347350C C C C ⨯⨯⨯ 种, 每种装法等可能对A : 三个次钉必须铆在一个部件上. 这种铆法数为10)(32334434733⨯⨯⨯C C C C故 00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P13 已知3.0)(=A P P (B )=0.4 5.0)(=B A P 求)|(B A B P ⋃.解 7.0)(1)(=-=A P A P 6.0)(1)(=-=B P BPB A AB B B A AS A ⋃=⋃==)( 注意Φ=))((B A AB . 故有 2.05.07.)()()(=-=-=B A P A P AB P .再由加法定理8.05.06.07.0)()()()(=-+=-+=⋃B A P B P A P B AP 于是 25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A BP14 已知41)(=A P 31)|(=A B P 21)|(=B A P求P (A ⋃B ).解 根据条件概率)()|()()()()|(B P A B P A P B P AB P B A P ==61213141)|()|()()(=⨯==B A P A B P A P BP根据乘法公式1214131)()|()(=⨯==A P A B P ABP根据加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B AP15 掷两颗骰子, 已知两颗骰子点数之和为7, 求其中有一颗为1点的概率(用两种方法).解法一 (在缩小的样本空间SB 中求P (A |B ), 即将事件B 作为样本空间, 求事件A 发生的概率).掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1, 2, 3, 4, 5,6)并且满足x +y =7, 则样本空间为S ={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}每种结果(x , y )等可能.A ={掷二骰子, 点数和为7时, 其中有一颗为1点}故 3162)(==A P解法二 用公式)()()|(B P AB P B A P = S ={(x , y )| x =1, 2, 3, 4, 5, 6; y =1, 2, 3, 4, 5, 6} 每种结果均可能A =“掷两颗骰子, x , y 中有一个为1点”,B =“掷两颗骰子, x +y =7”.则 6166)(2==B P 262)(=AB P , 故31626162)()()|(2====B P AB P B A P 16 据以往资料表明, 某3口之家, 患某种传染病的概率有以下规律:P {孩子得病}=0.6,P {母亲得病|孩子得病}=0.5,P {父亲得病|母亲及孩子得病}=0.4.求母亲及孩子得病但父亲未得病的概率.解 令A ={孩子得病}, B ={母亲得病}, C ={父亲得病} 则P (A )=0.6, P (B |A )=0.5, P (C |AB )=0.4所以 P (⎺C|AB )=1-P (C |AB )=1-0.4=0.6.P (AB )=P (A )P (B |A )=0.6×0.5=0.3,所求概率为P (AB ⎺C )=P (AB )·P (⎺C|AB )=0.3×0.6=0.18.17 已知在10只晶体管中有2只次品, 在其中取两次, 每次任取一只, 作不放回抽样, 求下列事件的概率(1)两只都是正品(2)二只都是次品(记为事件B )(3)一只是正品, 一只是次品(记为事件C )(4)第二次取出的是次品(记为事件D )解 设A i ={第i 次取出的是正品)(i =1 2).(1)452897108)|()()(12121=⨯==A A P A P A A P . (2)45191102)|()()(12121=⨯==A A P A P A A P . (3))()()(21212121A A P A A P A A A A P +=⋃)|()()|()(121121A A P A P A A P A P +=45169810292108=⨯+⨯=. (4))()(21212A A A A P A P +=519110292108)|()()|()(121121=⨯+⨯=+=A A P A P A A P A P18 某人忘记了电话号码的最后一个数字, 因而他随机地拨号, (1)求他拨号不超过三次而接通所需的电话的概率 (2)若已知最后一个数字是奇数, 那么此概率是多少?解 设A i ={第i 次拨号拨对}(i =1 2 3) A ={拨号不超过3次而拨通} 则321211A A A A A A A ++= 且三种情况互斥 所以)|()|()()|()()()(2131211211A A A P A A P A P A A P A P A P A P ++= 于是(1)103819810991109101)(=⨯⨯+⨯+=A P(2)53314354415451)(=⨯⨯+⨯+=A P19 (1)设甲袋中装有n 只白球 m 只红球, 乙袋中装有N 只白球 M 只红球, 今从甲袋中任取一只球放入乙袋中, 再从乙袋中任意取一只球, 问取到白球的概率是多少? 解 用A 1表示“从甲袋中取得白球放入乙袋”, A 2表示“从甲袋中取得红球放入乙袋” 再记B 表“再从乙袋中取得白球”. 