北师大版八年级数学上册 2.1认识无理数 能力提升卷

合集下载

北师版八年级数学上册 2.1认识无理数 能力提升卷

北师版八年级数学上册   2.1认识无理数    能力提升卷

北师版八年级数学上册2.1认识无理数能力提升卷一、选择题(共10小题,3*10=30)1.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C .两直角边长分别为2和3的直角三角形的斜边长D .长为3,宽为2的长方形的对角线长2..若x 2=3,则x 为( )A .整数B .分数C .有理数D .以上都不是3.一个正方形的边长为a ,面积为20,则( )A .a 可能是整数B .a 可能是分数C .a 可能是有理数D .a 不是有理数4.在数3.14,25,3.333 33,0.41·2·,0.010 110 111 0…(相邻两个0之间1的个数逐次加1),π中,无理数的个数是( )A .2B .3C .4D .55.从-1,0,13,π,3中随机抽取一数,抽到无理数的概率为( ) A .15B .25C .35D .456. 一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间7.在等式x 2=11中,下列说法正确的是( )A .x 可能为整数B .x 可能为分数8.已知正数m满足条件m2=40,则m的整数部分为()A.9 B.8C.7 D.69.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.在如图所示的正方形网格中,每个小正方形的边长为1,则在网格上的△ABC中,边长为无理数的边数为()A.0 B.1C.2 D.3二.填空题(共8小题,3*8=24)11.如图,是16个边长为1的小正方形拼成的大正方形,连接CA,CB,CD,CE四条线段,其中长度既不是整数也不是分数的有____条.12. 若长方形的长和宽分别为2和1,它的对角线长是一个无理数,则这个无理数精确到0.1约为________.13.一个高为2 m,宽为1 m的长方形大门,对角线的长在两个相邻的整数之间,这两个整数是____和____.14.在如图的边长均为1的正方形网格中,长度是有理数的线段为______________,长度不是有理数的线段为______________.无理数有_________个16.面积为4的长方形中,长是宽的2倍,则宽为_________ 数17.如图,直角三角形的两直角边长分别为1,2,则斜边b的长在哪两个正整数之间:______<b<_______.18.如图,每个小正方形的边长都是1,图中A,B,C,D四个点分别为小正方形的顶点,下列说法:①△ACD的面积是有理数;②四边形ABCD的四条边的长度都是无理数;③四边形ABCD的三条边的长度是无理数,一条边的长度是有理数.其中说法正确的有__________(填序号)三.解答题(共7小题,46分)19.(6分) 把下列各数分别填入相应的集合里:-13π,-2213,0.212 112 111 2…(相邻两个2之间1的个数逐次加1),0.5,429,-8.有理数集:{ };无理数集:{ };分数集:{ };负无理数集:{ }.20.(6分) 若小明想将两块边长都为3 cm的正方形纸板沿对角线剪开,拼成如图的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,则请你估计这个边长的值在哪两个整数之间.21.(6分) 已知直角三角形的两条直角边长分别是9 cm和5 cm,斜边长是x cm.(1)估计x在哪两个整数之间;(2)如果把x的结果精确到十分位,估计x介于哪两个数之间.如果精确到百分位呢?用计算器验证你的估计值.22.(6分)设面积为5π的圆的半径为a.(1)a是有理数吗?说说你的理由;(2)估计a的值;(精确到0.1,并利用计算器验证你的估计)(3)如果精确到0.01呢?23.(6分)如图,在长方形ABCD中,∠DAE=∠CBE=45°,AD=3.(1)求△ABE的面积;(2)AE的长是有理数还是无理数?请说明理由.你能估计它的大小吗?(精确到0.1)24.(8分) 观察图形(如图),回答问题:(1)x,y,z,w哪些是有理数,哪些是无理数?x2,y2,z2,w2的值分别是什么?(2)根据你发现的斜边长度的表示规律,求出第n次作出的三角形的斜边长度的平方.25.(8分) 面积为7的正方形的边长为x.请你回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?请说明理由.1-5BDDAA 6-10BDDBC11. 312. 2.213. 2,314. AB ,EF ;CD ,GH ,MN15. 216. 无理17. 2,318. ①③19. 解:有理数集:⎩⎨⎧⎭⎬⎫-2213,0.5,429,-8,…; 无理数集:⎩⎨⎧-13π,0.212 112 111 2…(相邻两个2} 之间1的个数逐次加1),…; 分数集:⎩⎨⎧⎭⎬⎫-2213,0.5,429,…; 负无理数集:⎩⎨⎧⎭⎬⎫-13π,…. 20. 解:设大正方形的边长为x cm.因为大正方形的面积为32+32=18,而42=16,52=25,所以16<x 2<25,所以4<x <5.故正方形的边长不是整数,它的值在4和5之间.21. 解:(1)在整数10和11之间(2)x 精确到十分位时,x 在10.2与10.3之间,x 精确到百分位时,x 在10.29与10.30之间.22. 解:因为πa 2=5π,所以a 2=5.(1)a 不是有理数,∵a 既不是整数,也不是分数,而是无限不循环小数(2)估计a≈2.2(3)a≈2.2423. 解:(1)∵∠DAE =∠CBE =45°,∴∠DEA =∠CEB =45°,∴AD =DE =CE =BC =3,∠AEB =90°,∴AB =CD =3+3=6,∴S △ABE =12×6×3=9 (2)AE 的长是无理数,理由:24. 解:(1)因为图中的三角形均是直角三角形,所以由勾股定理,得x2=12+12=2,y2=2+12=3,z2=3+12=4=22,w2=4+12=5.所以z是有理数,x,y,w是无理数.(2)根据以上规律可知,第n次作出的三角形的斜边长度的平方是n+1.25. 解:(1)设正方形的面积为S,则S=x2=7.当2<x<3时,4<S<9;当2.6<x<2.7时,6.76<S<7.29;当2.64<x<2.65时,6.969 6<S<7.022 5;当2.645<x<2.646时,6.996 025<S<7.001 316.x的整数部分是2.(2)把x的值精确到十分位时,x≈2.6;精确到百分位时,x≈2.65.(3)x不是有理数.理由如下:由计算可知,x是无限不循环小数,所以x不是有理数.。

