显著性检验.
显著性检验

显著性检验对所有自变量与因变量之间的直线回归关系的拟合程度,可以用统计量R2来度量,其公式如下:TSS(Total Sum of Squares)称为总平方和,其值为,体现了观测值y1,y2,…,y n总波动大小,认为是在执行回归分析之前响应变量中的固有变异性。
ESS(Explained Sum of Squares)称为回归平方和,是由于y与自变量x1,x2,…,x n的变化而引起的,其值为,体现了n个估计值的波动大小。
RSS(Residual Sum of Squares)称为残差平方和,其值为。
R2称为样本决定系数,对于多元回归方程,其样本决定系数为复决定系数或多重决定系数。
回归模型的显著性检验包括:①对整个回归方程的显著性检验;②对回归系数的显著性检验。
对整个回归方程的显著性检验的假设为“总体的决定系统ρ2为零”,这个零假设等价于“所有的总体回归系数都为零”,即:检验统计量为R2,最终检验统计量为F比值,计算公式为:F比值的意义实际上是“由回归解释的方差”与“不能解释的方差”之比。
检验回归方程是否显著的步骤如下。
第1步,做出假设。
备择假设H1:b1,b2,…,b k不同时为0。
第2步,在H0成立的条件下,计算统计量F。
第3步,查表得临界值。
对于假设H0,根据样本观测值计算统计量F,给定显著性水平α,查第一个自由度为k,第二个自由度为n-k-1的F分布表得临界值F(k,n-k-1)。
当F≥Fα(k,n-k-1)时,拒绝假设H0,则认为回归方程α显著成立;当F<Fα(k,n-k-1)时,接受假设H0,则认为回归方程无显著意义。
对某个回归参数βi的显著性检验的零假设为:H0:βi=0,检验的最终统计量为:具体步骤如下。
(1)提出原假设H0:βi=0;备择假设H1:βi≠0。
(2)构造统计量,当βi=0成立时,统计量。
这里是的标准差,k为解释变量个数。
(3)给定显著性水平α,查自由度为n-k-1的t分布表,得临界值。
几种常见的显著性检验方法

几种常见的显著性检验方法常见的显著性检验方法有单样本t检验、双样本配对t检验、双样本独立t检验、方差分析(ANOVA)、卡方检验和皮尔逊相关分析。
本文将对每种显著性检验方法进行详细介绍。
单样本t检验是一种用于检验一个样本均值是否显著不同于一些给定的总体均值的统计方法。
该方法的原理是将样本均值与总体均值进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
双样本配对t检验也称为相关样本t检验,用于比较两个相关样本或两个相关变量之间的均值差异是否显著。
该方法的原理是将两个相关样本的均值差异与零进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
双样本独立t检验用于比较两个独立样本或两个独立变量之间的均值差异是否显著。
该方法的原理是将两个独立样本的均值差异与零进行比较,计算出一个t值。
根据t值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
方差分析(ANOVA)是一种用于比较两个或更多个样本或组之间均值差异是否显著的统计方法。
该方法的原理是将不同组之间的均值差异与总均值差异进行比较,计算出一个F值。
根据F值的大小和自由度,可以查找相应的临界值,从而得出显著性检验的结果。
卡方检验用于比较观察频数与期望频数之间的差异是否显著。
该方法的原理是通过计算观察频数和期望频数之间的卡方值,进而判断观察频数是否与期望频数存在显著差异。
皮尔逊相关分析用于评估两个变量之间的线性关系是否显著。
该方法的原理是通过计算两个变量之间的皮尔逊相关系数,从而判断变量之间的关系是否显著。
需要注意的是,在进行显著性检验时,首先需要确定假设,即原假设和备择假设。
原假设通常表示为没有显著差异或没有关系,备择假设则表示存在显著差异或存在关系。
根据样本数据计算出的检验统计量与临界值进行比较,如果检验统计量落在拒绝域(即临界值的范围内),则拒绝原假设,认为差异或关系是显著的。
显著性检验(Significance Testing)

显著性检验(Significance T esting)显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
[编辑]显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
[编辑]显著性检验的原理无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
显著性检验

二、显著性检验方法
(一) t检验法——检验准确度的显著性差异