因为 B =A1B +A 2B 且A 1, A 2互斥所以 P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)111++⨯+++++⨯+=M N N m n m M N N m n n)1)(()(+++++=N M n m n N m n19 (2)第一只盒子装有5只红球, 4只白球 第二只盒子装有4只红球, 5只白球. 先从第一盒子中任取2只球放入第二盒中去, 然后从第二盒子中任取一只球, 求取到白球的概率. 解 记C 1为“从第一盒子中取得2只红球”. C 2为“从第一盒子中取得2只白球”. C 3为“从第一盒子中取得1只红球, 1只白球”, D 为“从第二盒子中取得白球”, 显然C 1, C 2, C 3两两互斥, C 1C 2C 3=S , 由全概率公式, 有P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D|C 3)995311611711529141529242925=⋅⋅+⋅+⋅=C C C C C CC20 某种产品的高标为“MAXAM” 其中有2个字母已经脱落 有人捡起随意放回 求放回后仍为“MAXAM”的概率解 设A 1 A 2 ⋅⋅⋅ A 10分别表示字母MAMX MA MM AX AA AM XA XM AM 脱落的事件 则101)(=i A P (i =1 2, ⋅⋅⋅ 10) 用B 表示放回后仍为“MAXAM”的事件 则21)|(=i A B P (i =1 2, ⋅⋅⋅10) 1)|()|(64==A B P A B P 所以由全概公式得5311011101821101)|()()(101=⨯+⨯+⨯⨯==∑=i i i A B P A P BP21 已知男子有5%是色盲患者, 女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人, 恰好是色盲患者, 问此人是男性的概率是多少?解 A 1={男人}, A 2={女人}, B ={色盲}, 显然A 1A 2=S , A 1 A 2= 由已知条件知21)()(21==A P A P %5)|(1=A B P ,%25.0)|(2=A BP 由贝叶斯公式, 有)|()()|()()|()()()()|(22111111A B P A P A B P A P A B P A P B P B A P B A P +==2120100002521100521100521=⋅+⋅⋅=22 一学生接连参加同一课程的两次考试. 第一次及格的概率为p , 若第一次及格则第二次及格的概率也为p 若第一次不及格则第二次及格的概率为2p (1)若至少一次及格则他能取得某种资格, 求他取得该资格的概率. (2)若已知他第二次已经及格, 求他第一次及格的概率.解 A i ={他第i 次及格}(i =1, 2)已知P (A 1)=P (A 2|A 1)=p , 2/)|(12p A A P= (1)B ={至少有一次及格} 则21}{A A B ==两次均不及格 所以 )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-=)]|(1)][(1[1121A A P A P ---=22123)21)(1(1p p p p -=---= (2)由乘法公式, 有P (A 1A 2)=P (A 1)P (A 2| A 1)=p2 由全概率公式, 有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2p p p p p p +=⋅-+⋅= 于是 1222)|(2221+=+=p p p p p A AP23 将两信息分别编码为A 和B 传递出去 接收站收敛到时 A 被误收作B 的概率为002 而B 被误收作A 的概率为0.01 信息A 与信息B 传送的频繁程度为21 若收站收到的信息是A 问原发信息是A 的概率是多少? 解 设B 1 B 2分别表示发报台发出信号“A ”及“B ” 又以A 1有A 2分别表示收报台收到信号“A ”及“B ”. 则有 32)(1=B P 31)(2=B P P (A 1|B 1)=0.98 P (A 2|B 1)=0.08 P (A 1|B 2)=0.01 P (A 2|B 2)=0.91 从而由Beyes 公式得)|()()|()()|()()|(2121111111B A P B P B A P B P B A P B P A B P i += 19719601.03198.03298.032=⨯+⨯⨯=24 有两箱同种类的零件 第一箱装50只 其中10只一等品 第二箱装30只 其中18只一等品 今从两箱中任挑出一箱 然后从该箱中取零件两次每次任取一只 作不放回抽样 试求(1)第一次取到的零件是一等品的概率(2)第一次取到的零件是一等品的条件下 第二次取到的也是一等品的概率解 (1)记A i ={在第i 次中取到一等品}(i =1 2) B ={挑到第i 箱} 则有4.03018215121)|()()|()()(2121111=⨯+⨯=+=B A P B P B A P B P A P . (2))|()()|()()(2212121121B A A P B P B A A P B P A A P +=19423.030182129175121499=⨯⨯+⨯⨯= 4856.04.019423.0)()()|(12112===A P A A P A A P .25 某人下午5:00下班, 他所积累的资料表明:的, 试求他是乘地铁回家的概率.