2019—2020年新北师大版八年级数学上册《认识无理数》同步测试题及.docx

2019—2020年新北师大版八年级数学上册《认识无理数》同步测试题及.docx

认识无理数一.选择题(共10小题)1.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个2.五个数中:﹣,﹣1,0,,,是无理数的有()A.0个B.1个C.2个D.3个3.下列各数中,是无理数的()A.πB.0 C.D.﹣4.下列各数中,无理数的是()A.B.C.πD.5.在实数﹣2,,,0.1122,π中,无理数的个数为()A.0个B.1个C.2个D.3个6.下列各数中,属于无理数的是()A.πB.0 C.D.﹣7.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个8.下列各数是无理数的是()A.B.C.D.169.在这6个数中,无理数共有()A.1个B.2个C.3个D.4个10.下列说法正确的是()A.带有根号的数是无理数 B.无限小数是无理数C.无理数是无限不循环小数D.无理数是开方开不尽的数二.填空题(共10小题)11.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共个.12.下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有个.13.若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:.14.在实数1.732,中,无理数的个数为.15.在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有个.16.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有个.17.在实数、、中,无理数是.18.在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有个.19.写出两个无理数,使它们的和为有理数,;写出两个无理数,使它们的积为有理数,.20.下列各数:中,是无理数的有个.三.解答题(共10小题)21.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1422.在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)23.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.24.国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x 是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?25.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?26.下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是,整数是.负分数是.27.已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?28.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.29.有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.30.判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..参考答案与试题解析一.选择题(共10小题)1.(2016•阜宁县二模)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,0.343343334…是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(2016•河源校级一模)五个数中:﹣,﹣1,0,,,是无理数的有()A.0个B.1个C.2个D.3个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,只有1个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(2016•安徽模拟)下列各数中,是无理数的()A.πB.0 C.D.﹣【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、π是无理数,故此选项正确;B、0是有理数,故此选项错误;C、=2,是有理数,故此选项错误;D、﹣是有理数,故此选项错误;故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(2016•集美区模拟)下列各数中,无理数的是()A.B.C.πD.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、()0是有理数,故B错误;C、π是无理数,故C正确;D、=2是有理数,故D错误;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.(2016•义乌市模拟)在实数﹣2,,,0.1122,π中,无理数的个数为()A.0个B.1个C.2个D.3个【分析】根据无理数的三种形式解答即可.【解答】解:无理数有:,π,共2个.故选C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.(2016•海曙区一模)下列各数中,属于无理数的是()A.πB.0 C.D.﹣【分析】根据无理数的定义,即可解答.【解答】解:A、π是无理数,正确;B、0是有理数,故错误;C、=2是有理数,故错误;D、﹣是有理数,故错误;故选:A.【点评】本题考查了有理数,解决本题的关键是熟记有理数的定义.7.(2016春•阿荣旗期末)在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.8.(2016•松江区二模)下列各数是无理数的是()A.B.C.D.16【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、是无理数,故B正确;C、是有理数,故C错误;D、16是有理数,故D错误;故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.9.(2016春•乌拉特前旗期末)在这6个数中,无理数共有()A.1个B.2个C.3个D.4个【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:在这6个数中,无理数有:,π共2个.故选B.【点评】此题主要考查了无理数的定义,注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.本题中是有理数中的整数.10.(2016春•枣阳市期末)下列说法正确的是()A.带有根号的数是无理数 B.无限小数是无理数C.无理数是无限不循环小数D.无理数是开方开不尽的数【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故选项错误;B、无线不循环小数是无理数,无限小数是有理数,故选项错误;C、正确;D、π不是开方开不尽的数,故选项错误.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(共10小题)11.(2016春•宁城县期末)如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共 4 个.【分析】画出图形即可就解决问题.【解答】解:如图所示,满足条件的点C有4个.故答案为4.【点评】本题考查无理数、直角三角形、勾股定理等知识,解题的关键是画好图形,注意不能漏解,考虑问题要全面.12.(2016春•启东市月考)下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:,,﹣,2.181181118…(两个8之间1的个数逐次多1)是无理数,故答案为:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.(2016春•乐陵市校级月考)若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:﹣,﹣π.【分析】无理数就是无限不循环小数,依据定义即可作出解答.【解答】解:无理数有:﹣,﹣π.(答案不唯一).故答案是:﹣,﹣π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.14.(2015秋•高邮市校级期末)在实数1.732,中,无理数的个数为2 .【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,是无理数,故答案为:2.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.(2015秋•威宁县校级期中)在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有:,,3π,0.262662666266662…共4个.