• 1.标准样品对照试验法:选用其组成与试样相近的标准试样, 或用纯物质配成的试液按同样的方法进行分析对照。如验证新 的分析方法有无系统误差。若分析结果总是偏高或偏低,则表 示方法有系统误差。 • 2.标准方法对照试验法:选用国家规定的标准方法或公认的可 靠分析方法对同一试样进行对照试验,如结果与所用的新方法 结果比较一致,则新方法无系统误差。
12.71
4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23 2.09 1.96
63.66
9.92 5.84 4.60 4.03 3.71 3.50 3.36 3.25 3.17 2.84 2.58
2017/1/16
7
2017/1/16
ta,f值表
f P=0.90(a=0.10) 置信度(显著性水平) P=0.95(a=0.05) P=0.99(a=0.01)
1
2 3 4 5 6 7 8 9 10 20 ∞
6.31
2.92 2.35 2.13 2.02 1.94 1.90 1.86 1.83 1.81 1.72 1.64
10.79% 10.77% t 9 1.43 0.042%
当P 0.95, f 8时,t0.05,8 2.31
因t t0.05,8 x与之间无显著性差异
2017/1/16
例2:采用不同方法分析某种试样,用第一种方法测定 11次,得标准偏差s1=0.21%;第二种方法测定9次 得到标准偏差s2=0.60%。试判断两方法的精密度间 是否存在显著差异?(P=95%)
(二) F检验法—— 检验精密度的显著性差异
正确理解显著性检验

正确理解显著性检验(Significance Testing)什么是显著性检验显著性检验是用于检验实验处理组与对照组或两种不同处理组的效应之间的差异是否为显著性差异的方法,其原理就是“小概率事件实际不可能性原理”。
显著性检验可用于两组数据是否有显著性差异,从而可以检验这两组数据所代表的“内涵”,如不同实验方法的差异有无,实验人员受训练的效果有无,不同来源的产品的质量差异,某产品的某特征在一定时间内稳定性,产品保质期的判断等等。
原假设为了判断两组数据是否有显著性差异,统计学上规定原假设(null hypothesis) 为“两组数据(或数据所代表的内涵)无显著差”,而与之对立的备择假设(alternative hypothesis),则为“两组数据有显著差异”。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,即,弃真错误,其出现的概率,记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,即,纳假错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的“假设检验”又称为显著性检验,概率α称为显著性水平。
显著性检验的P值及有无显著性差异的判断:通过显著性检验的计算方法计算而得的“犯第一类错误的概率p”,就是统计学上规定的P值。
若p<或=α,则说明“放弃原假设,在统计意义上不会犯错误,即原假设是假的,也即,”两组数据无显著差异”不是真的,也即两组数据有显著差异”!反之,若p大于α,则说明两组数据间无显著差异。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
P值及统计意义见下表。
显著性检验

显著性检验1、什么是显著性检验显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
2、显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设)(null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果放弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
3、显著性检验的原理一、无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
第四章显著性检验
(三)统计推断
根据小概率事件实际不可能性原理作出否定或接受无效假设的 推断。
显著水平:用来否定或接受无效假设的概率标准,记作 在生物学研究中常取 =0.05,称为5%显著水平; 或 =0.01,称为1%显著水平或极显著水平。
u 两尾概率为0.05的临界值 0.05=1.96,两尾概率为0.01的临界
比较两个样本所在的总体是否有差异?
例4.2 某地进行了两个水稻品种对比试验,在相同条件下, 两个水稻品种分别种植10个小区,获得两个水稻品种的平均
产量为: x1 510 x2 500 ,判定这两个水稻品种平均产
量是否相同?