解 设A={乘地铁}, B ={乘汽车}, C ={在5:47到家}, 由题意 AB =∅, A B =S已知P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5 由贝叶斯公式有)()|()()|()()|()()()|()|(B P B C P AP A C P A P A C P C P A P A C P C A P +== 6923.05.02.05.045.05.045.0=⨯+⨯⨯=26 (1)设有4个独立工作的元件1, 2, 3, 4. 它们的可靠性分别为p 1, p 2, p 3, p 4, 将它们按图1-3的方式联接, 求系统的可靠性.解 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4), A 表示系统正常.因为A =A 1A 2A 3+A 1A 4两种情况不互斥 所以P (A )=P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 4)-P (A 1)P (A 2)P (A 3)P (A 4)=p 1p 2p 3+p 1p 4-p 1p 2p 3p 4 (A 1, A 2, A 3, A 4独立)26. (2)设有5独立工作的元件1 2 3 4 5 它们的可靠性均为p 将它们按图1-4的方式联接 求系统的可靠性.解 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4 5), B 表示系统正常 则)()(2345453121A A A A A A A A A A P B P ⋃⋃⋃=)()()()(2345453121A A A P A A P A A A P A A P +++= )()()(432154215321A A A A P A A A A P A A A A P ---)()()(5432543215431A A A A P A A A A A P A A A A P --- )()(45432154321A A A A A P A A A A A P -+24222522p p p p +-+=27 如果一危险情况C 发生时 一电路闭合并发出警报 我们可以借用两个或多个开关并联以改善可靠性 在C 发生时这些开关每一个都应闭合 且至少一个开关闭合了 警报就发出 如果两个这样开关并联接 它们每个具有0.95的可靠性(即在情况C 发生时闭合的概率) (1)这时系统的可靠性(即电路闭合的概率)是多少?(2)如果需要有一个可靠性至少为0.9999的系统 则至少需要用多少只开关并联?这里各开关闭合与否都是相互独立的解 (1)设A i 表示第i 个开关闭合 A 表示电路闭合 于是A =A1⋃A 2. 由题意当两个开关并联时P (A )=0. 96. 再由A 1 A 2的独立性得P (A )=P (A 1⋃A 2)=P (A 1)+P (A 2)-P (A 1A 2)=P (A 1)+P (A 2)-P (A 1)P (A 2)=2⨯0.96-(0.96)2=0.9984.(2)设至少需要n 个开关闭合 则∏==≥-=--=⋃=n i i i n i A P A P A P 1419999.004.01)](1[1)()(即 0.04n≤0.00001所以 58.304.0lg 00001.0lg =≥n 故至少需要4只开关联28 三个独立地去破译份密码 已知各人能译出的概率分别为1/5 1/3 1/4 问三个中至少有一个能将此密码译出的概率是多少?解 设A B C 分别表示{第一、二、三人独立译出密码} D 表示{密码被译出} 则)(1)()(C B A P C B A P D P ⋃⋃-=⋃⋃=)()()(1)(1C P B P A P C B A P -=⋂⋂-=534332541=⨯⨯-=29 设第一个盒子装有3只蓝球, 2只绿球, 2只白球;第二个盒子装有2只蓝球, 3只绿球, 4只白球. 独立地分别在两只盒子中各取一只球.(1)求至少有一只蓝球的概率(2)求有一只蓝球一只白球的概率(3)已知至少有一只蓝球, 求有一只蓝球一只白球的概率. 解 记A 1 A 2 A 3分别表示是从第一只盒子中取到一只蓝球 一只绿球 一只白球, B 1 B 2 B 3分别表示是从第二只盒子中取到一只蓝球 一只绿球 一只白球. 则A i 与B i 独立(i =1 2 3).(1)所求概率为9592739273)()()()(111111=⨯-+=-+=⋃B A P B P A P B A P . (2)所求概率为)()()()()(13311331B P A P B P A P B A B A P +=⋃631692729473=⨯+⨯= (3)所求概率为P (A 1B 3⋃A 3B 1| A 1⋃B 1)=P (A 1B 3| A 1⋃B 1)+P (A 3B 1| A 1⋃B 1))())(()())((111113111131B A P B A B A P B A P B A B A P ⋃⋃+⋃⋃= )())()())(11131311131131B A P B A B A A P B A P B B A B A P ⋃⋃+⋃⋃= 35169/563/16)()()(111331==⋃+=B A P B A P B A P .30 A , B , C 三人在同一办公室工作, 房间有三部电话, 据统计知, 打给A , B , C 的电话的概率分别为2/5 2/5 1/5. 