故答案是:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.(2014春•黄山期末)下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有 3 个.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:π,,1.212212221…(两个1之间依次多一个2)是无理数,故答案为:3.【点评】本题考查了无理数,无理数是无限不循环小数.17.(2014秋•晋江市期末)在实数、、中,无理数是.【分析】根据无理数的三种形式求解.【解答】解:=2,无理数有:.故答案为:.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.18.(2014秋•泾阳县期中)在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有:0.010010001…,,,2.010101…(相邻两个1之间有1个0)共有4个.故答案是:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.(2014秋•宁蒗县校级月考)写出两个无理数,使它们的和为有理数2﹣,3+;写出两个无理数,使它们的积为有理数3,2.【分析】(1)先写一个无理数,根据和为4即可求出另一个无理数;(2)先写一个无理数,根据积是12即可求出另一个无理数.【解答】解:(1)可以先写出任意一个无理数如2﹣,若两个无理数的和是4,则另一个无理数是:4﹣(2﹣)=2+;(2)可以先写出任意一个无理数如3,若两个无理数的积是12,则另一个无理数是:12÷3.故答案为:2﹣,2+;3,.【点评】此题主要考查了无理数定义和性质,两个无理数的和,差,积,商不一定是无理数.并且本题答案不唯一.20.(2011秋•宁陕县校级期末)下列各数:中,是无理数的有 2 个.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数,所以无理数就是无限不循环小数,由此即可判定求解.【解答】解:下列各数:中,∵π是无限不循环小数,而是开方开不尽的数.∴他们都是无理数;而,0.010*********符合分数的概念,是有理数;,=2,是有理数.故有2个无理数.【点评】此题主要考查了无理数的定义,注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.其中是有理数中的整数;0.010*********是有限小数,是有理数.三.解答题(共10小题)21.(2016春•丰都县期末)把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.14【分析】根据有理数与无理数的定义看判定求解.【解答】解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).【点评】本题主要考查了有理数与无理数的定义.有理数是整数与分数的统称;无理数是无限不循环小数.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.开方开不尽的数也是无理数.22.(2011秋•泰顺县校级期中)在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:2表示:3(注:横线上填入对应的无理数)【分析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.【解答】解:如图所示:AB==;CD==2;EF==3.【点评】本题考查的是无理数的定义及勾股定理的应用,解答此题时要熟知无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.23.(2011秋•温州期中)在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.【分析】根据无理数、整数、分数的定义即可作答.【解答】解:整数集合{0,﹣};分数集合{,3.14};无理数集合{,﹣,7.151551…}.【点评】此题主要考查了无理数、分数、无理数的定义注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.24.国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x 是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?【分析】根据开方运算,可得正方形的边长,根据无理数是无限不循环小数,可得答案.【解答】解:=2,这个正方形客厅的边长x不是有理数,2≈2×2.6457≈5.291.【点评】本题考查了无理数,无理数是无限不循环小数,开方运算是解题关键.25.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?【分析】(1)根据比例中项的定义,可知x2=2,结合无理数的概念,就能得出x是不是整数的结论.(2)根据分数的定义,任何分数的平方还是分数,即能得出结论.【解答】解:(1)不是,∵1<2<4,而x2=2∴1<x2<4,若x>0,1<x<2,∴在1和2之间不存在另外的整数.(2)不是,因为任何分数的平方不可能是整数.【点评】本题主要考查无理数和勾股定理的知识点,掌握无理数的概念是解答的关键,此题是基础题,不是很难.26.(2010秋•温州期中)下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是③④⑨,整数是①⑥⑦.负分数是②⑧.【分析】无理数就是无限不循环小数.整数应包括正整数、0、负整数.分数包括正负数、负分数.由此即可判定求解.【解答】解:根据无理数的定义可知:无理数是③④⑨,根据有理数的分类可知:整数是①⑥⑦,负分数是②⑧.【点评】此题主要考查了无理数的定义,也考查了整数分数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.27.已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?【分析】根据长方体的体积公式,可得长、宽、高、根据无理数就是无限不循环小数,可得答案.【解答】解:长、宽、高不是无理数,理由如下:设长、宽、高分别为5x,4x,3x.由体积,得60x3=1620,解得x=3,长、宽、高分别为15,12,9不是无理数.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.28.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.【分析】首先用正方体的体积公式求出正方体的边长,然后根据有理数和无理数的概念进行判断.【解答】解:∵正方体的体积为3,∴正方体的边长为,是无理数,故体积为3的正方形的边长不可能是整数、分数、有理数.【点评】本题主要考查无理数和有理数的知识点,解题的关键是熟练掌握无理数和有理数的概念,本题比较基础,需要熟练掌握.29.(2015秋•河南校级月考)有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,所有无理数的和:﹣++(﹣)=﹣+2﹣=.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.30.(2013秋•萧山区校级期中)判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.×(2)若a+1是负数,则a必小于它的倒数.√.【分析】(1)根据乘法法则即可判断;(2)根据a+1是负数即可求得a的范围,即可作出判断.【解答】解:(1)任何无理数有有理数0的乘积等于0,故命题错误;(2)a+1是负数,即a+1<0,即a<﹣1,则a必小于它的倒数.故答案是:×,√.【点评】此题主要考查了无理数的运算,正确理解运算性质是关键.。

【能力培优】八年级数学上册 2.1 认识无理数试题 (新版)北师大版

【能力培优】八年级数学上册 2.1 认识无理数试题 (新版)北师大版

第二章实数
2.1认识无理数
专题无理数近似值的确定
1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()
A.x是有理数 B.x取0和1之间的实数
C.x不存在 D.x取1和2之间的实数
2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?
(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.
3. 你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.
答案:
1.D 【解析】∵面积为3的正方形的边长为x,∴x2=3,而12=1,22=4,∴1<x2<4,∴1<x<2,故选D.
2.解:(1)边长为5cm.
(2)设大正方形的边长为x,∵大正方形的面积=32+32=18,而42=16,52=25,
∴16<x2<25,∴4<x<5,故正方形的边长不是整数,它的值在4和5之间.
3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.。