比较:1 2
估计:x1 1 1
x2 2 2
表明表面差异是抽样误差的可能性非常小,
表述为两个总体间差异极显著。记作u:**
0.5
f (u)
0.4
0.3
0.2
0.1
0.0
-3
-2
否定域
-1
0
1
接受域
2
3
否定域
图5.1 5%显著水平假设测验图示
区间 , u 和 u , 称为 水平上的否定域,
而区间 (u , u ) 则称为 水平上的接受域。
2. 计算t值
x = x = 32.5 28.6
n
9
29.7 =29.255
S x2 ( x)2 / n n 1
32.52 28.62 29.72 (263.3)2
9
9 1
53.542 9 1
2.587
S 2.587
Sx =
= n
=0.862
0.5
0.4
几种常见的显著性检验方法
几种常见的显著性检验方法显著性检验是统计学中常用的一种方法,用于检验两组或多组数据之间是否存在显著差异。
下面将介绍几种常见的显著性检验方法。
1.t检验:t检验用于比较两组均值是否存在显著差异。
根据独立样本或配对样本可以分为独立样本t检验和配对样本t检验。
适用于连续型变量,要求样本满足正态分布和方差齐性的假设。
2.方差分析(ANOVA):方差分析用于比较三组或多组均值是否存在显著差异。
适用于连续型变量,要求样本满足正态分布和方差齐性的假设。
方差分析包括单因素、多因素、重复测量、混合设计等多种类型。
3.卡方检验:卡方检验用于比较两个或多个分类变量之间是否存在显著差异。
适用于分类变量,比如性别、职业等。
卡方检验可用于检验两个分类变量之间的关联性,也可用于检验一个分类变量与一个连续型变量之间的关系。
4.相关分析:相关分析用于评估两个连续型变量之间的关系强度和方向。
常用的相关系数有皮尔逊积矩相关系数、斯皮尔曼秩相关系数和判定系数等。
相关系数的显著性检验可以帮助确定两个变量之间是否存在显著相关关系。
5.回归分析:回归分析用于建立一个或多个自变量和一个连续型因变量之间的函数关系,并用于预测因变量。
回归分析中常用的显著性检验方法有t检验、F检验和R平方检验等。
6. 生存分析:生存分析主要用于评估时间至事件发生(比如死亡、疾病复发等)之间的关系。
生存分析的主要方法有Kaplan-Meier生存曲线和Cox比例风险模型等。
生存分析通常使用对数秩检验来评估不同组别之间的显著差异。
除了以上常见的显著性检验方法,还有一些其他的检验方法,比如非参数检验(如Mann-Whitney U检验、Wilcoxon符号秩检验)、Fisher精确检验、Bootstrap检验等,这些方法适用于不满足正态分布假设或方差齐性假设的数据情况。
显著性检验方法的选择要根据数据的类型和应用背景来决定。
在进行显著性检验时,还需注意样本的大小、假设检验的前提条件以及是否需要对多重比较进行校正等问题。
常见显著性检验.
常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
那么这样的结果是没有什么意义的,或者说是意义不大的。
统计4:显著性检验
统计4:显著性检验在统计学中,显著性检验是“假设检验”中最常⽤的⼀种,显著性检验是⽤于检测科学实验中实验组与对照组之间是否有差异以及差异是否显著的办法。
⼀,假设检验显著性检验是假设检验的⼀种,那什么是假设检验?假设检验就是事先对总体(随机变量)的参数或总体分布形式做出⼀个假设,然后利⽤样本信息来判断这个假设是否合理。
在验证假设的过程中,总是提出两个相互对⽴的假设,把要检验的假设称作原假设,记作H0,把与H0对⽴的假设称作备择假设,记作H1。
假设检验需要解决的问题是:指定⼀个合理的检验法则,利⽤已知样本的数据作出决策,是接受假设H0,还是拒绝假设H0。
1,假设检验的基本思想假设检验的基本思想是⼩概率反证法思想。
⼩概率思想是指⼩概率事件(P<0.01或P<0.05)在⼀次试验中基本上不会发⽣。
反证法思想是先提出原假设(记作假设H0),再⽤适当的统计⽅法确定原假设成⽴的可能性⼤⼩:若可能性⼩,则认为原假设不成⽴;若可能性⼤,则认为原假设是成⽴的。
2,假设检验的思路假设检验思路是:先假设,后检验,通俗地来说就是要先对数据做⼀个假设,然后⽤检验来检查假设对不对。
⼀般⽽⾔,把要检验的假设称之为原假设,记为H0;把与H0相对对⽴(相反)的假设称之为备择假设,记为H1。
如果原假设为真,⽽检验的结论却劝你拒绝原假设,把这种错误称之为第⼀类错误(弃真),通常把第⼀类错误出现的概率记为α;就是说,拒绝真假设的概率是α。
如果原假设不真,⽽检验的结论却劝你接受原假设,把这种错误称之为第⼆类错误(取伪),通常把第⼆类错误出现的概率记为β;就是说,接受假假设的概率是β。
因此,在确定检验法则时,应尽可能使犯这两类错误的概率都较⼩。
⼀般来说,当样本容量固定时,如果减少犯⼀类错误的概率,则犯另⼀类错误的概率往往增⼤。
如果要使犯两类错误的概率都减少,除⾮增加样本容量。
⼆,显著性检验什么是显著性检验?在给定样本容量的情况下,我们总是控制犯第⼀类错误的概率α,这种只对犯第⼀类错误的概率加以控制,⽽不考虑犯第⼆类错误的概率β的检验,称作显著性检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显著性检验可能出现两种类型的错误: Ⅰ型错误 与Ⅱ型错误。
Ⅰ型错误又称为 错误,就是把非真实 的差异错判为是真实的差异,即实际上H0正 确,检验结果为否定H0。犯Ⅰ类型错误的可