他们三人常因工作外出, A , B , C 三人外出的概率分别为1/2 1/4 1/4, 设三人的行动相互独立, 求(1)无人接电话的概率(2)被呼叫人在办公室的概率若某一时间段打进3个电话, 求(3)这3个电话打给同一人的概率(4)这3个电话打给不同人的概率(5)这3个电话都打给B , 而B 却都不在的概率. 解 设A 1 B 1 C 1分别表示A B C 三个人外出的事件 A B C 分别表示打给三个人的电话的事件(1)P (无人接电话)=P (A 1B 1C 1)=P (A 1)P (B 1)P (C 1)321414121=⨯⨯= (2)用D 表示被呼叫人在办公室的事件, 则CC B B A AD 111++= )()(111C C B B A A P D P ++=)()(()()()(111C P C P BP P B P A P A P ++=2013514352435221=⨯+⨯+⨯=(3)用E 表示3个电话打给同一个人的事件 E 1 E 2 E 3分别表示3个电话是打给A B C 则E =E 1+E 2+E 3)()()()(321E P E P E P E P ++=12517)51()52()52(333=++=(4)用F 表示3个电话打给不同的人的事件 则F 由六种互斥情况组成, 每种情况为打给A , B , C 的三个电话, 每种情况的概率为1254515252=⨯⨯于是1252412546)(=⨯=F P (5)由于是知道每次打电话都给B , 其概率是1, 所以每一次打给B 电话而B 不在的概率为41, 且各次情况相互独立 于是P (3个电话都打给B , B 都不在的概率)641)41(3==31 袋中装有m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽). 在袋中任取一只, 将它投掷r 次, 已知每次都得到国徽. 问这只硬币是正品的概率为多少?解 用A 表示出现r 次国徽的事件 B 表示任取一只是正品的事件 则r r nm n n m m B A P B P B A P B P A P 1)21()|()()|()()(⨯+++=+=)()|()()|(A P B A P B P A B P =r n m m2⋅+=32 设一枚深炸弹击沉一潜水艇的概率为1/3 击伤的概率为1/2 击不中的概率为1/6 并设击伤两次也会导致潜水艇下沉 求施放4枚深炸能击沉潜水艇的概率解 用A 表示施放4枚深炸击沉潜水艇的事件 则433446131]21)61()61[(1)(1)(-=⨯+-=-=C A P A P33 设根据以往记录的数据分析 某船只运输某种物品损坏的情况共有三种 损坏2%(这一事件记为A 1), 损坏10%(事件A 2), 损坏90%(事件A 3) 且知P (A 1)=0.8, P (A 2)=0.15, P (A 3)=0.05, 现在从已被运输的物品中随机地取3件, 发现这3件都是好的(这一事件记为B ), 试分别求P (A 1|B ) P (A 2|B ), P (A 3|B )(这里设物品件数很多, 取出一件后不影响后一件是否是好品的概率)解 因为B 表取得三件好物品.B =A 1B +A 2B +A 3B 且三种情况互斥由全概率公式, 有P (B )=P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3)=0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.86248731.08624.0)98.0(8.0)()|()()()()|(31111=⨯===B P A B P A P B P B A P B A P 1268.08624.0)9.0(15.0)()|()()()()|(32222=⨯===B P A B P A P B P B A P B A P 0001.08624.0)1.0(05.0)()|()()()()|(33333=⨯===B P A B P A P B P B A P B A P34 将A , B , C 三个字母一一输入信道, 输出为原字母的概率为α, 而输出为其它一字母的概率都是(1α)/2. 今将字母串AAAA , BBBB , CCCC 之一输入信道, 输入AAAA , BBBB , CCCC 的概率分别为p 1, p 2, p 3 (p 1+p 2+p 3=1), 已知输出为ABCA , 问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的. )解 用A B C 分别表示输入信号为AAAA , BBBB , CCCC ,用H 表示输出信号为ABCA 由于每个字母的输出是相互独立的 于是有4)1(]2/)1[()|(2222αααα-=-=A H P8)1(]2/)1[()|(33αααα-=-=B H P8)1(]2/)1[()|(33αααα-=-=C HP又P (A )=p 1 P (B )=p 2 P (C )=p 3 由贝叶斯公式得)()|()()|()()|()()|()|(C P C H P B P B H P A P A H P A P A H P H A P ++= 33231221228)1(8)1(4)1(4)1(p p p p ⋅-+⋅-+⋅-⋅-=αααααααα ))(1(223211p p p p +-+=ααα。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计难题选解(一)
1. 在圆周上任取两点,连接起来得一弦,再任取两点,连接起来又得一弦。