专题21认识无理数-2021-2022学年八年级数学上(解析版)【北师大版】

专题21认识无理数-2021-2022学年八年级数学上(解析版)【北师大版】

2021-2022学年八年级数学上册尖子生同步培优题典【北师大版】专题2.1认识无理数姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•白云区二模)实数0,﹣1,4,π中,无理数是( ) A .4B .πC .0D .﹣1【分析】理解无理数的概念,一定要同时理解有理数的概念,整数与分数的统称有理数即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解析】A 、4是整数,属于有理数,故本选项不合题意; B 、π属于无理数,故本选项符合题意; C 、0是整数,属于有理数,故本选项不合题意; D 、﹣1是整数,属于有理数,故本选项不合题意. 故选:B .2.(2021春•普陀区期中)下列各数中,是无理数的是( ) A .﹣6.94B .337C .0D .π2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】A 、﹣6.94是有限小数,属于有理数,故本选项不合题意; B 、337是分数,属于有理数,故本选项不合题意;C 、0是整数,属于有理数,故本选项不合题意;D 、π2是无理数,故本选项符合题意.故选:D .3.(2021春•淮北月考)下列四个实数中,是无理数的是( )A .2.021B .πC .227D .3.14159265【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】A 、2.021是有限小数,属于有理数,故本选项不合题意; B 、π是无理数,故本选项符合题意; C 、227是分数,属于有理数,故本选项不合题意;D 、3.14159265是有限小数,属于有理数,故本选项不合题意; 故选:B .4.(2020秋•工业园区期末)下列各数中,不是无理数的是( ) A .πB .1327C .0.1010010001…D .π﹣3.14【分析】分别根据无理数、有理数的定义即可判定选择项. 【解析】A 、π是无理数,故本选项不合题意; B 、1327是分数,属于有理数,故本选项符合题意;C 、0.1010010001…是无理数,故本选项不合题意;D 、π﹣3.14是无理数,故本选项不合题意; 故选:B .5.(2020秋•徐州期末)下列四个数中,无理数是( ) A .237B .0C .0.12D .π【分析】分别根据无理数、有理数的定义即可判定选择项. 【解析】A 、237是分数,属于有理数,故本选项不合题意;B 、0是整数,属于有理数,故本选项不合题意;C 、0.12是有限小数,属于有理数,故本选项不合题意;D 、π是无理数,故本选项符合题意. 故选:D .6.(2020秋•常州期末)下列各数中,无理数是( )A .0.6⋅B .227C .π3D .﹣2.616116111【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】A 、0.6.是循环小数,属于有理数,故本选项不合题意; B 、227是分数,属于有理数,故本选项不合题意;C 、π3是无理数,故本选项符合题意;D 、﹣2.616116111是有限小数,属于有理数,故本选项不合题意; 故选:C .7.(2020秋•鼓楼区校级月考)在314,π,13,﹣0.23,1.131331333133331…(两个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】在314,π,13,﹣0.23,1.131331333133331…(两个1之间依次多一个3)中,无理数有π,1.131331333133331…(两个1之间依次多一个3),共2个. 故选:B .8.(2020秋•杏花岭区校级期中)在3.14159,4,1.1010010001…(每两个1之间0的个数依次加1),4.21⋅⋅,π,132中,无理数有( )A .1个B .2个C .3个D .4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】3.14159是有限小数,属于有理数;4是整数,属于有理数; 4.21⋅⋅是循环小数,属于有理数;132是分数,属于有理数;无理数有1.1010010001…(每两个1之间0的个数依次加1),π共2个. 故选:B .9.(2020秋•太平区期末)下列各数:﹣1,π3,1.1212212221…(每两个1之间增加1个2),﹣3.1415,227,﹣0.3⋅,其中无理数有( ) A .1个B .2个C .3个D .4个【分析】根据无理数是无限不循环小数,可得答案. 【解析】﹣1是整数,属于有理数; ﹣3.1415是有限小数,属于有理数;227是分数,属于有理数;﹣0.3⋅是循环小数,属于有理数;无理数有π3,1.1212212221…(每两个1之间增加1个2)共2个.故选:B .10.(2020秋•张家港市期中)下列一组数:﹣8,2.7,312,π2,−0.6⋅,0,2,0.010010001…(相邻两个1之间依次增加一个0)其中是无理数有( ) A .0 个B .1 个C .2个D .3个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】﹣8,0,2是整数,属于有理数; 2.7是有限小数,属于有理数; 312是分数,属于有理数; −0.6⋅是循环小数,属于有理数;无理数有π2,0.010010001…(相邻两个1之间依次增加一个0)共2个.故选:C .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2020秋•泰兴市期末)在π2,3.14,0.02002…,﹣3,23中,无理数有 2 个.【分析】根据无理数的概念即可得出答案.【解析】在所列实数中,无理数的有π2,0.02002…这2个,故答案为:2.12.(2020秋•东台市期末)下列各数中:3.1415926,0.171171117……,﹣π,−17,0,0.5.,无理数有 2 个.【分析】根据无理数的概念求解即可.【解析】在所列实数中无理数有0.171171117……,﹣π这2个, 故答案为:2.13.(2020秋•沭阳县期末)写出一个无理数,使这个无理数的绝对值小于4: π(答案不唯一) . 【分析】根据无理数的概念求解即可(答案不唯一). 【解析】无理数π的绝对值小于4, 故答案为:π(答案不唯一).14.(2020秋•高邮市期末)在数0、π、﹣0.1010010001,5.6⋅、227中,无理数有 1 个.【分析】根据无理数的概念求解即可. 【解析】在所列实数中,无理数的是π, 故答案为:1.15.(2021春•包河区期中)若|2a ﹣7|=7﹣2a ,则a = √2 .