能性一般不会超过所选用的显著水平 ;
上一张 下一张 主 页 退 出
Ⅱ型错误又称为 错误 ,就是把真实的 差异错判为是非真实的差异 ,即实际上HA 正确,检验结果却未能否定H0 。 犯Ⅱ类型 错误的可能性记为 ,一般是随着 0 的 减小或试验误差的增大而增大,所以 0
退 出
因为两个水稻品种平均产量 x1 、 x2 都 是从试验种植的10个小区获得,仅是两个品 种有关总体平均数 1 , 2 的估计值。由于存 在试验误差 ,样本平均数并不等于总体平均 数 ,样本平均数包含总体平均数与试验误差 二部分,即
x1 1 1
x2 2 2
上一张 下一张 主 页 退 出
上一张 下一张 主 页
退 出
如,某地进行了两个水稻品种对比试验,
在相同条件下,两个水稻品种分别种植10个
小区,获得两个水稻品种的平均产量为:
x1 510
x2 500
x1 x2 10
我们能否根据 x1 x2 10 就判定这两个 水稻品种平均产量不同?结论是,不一定。
上一张 下一张 主 页
若| u| < u ,则 不 能 在 定 H0 : 0 。
水平上否
上一张 下一张 主 页
退 出
区间 平
上的否定域,而区间 (u , u ) 称为 水平上的接受域。
, u
和
u ,
称为水 则
上一张 下一张 主 页
退 出
(二)两类错误
因为在显著性检验中,否定或接受无 效假设的依据是“小概率事件实际不可能 性原理”,所以我们下的结论不可能有百 分之百的把握。
上一张 下一张 主 页
退 出
(三)统计推断
根据小概率事件实际不可能性原理作 出否定或接受无效假设的推断。
上一张 下一张 主 页
退 出
根据这一原理 ,当表面差异是抽样误差 的概率小于0.05时 ,可以认为在一次抽样中 表面差异是抽样误差实际上是不可能的,因而 0 ,接受 否定原先所作的无效假设H0: 备择假设HA: 0 , 即认为存在真实差 异。 当表面差异是抽样误差的概率大于0.05 时,说明无效假设H0: 0 成立的可能 性大,不能被否定,因而也就不能接受备择假 设HA: 0 。
通过检验,若否定无效假设,我们就接受 备择假设。
上一张 下一张 主 页
退 出
(二)计算概率
在假定无效假设成立的前提下,根据所
检验的统计数的抽样分布
,计算表面差异
( x 0 ) 是由抽样误差造成的概率。
本例是在假定无效假设 H0 : 0 成立 的前提下,研究在 ~N(300,9.52)这
标准差 穗重 9.5g。在种植过程中喷洒了某种 【例4· 1】 已知某品种玉米单穗重 x ~N
药剂的植株中随机抽取9个果穗 ,测得平均单 米的平均单穗重有无真实影响?
上一张 下一张 主 页
308g ,试问这种药剂对该品种玉 x
退 出
(一)提出假设
首先对样本所在的总体作一个假设。假 设喷洒了药剂的玉米单穗重总体平均数 与原来的玉米单穗重总体平均数 0 之间没 有真实差异,即 0 0 或 0 。也就是 假设表面差异 ( x 0 ) 是由抽样误差造成 的。
本例, n 9,
9.5 g 得
u x 0
x 308g 0 300g
308 300 2.526 n 9.5 9
上一张 下一张 主 页 退 出
下面估计|u|≥2.526的两尾概率,即估 计P(|u |≥2.526)是多少? 我们知道,两尾概率为0.05的临界值为
上一张 下一张 主 页
退 出
例如,经检
验获得“差异显著”的结论, u
我们有95%的把握否定无效假设H0,同时要 冒5%下错结论的风险; 经 u 检验获得“差 异极显著”的结论,我们有99%的把握否定 无效假设H0,同时要冒1%下错结论的风险; 而经
u
检验获得“差异不显著”的结论,在统计学
上是指“没有理由”否定无效假设H0,同样也 要冒下错结论的风险。
上一张 下一张 主 页 退 出
这种假设通常称为无效假设或零假设,记 为 H0 : 0 。无效假设是待检验的假设,它 有可能被接受,也有可能被否定。
相应地还要有一个对应假设, 称为备择假 设。备择假设是在无效假设被否定时 ,准备接 受的假设,记为 H A : 0 或 0 0 。
误的概率。
上一张 下一张 主 页 退 出
四、两尾检验与一尾检验
上包含了 0 或 0这两种情况。此时, 在 水平上否定域为 , u 和 u , ,对
0 的备择假设为HA: 0 。 HA实际
上一张 下一张 主 页 退 出
0
0
因而,不能仅凭统计推断就简单 地作出绝对肯定或绝对否定的结论。
“有很大的可靠性,但有一定的
错误率” 这是统计推断的基本特点。
上一张 下一张 主 页
退 出
为了降低犯两类错误的概率,一般从选取 适当的显著水平 和增加试验重复次数 n 来考 虑。因为选取数值小的显著水平 值可以降低 犯Ⅰ类型错误的概率,但与此同时也增大了犯 Ⅱ型错误的概率,所以显著水平 值的选用要 同时考虑到犯两类错误的概率的大小。
上一张 下一张 主 页 退 出
显著性检验的结果表明: 本例的样本平均数与原总体平均数之间 的表面差异(
外,还包含真实差异( 0 ) , 即喷洒
了药剂的玉米单穗重总体平均数 与原来
x 0
) 除包含抽样误差
的玉米单穗重总体平均数
0 不同。
上一张 下一张 主 页
退 出
Hale Waihona Puke 综上所述,显著性检验,从提出无效假 设与备择假设,到根据小概率事件实际不可 能性原理来否定或接受无效假设,这一过程 实际上是应用所谓“概率性质的反证法”对 样本所属总体所作的无效假设的统计推断。 上述显著性检验利用了 u 分布来估计出 ∣u∣≥2.526的两尾概率,所以称为 验.