求这两弦相交的概率。

解 设圆周长为1,设圆周上一点坐标位置为0 ,逆时针绕圆一周后坐标位置为1。

不妨设第一条弦的一个端点位置为0 ,另一个端点位置为X ,第二条弦的两个端点位置为Y 和Z 。

X ,Y 和Z 可以看作是3个相互独立的服从]1,0[上均匀分布的随机变量。

当且仅当10≤≤≤≤Z X Y 或10≤≤≤≤Y X Z 时,两弦相交。

所以,两弦相交的概率为
}10{≤≤≤≤=Z X Y P p }10{≤≤≤≤+Y X Z P
⎰⎰⎰⎰⎰⎰⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101
01010d d d d d d x y z x z y x x x x ⎰⎰-+-=10
10
d )1(d )1(x x x x x x 3
1
d )(21
2=
-=⎰x x x 。

2.从一副扑克牌中(有返回地)一张张抽取牌,直至抽出的牌包含了全部四种花色为止。

求这时正好抽了n 张牌的概率。

解 设4种花色为A 、B 、C 、D 。

{P 抽n 次只抽到A n
⎪⎭⎫
⎝⎛=41} 。

{P 抽n 次最多只抽到A 、Bn
⎪⎭

⎝⎛=42} 。

{P 抽n 次抽到且只抽到A 、B}
{P =抽n 次最多只抽到A 、B{}P -抽n 次只抽到A {}P -抽n 次只抽到B}
n
n n n n ⎪⎭⎫
⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=41242414142 。

{P 抽n 次最多只抽到A 、B、Cn
⎪⎭

⎝⎛=43} 。

{P 抽n 次抽到且只抽到A 、B、C}
{P =抽n 次最多只抽到A 、B、C{}P -抽n 次抽到且只抽到A 、B}
{P -抽n 次抽到且只抽到A 、C}{P -抽n 次抽到且只抽到B、C}
{P -抽n 次只抽到A {}P -抽n 次只抽到B{}P -抽n 次只抽到C}
n ⎪⎭⎫ ⎝⎛=43n n n ⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣
⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-413412423n ⎪⎭⎫ ⎝⎛=43n
n ⎪⎭⎫
⎝⎛+⎪⎭⎫ ⎝⎛-413423 。

{P 前1-n 次抽到且只抽到A 、B、C,第n 次抽到D}
4
1
41342343111⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=---n n n 。