(请写出一个符合条件的正无理数) 【分析】根据绝对值的性质可得2a ﹣7≤0,据此可得a 的取值范围,再根据无理数的定义求解即可. 【解析】因为|2a ﹣7|=7﹣2a , 所以2a ﹣7≤0, 所以a ≤72, 所以a 可以是√2.故答案为:√2(答案不唯一).16.(2021•雁塔区校级模拟)在下列各数13,π,√2−1,0.1212中,无理数是 π,√2−1 .【分析】根据无理数的定义求解即可.【解析】13,0.1212是有理数;π,√2−1是无理数.故答案为:π,√2−1.17.(2020秋•北海期末)在0,5,π,−227这些数中,无理数是 π . 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】0,5是整数,属于有理数; −227是分数,属于有理数; 无理数π. 故答案为:π.18.(2020秋•浦口区期中)在﹣0.5,π,−227,1.3⋅,1.2121121112…(每两个2之间依次多1个1)中,无理数有 2 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数. 【解析】﹣0.5是有限小数,属于有理数; π是无理数;−227是分数,属于有理数; 1.3⋅是循环小数,属于有理数;1.2121121112…(每两个2之间依次多1个1)是无理数.所以无理数有π,1.2121121112…(每两个2之间依次多1个1)共2个. 故答案为:2.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•兴化市月考)将下列各数填在相应的集合里:227,1﹣π,﹣0.2020020002…,0,﹣(﹣200%),﹣|﹣5|,﹣(﹣1)2,3.14159负数集合( 1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2 …) 正分数集合(227,3.14159 …)自然数集合( 0,﹣(﹣200%) …) 无理数集合( 1﹣π,﹣0.2020020002… …) 【分析】根据实数的分类,可得答案.【解析】负数集合( 1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2 …) 正分数集合(227,3.14159 …)自然数集合( 0,﹣(﹣200%)…) 无理数集合( 1﹣π,﹣0.2020020002……),故答案为:1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2;227,3.14159;0,﹣(﹣200%);1﹣π,﹣0.2020020002….20.(2020秋•句容市月考)请将下列各数:12,7,﹣0.01,﹣3.2020020002…,﹣15,2.95⋅,0,π2;填入相应的括号内.(1)整数集合{ 7,﹣15,0 …}; (2)分数集合{12,﹣0.01,2.95⋅…};(3)负有理数集合{ ﹣0.01,﹣15 …}; (4)无理数集合{ ﹣3.2020020002…,π2 …}.【分析】根据整数,分数,负有理数,无理数的定义即可求解. 【解析】(1)整数集合{7,﹣15,0…}; (2)分数集合{12,﹣0.01,2.95⋅⋯};(3)负有理数集合{﹣0.01,﹣15…}; (4)无理数集合{﹣3.2020020002…,π2⋯}.故答案为:7,﹣15,0;12,﹣0.01,2.95⋅;﹣0.01,﹣15;﹣3.2020020002…,π2.21.(2020秋•清江浦区期中)把下列数按照要求填入相应的集合内:+8.5,﹣325,0.35,0,3.14,12,0.3,π,10%,﹣2.626626662…无理数集合:{ π,﹣2.626626662… …};负数集合:{ ﹣325,﹣2.626626662… …}.【分析】根据实数的定义及其分类求解可得. 【解析】无理数集合:{π,﹣2.626626662……}; 负数集合:{﹣325,﹣2.626626662……}.故答案为:π,﹣2.626626662…;﹣325,﹣2.626626662….22.(2020秋•亭湖区期中)请将下列各数填入相应的集合内: −74,0,π,311,﹣1.010010001…,0.5⋅有理数集合:{ 74,0,311,0.5⋅…};无理数集合:{ π,﹣1.010010001… …}; 非负数集合:{ 0,π,311,0.5⋅…}.【分析】根据实数的定义及其分类求解可得.【解析】有理数集合:{−74,0,311,0.5⋅⋯};无理数集合:{π,﹣1.010010001……}; 非负数集合:{0,π,311,0.5⋅⋯}.故答案为:−74,0,311,0.5⋅;π,﹣1.010010001…; 0,π,311,0.5⋅.23.将下列这些数按要求填入相应的集合中:0.010010001…,4,﹣212,3.2,0,﹣1,﹣(﹣5),﹣|﹣5|,−π2.负数集合:{ −212,﹣1,﹣|﹣5|,−π2 …}; 非负整数集合:{ 4,0,﹣(﹣5) …}; 分数集合:{ ﹣212,3.2 …};无理数集合:{ 0.010010001…,π2…}.【分析】直接利用负数,非负整数,分数,无理数的定义分别分析得出答案. 【解析】负数集合:{−212,﹣1,﹣|﹣5|,−π2⋯}; 非负整数集合:{4,0,﹣(﹣5)…};分数集合:{﹣212,3.2 …};无理数集合:{ 0.010010001……,−π2⋯}.故答案为:−212,﹣1,﹣|﹣5|,−π2;4,0,﹣(﹣5);﹣212,3.2;0.010010001……,−π2.24.将下列各实数填入相应的集合内:−83,|−67|,4,0,﹣27,0.36,+(﹣1.78),0.303003000…,π2,﹣8.整数集合:{ 4,0,﹣27,﹣8 …}; 负分数集合:{ −83,+(﹣1.78) …}; 负数集合:{ −83,+(﹣1.78),﹣27,﹣8 …}; 非负整数:{ 4,0 …};非负数集合:{ |−67|,4,0,0.36,0.303003000…,π2 …};无理数集合:{ 0.303003000…,π2 …}.【分析】根据整数,负数,负分数,无理数,非负整数,非正整数的定义分类填入即可. 【解析】整数集合:{4,0,﹣27,﹣8 …}; 负分数集合:{−83,+(﹣1.78)…}; 负数集合:{−83,+(﹣1.78),﹣27,﹣8…}; 非负整数:{4,0 …};非负数集合:{|−67|,4,0,0.36,0.303003000…,π2⋯};无理数集合:{0.303003000…,π2…}.故答案为:4,0,﹣27,﹣8;−83,+(﹣1.78);−83,+(﹣1.78),﹣27,﹣8;4,0;|−67|,4,0,0.36,0.303003000…,π2;0.303003000…,π2.。