u0.05 =1.96,两尾概率为0.01的临界 u 值 为 u0.01 =2.58,即:
P(| u |>1.96) = P( u >1.96)+ P(u <-1.96) =0.05
上一张 下一张 主 页 退 出
P(| u |>2.58) = P( u >2.58)+ P( u <-2.58) =0.01
u
差异显著 ”,在计算所得的 值的右
上一张 下一张 主 页 退 出
上方标记“*”;
若| u |≥2.58,则说明试验的表面差异 属于试验误差的概率 p 不超过 0.01 ,即 p ≤0.01 ,表面差异属于试验误差的可能性更 小,应否定H0: 计学上把这一检验结果表述为: “总体平均
0 ,接受HA: 0 。统
数 与 0
差异极显著 ” , 在计算所得的 u
值的右上方标记“* *”。
上一张 下一张 主 页 退 出
可以看到,是否否定无效假设 H0 : 0 ,
是用实际计算出的检验统计数 u的绝对值与显著 水平 对应的临界 u值 若| u|≥
u ,则在 水平上否定
u 比较:
H0 : 0
ns 标记“
”或不标记符号;
上一张 下一张 主 页 退 出
若 1.96 ≤| u|< 2.58,则说明试验的
表面差异属于试验误差的概率p在0.01—
0.05之间,即0.01<p≤0.05,表面差
异 属 于 试 验误差的可能性较小,应否定
H 0:
与 0
把这一检验结果表述为:“总体平均数
0 ,接受HA: 0 。统计学上
于是,
x1 x2 (1 2 ) (1 2 )
( 1 2 ) ( x1 x2 ) 为试验的表面差异, 其中,
(1 2 ) 为试验误差。 为试验的真实差异,
上一张 下一张 主 页
退 出
表明,试验的表面差异 ( x1 x2 ) 是由两部分组
成:
一部分是试验的真实差异 (1 2 ) ;
上一张 下一张 主 页
退 出
因此,如果经 u 检验获得“差异显著” 或“差异极显著”,我们有95%或99%的把 0 握认为, 与 不相同, 判断错误的可能性 不超过5%或1% ; 若经 u 检验获得 “差 异不显著”, 我们只能认为在本次试验条件下, 与
没有差异的假设 H0: 未被否定,这 0 有两种可能存在: 或者是 与 确实没有差 0 异, 或者是 与 有差异而因为试验误差大 被掩盖了。
上一张 下一张 主 页 退 出
u检
三、显著水平与两种类型的错误
(一)显著水平
用来否定或接受无效假设的概率标准叫
显著水平,记作
。 在生物学研究中常取
=0.05,称 为 5% 显 著 水 平; 或
=0.01,称 为 1% 显 著 水 平 或 极
显著水平。
上一张 下一张 主 页 退 出
对于上述例子u 的检验来说,若∣u∣< 1.96 ,则说明试验的表面差异属于试验误差 的概率p>0.05,即表面差异属于试验误差的 可能性大,不能否定 H0 : 0。统计学上把 0 与 这一检验结果表述为: “总体平均数 差异不显著”,在计算所得的 u 值的右上方
根据样本数据计算所得的 u 值为2.526,
介于两个临界 u 值之间,即:
u0.05 <2.526< u0.01