{P 第n 次抽,首次抽到4种花式}
{P =前1-n 次抽到且只抽到B、C、D,第n 次抽到A}
{P +前1-n 次抽到且只抽到A 、C、D,第n 次抽到B} {P +前1-n 次抽到且只抽到A 、B、D,第n 次抽到C} {P +前1-n 次抽到且只抽到A 、B、C,第n 次抽到D}
4
1
413423414111⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=---n n n
1
1
1
41342343---⎪⎭
⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛-⎪⎭

⎝⎛=n n n 1
1143233---+⋅-=n n n 。

3.r 个人相互传球,从甲开始。

每次传球时,传球着可能把球传给其余1-r 个人中的任何一个。

求:
(1)传了n 次球,球仍没有回到甲手里的概率。

(2)传了n 次(1-<r n ),没有一个人接到过两次球的概率。

(3)第n 次传球时仍由甲传出的概率。

解 (1)第1次从甲传出后,又传了1-n 次,每次都没有传给甲,即传给其余1-r 人中除了甲以外的2-r 人中的任何一人,这样的概率为
1
2
--r r ,1-n 次后的概率为 1
12-⎪⎭
⎫ ⎝⎛--n r r 。

(2)第1次,甲传给其余1-r 人中任何一人,概率为
1
1
--r r ; 第2次,传给其余1-r 人中除了甲以外的2-r 人中任何一人,概率为
1
2
--r r ; 第3次,传给其余1-r 人中除了已经接到球的人以外的3-r 人中任何一人,概率为
1
3
--r r ;
……
第n 次,传给其余1-r 人中除了已经接到球的人以外的n r -人中任何一人,概率为1
--r n
r 。

因此,所求概率为
)!
2()1()!
(1131211---=--⋅⋅--⋅--⋅--r r n r r n r r r r r r r n。

(3)设
{P 第n 次传球时由甲传出n p =}, {P 第n 次传球时由非甲传出n p -=1} 。

由于
{P 第n 次传球时由甲传出}
{P =第1-n 次传球时由非甲传出{}P 传给甲|第1-n 次传球时由非甲传出},
所以有递推公式
1
1
)
1(1--=-r p p n n , ,3,2=n 。

下面用数学归纳法证明:
r
r p n n 2
)1(11---=
, ,3,2,1=n 。

首先,当1=n 时,r r p 211)1(1
1---
=1)
1(1=--=r
r ,
第1次由甲传出,显然11=p ,公式成立。

设已知当k n =时,公式成立,有r
r p k k 2
)1(1
1---
=
,下面看1+=k n 时:
11)1(1
--=+r p p k k 11)1(1112
-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣
⎡---
=-r r
r k 11)1(112
-⎥⎥⎥⎥⎦

⎢⎢

⎢⎣⎡
-+-=-r r r r k r
r k 2
)1()1(1
1-+--=。

公式也成立。

所以,对任何 ,3,2,1=n ,公式都成立。

4.掷均匀硬币直至第一次出现接连两个正面为止。

求这时正好掷了n 次的概率。

解 设
{P p n =掷n 次首次出现“正正”}。

因为
{P 掷n 次首次出现“正正”}。

{P =第1次掷出现“反”
,以后掷1-n 次首次出现“正正”} {P +第1次掷出现“正”,第2次掷出现“反”,以后掷2-n 次首次出现“正正”} 所以有递推公式
214
1
21--+=
n n n p p p , ,5,4,3=n 。

同时,显然有
{1P p =掷1次首次出现“正正”0)(}=∅=P ,
{2P p =掷2次首次出现“正正”4
1
}=。

根据递推公式 214121--+=n n n p p p ,可以列出方程:4
1212
+=x x ,
解这个方程,得到两个解 4511+=
x ,4
5
12-=x 。

所以,n p 的表达式可以写成下列形式:
n
n n B A p ⎪⎪⎭
⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=451451, 其中A ,B 是待定常数。

将初始条件代入,有:
⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝
⎛+==⎪⎪⎭

⎝⎛-+⎪⎪⎭⎫ ⎝⎛+41451451045145122
21p B A p B A , 解这个方程,得到 1055-=
A ,10
5
5+=B ,所以,最后得到问题要求的概率为 n
n
n p ⎪⎪⎭
⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛+-=45110554511055, ,3,2,1=n 。

相关文档
最新文档