八年级数学上册2.1认识无理数练习题(新版)北师大版

八年级数学上册2.1认识无理数练习题(新版)北师大版

无理数班级:___________姓名:___________得分:__________一、选择题(每小题6分,共36分)1、在下列实数中,无理数是( )A.2B.0C.D.A. B.1.732 C.- D.0.3,117,0.31311311136.一个长方形的长与宽分别是6、3,它的对角线的长可能是()A.整数 B.分数 C.有理数D.无理数二、填空题(每小题6分,共24分)1、面积为3的正方形的边长_____有理数;面积为4的正方形的边长_____有理数.(填“是”或“不是”)2、试举一例,说明“两个无理数的差仍是无理数”是错误的:_____.3、直角三角形两直角边长为2和5,以斜边为边的正方形的面积是,此正方形的边长(填“是”或者“不是”)有理数.4、有六个数:0.123,(﹣1.5)3,3.1416,227,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=______.三、解答题(每小题20分,40分)1、500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?2、如图:(1)x,y,z,w中哪些是有理数哪些是无理数?它们的值分别是多少?(2)你发现了斜边长度的表示规律了吗?求第n次作出的斜边的长度是多少?参考答案一、选择题1、答案:C【解析】∵无理数是无限不循环小数,∴是无理数,2,0,是有理数.故选C.2、答案: B【解析】根据无理数的定义,结合各项进行判断即可.①无限循环小数不是无理数,故①错误;②无理数是无限不循环的小数,故②正确;③无理数包括正无理数、负无理数,0是有理数,故③错误;④无理数都可以用数轴上的点来表示,故④正确.综上可得②④正确,共2个.故选B.3、答案:D【解析】根据无理数的定义对四个选项进行逐一分析即可.A、是有理数,不是无理数,故本选项错误;B、是有理数,不是无理数,故本选项错误;C、是无理数,故本选项正确;D、是有理数,不是无理数,故本选项错误;故选C.4、答案:C【解析】无理数就是无限不循环小数.无理数应满足三个条件:①是小数;②是无限小数;③不循环.如圆周率π=3.141592653…,=1.414…,0.010010001000001….根据概念即可判定选择.A、无理数包括正无理数、负无理数,故选项错误;B、π是无理数,故选项错误;C、不是所有的带根号的数都是无理数,如等,故选项错误;D、无理数是无限不循环小数,故选项正确;故选D.5、答案:D【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.∵,∴在实数,,π,,,0.3131131113…中,有理数有,,共3个;无理数有,π,0.3131131113…共3个;故选A.6、答案:D【解析】∵ ==3,∴对角线长是无理数.故选D.二、填空题1、答案:不是是【解析】:首先用正方形的面积公式求出正方形的边长,然后根据有理数和无理数的概念进行判断.∵正方形的面积为3,∴正方形的边长为,∴面积为3的正方形的边长不是有理数,∵正方形的面积为4,∴正方形的边长为2,故面积为4的正方形的边长是有理数,故答案为不是、是.2、答案:π-π=0【解析】:由于两个相等的无理数的差就是0,是有理数,由此根据无理数定义即可求解.例如:π-π=0.(答案不唯一).3、答案:29 不是【解析】:设直角三角形的两直角边是a和b,斜边是c,由勾股定理得:a2+b2=c2,则分别以a、b为边长的两个正方形的面积之和为:a2+b2=4+25=29,以斜边c为边长的正方形的面积S=c2=a2+b2=29是无理数.故答案为:29,不是.4、答案::6次作出的斜边的长是x==,y==;z==2w==(次作出的斜边的长是.(。

北师大版八年级数学上册 第二章 实数 认识无理数(第2课时)

北师大版八年级数学上册 第二章 实数 认识无理数(第2课时)
探究新知
想一想
解:3=3.0,
分数化成小数,最终此小数的形式有哪几种情况?
分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.
探究新知
像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数. 我们把无限不循环小数称为无理数. (圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数). 你能找到其他的无理数吗?
知识点 2
1.若边长为a cm的正方形的面积与长、宽分别为8 cm、4 cm的长方形的面积相等,则a的取值在 ( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间
D
2.一块面积为10的正方形草坪,其边长( ) A.小于3 B. 等于3 C.在3与4之间 D.大于4
2.1 认识无理数(第2课时)
北师大版 数学 八年级 上册
思考导入
1.有理数如何分类?
有理数
整数(如-1,0,2,3,… ):都可看成有限小数
2.上节课了解到一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?
导入新知
1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想. 形的边长为x,则x2=2. 因为AB2=x2+(3x)2=10x2=20,所以AB的长不是有理数. 因为CD2=(2x)2+(2x)2=8x2=16,CD=4,即CD的长是有理数. 因为EF2=x2+x2=2x2=4,EF=2,即EF的长是有理数. 因为GH2=x2+(2x)2=5x2=10,所以GH的长不是有理数.

八年级数学上册 2.1 认识无理数同步测试 (新版)北师大版-(新版)北师大版初中八年级上册数学试题

八年级数学上册 2.1 认识无理数同步测试 (新版)北师大版-(新版)北师大版初中八年级上册数学试题

认识无理数一、选择题(共28小题)1.在下列实数中,无理数是()A.2 B.3.14 C.D.2.四个数﹣1,0,,中为无理数的是()A.﹣1 B.0 C.D.3.下列实数是无理数的是()A.﹣1 B.0 C.D.4.实数π,,0,﹣1中,无理数是()A.πB.C.0 D.﹣15.在下列实数中,无理数是()A.0 B.C.D.66.下列实数属于无理数的是()A.0 B.πC.D.﹣7.下列选项中,属于无理数的是()A.2 B.πC.D.﹣28.下列各数中是无理数的是()A.B.﹣2 C.0 D.9.下列实数是无理数的是()A.﹣1 B.0 C.πD.10.下列实数是无理数的是()A.B.1 C.0 D.﹣111.下列实数是无理数的是()A.﹣2 B.C.D.12.下列实数中,是无理数的为()A.﹣1 B.﹣ C.13.实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.414.下列四个实数中,是无理数的为()A.0 B.﹣3 C.D.15.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个16.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.17.下列实数中,是无理数的为()A.B.C.0 D.﹣318.在实数0,π,,,中,无理数的个数有()A.1个B.2个C.3个D.4个19.下列各数中,属于无理数的是()A.B.﹣2 C.0 D.20.下列各数是无理数的是()A.B.C.πD.﹣121.下列实数中,为无理数的是()A.0.2 B.C.D.﹣522.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()023.实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.324.下列四个实数中,无理数是()A.2 B.C.0 D.﹣125.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°26.下列实数中,无理数是()A.﹣1 B.C.5 D.27.下列实数是无理数的是()A.5 B.0 C.D.28.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二、填空题(共2小题)29.实数中的无理数是______.30.请你写出一个无理数______.答案一、选择题(共28小题)1.D;2.D;3.D;4.A;5.C;6.B;7.B;8.A;9.C;10.A;11.D;12.C;13.B;14.C;15.B;16.D;17.A;18.B;19.A;20.C;21.C;22.C;23.D;24.B;25.D;26.D;27.D;28.B;二、填空题(共2小题)29.;30.π;。

北师大版八年级数学上2.1认识无理数同步检测题含答案

北师大版八年级数学上2.1认识无理数同步检测题含答案

八年级数学上册第二章实数2.1认识无理数同步检测题1.如图为边长为1的正方形组成的网格图,A,B两点在格点上,设AB的长为x,则x2=____,此时x____整数,分数,所以x____有理数.2.下列各数中,是有理数的是( )A.面积为3的正方形的边长B.体积为8的正方体的棱长C.两直角边分别为2和3的直角三角形的斜边长D.长为3,宽为2的长方形的对角线长3.边长为2的正方形的对角线长是( )A.整数B.分数C.有理数D.无理数4.如图,图中是16个边长为1的小正方形拼成的大正方形,连接CA,CB,CD,CE四条线段,其中长度既不是整数也不是分数的有____条.5. 已知Rt△ABC中,两直角边长分别为a=2,b=3,斜边长为c.(1)c满足是什么关系式?(2)c是整数吗?(3)c是一个什么数?6. 与-2π最接近的两个整数是( )A.-3和-4B.-4和-5C.-5和-6D.-6和-77.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间8.已知Rt △ABC 中,∠C =90°,AC =1,BC =3,则AB 的取值范围是( )A .3.0<AB<3.1B .3.1<AB<3.2C .3.2<AB<3.3D .3.3<AB<3.49.若a 2=11(a>0),则a 是一个____数,精确到个位约是____.10.写出一个比4小的正无理数: .11.下列数是无理数的是( )A .-1B .0C .π D. 1312.下列各数:π2,0,0.23,227,0.303 003 0003…(每两个3之间增加1个0)中,无理数的个数为( ) A .2个 B .3个 C .4个 D .5个13.下列说法中,正确的个数为( )①无限小数都是无理数;②不循环小数都是无理数;③无理数都是无限小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A .1个B .2个C .3个D .4个14.如图,分别以Rt △ABC 的边为一边向外作正方形,已知AB =2,BC =1.(1)求图中以AC 为一边的正方形的面积;(2)AC 的长是不是无理数?若是无理数,请求出它的整数部分?15.下列各数:3.141 59,4.21,π,227,1.010 010 001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个16.下列各数:①面积是2的正方形的边长;②面积是9的正方形的边长;③两直角边分别为6和8的直角三角形的斜边长;④长为3,宽为2的长方形的对角线的长.其中是无理数的是( )A .①②B .②③C .①④D .③④19.如图,每个小正方形的边长都是1,图中A ,B ,C ,D 四个点分别为小正方形的顶点,下列说法:①△ACD 的面积是有理数;②四边形ABCD 的四条边的长度都是无理数;③四边形ABCD 的三条边的长度是无理数,一条边的长度是有理数.其中说法正确的有( )A .0个B .1个C .2个D .3个20.如图,在正方形网格中,每个小正方形边长都为1,则网格上△ABC 中,边长为无理数的边长有( )A .0个B .1个C .2个D .3个21.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有____个,边长是无理数的正方形有____个.22.把下列各数填入相应的集合里:0.236,0.37.,-π2,-112,18,-0.021021021...,0.34034003400034...,3.7842 023. 如图所示,等腰三角形ABC 的腰长为3,底边BC 的长为4,高AD 为h ,则h 是整数吗?是有理数吗?24.设边长为4的正方形的对角线长为x.(1)x 是有理数吗?说说你的理由;(3) 请你估计一下x 在哪两个相邻整数之间?(3) 估计x 的值(结果精确到十分位);(4) 如果结果精确到百分位呢?答案:1. 5 不是 也不是 不是2. A3. B4. 35. 解:(1)c 2=a 2+b 2=13(2) 不是整数(3)c 是无理数6. D7. B8. B9. 无理 310. π,1.201001…11. C12. A13. B14. 解:(1)5(2)AC 的长是无理数,它的整数部分为215. B16. C17. B18. B19. C20 C21. 3 622. 正数集合:{0.236,0.37·,18,0.34034003400034…, }3.7842……;负数集合:⎩⎨⎧⎭⎬⎫-π2,-112,-0.021021021……; 有理数集合:⎩⎨⎧⎭⎬⎫0.236,0.37·,18,-112,-0.021021021…,0…; 无理数集合:⎩⎨⎧⎭⎬⎫-π2,0.34034003400034…,3.7842…… 23. 解:AB ,BD ,AD 可组成Rt △ABD ,由勾股定理,得h 2=AB 2-BD 2,即h 2=5.所以h 不是整数,也不是分数,从而不是有理数24. 解:(1)x 不是有理数.理由:由勾股定理可知x 2=42+42=32,首先x 不可能是整数(因为52=25,62=36,所以x 在5和6之间),其次x 也不可能是分数(因为若x 是最简分数n m ,则(n m)2,仍是一个分数,不等于32),综上可知:x既不是整数,也不是分数,所以x不是有理数(2) x在5和6之间(3)5.7(4)5.66。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版八年级数学上册
2.1认识无理数
能力提升卷
一、选择题(共10小题,3*10=30)
1.下列各数中,是有理数的是( )
A .面积为3的正方形的边长
B .体积为8的正方体的棱长
C .两直角边长分别为2和3的直角三角形的斜边长
D .长为3,宽为2的长方形的对角线长
2..若x 2=3,则x 为( )
A .整数
B .分数
C .有理数
D .以上都不是
3.一个正方形的边长为a ,面积为20,则( )
A .a 可能是整数
B .a 可能是分数
C .a 可能是有理数
D .a 不是有理数
4.在数3.14,25
,3.333 33,0.41·2·,0.010 110 111 0…(相邻两个0之间1的个数逐次加1),π中,无理数的个数是( )
A .2
B .3
C .4
D .5
5.从-1,0,13
,π,3中随机抽取一数,抽到无理数的概率为( )
A .15
B .25
C .35
D .45
6. 一个正方形的面积是15,估计它的边长大小在( )
A .2与3之间
B .3与4之间
C .4与5之间
D .5与6之间
7.在等式x 2=11中,下列说法正确的是( )
A .x 可能为整数
B .x 可能为分数
C .x 可能是有理数
D .x 不是有理数
8.已知正数m 满足条件m 2=40,则m 的整数部分为( )
A .9
B .8
C .7
D .6
9.面积为2的正方形的边长在( )
A .0和1之间
B .1和2之间
C .2和3之间
D .3和4之间
10.在如图所示的正方形网格中,每个小正方形的边长为1,则在网格上的△ABC 中,边长为无理数的边数为( )
A .0
B .1
C .2
D .3
二.填空题(共8小题,3*8=24)
11.如图,是16个边长为1的小正方形拼成的大正方形,连接CA ,CB ,CD ,CE 四条线段,其中长度既不是整数也不是分数的有____条.
12. 若长方形的长和宽分别为2和1,它的对角线长是一个无理数,则这个无理数精确到0.1约为________.
13.一个高为2 m ,宽为1 m 的长方形大门,对角线的长在两个相邻的整数之间,这两个整数是____和____.
14.在如图的边长均为1的正方形网格中,长度是有理数的线段为______________,长度不是有理数的线段为______________.
15. 在π3,227
,0.3,3.141 592 6,-0.505 005 000 5…(相邻两个5之间0的个数逐次加1),0.1中,无理数有_________个
16.面积为4的长方形中,长是宽的2倍,则宽为_________ 数
17.如图,直角三角形的两直角边长分别为1,2,则斜边b 的长在哪两个正整数之间:______<b <_______.
18.如图,每个小正方形的边长都是1,图中A ,B ,C ,D 四个点分别为小正方形的顶点,下列说法:①△ACD 的面积是有理数;②四边形ABCD 的四条边的长度都是无理数;③四边形ABCD 的三条边的长度是无理数,一条边的长度是有理数.其中说法正确的有__________(填序号)
三.解答题(共7小题,46分)
19.(6分) 把下列各数分别填入相应的集合里:
-1
3π,-
22
13,0.212 112 111 2…(相邻两个2之间1的个数逐次加1),0.5,4
2
9,-8.
有理数集:{ };
无理数集:{ };
分数集:{ };
负无理数集:{ }.
20.(6分) 若小明想将两块边长都为3 cm的正方形纸板沿对角线剪开,拼成如图的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,则请你估计这个边长的值在哪两个整数之间.
21.(6分) 已知直角三角形的两条直角边长分别是9 cm和5 cm,斜边长是x cm.
(1)估计x在哪两个整数之间;
(2)如果把x的结果精确到十分位,估计x介于哪两个数之间.如果精确到百分位呢?用计算器验证你的估计值.
22.(6分)设面积为5π的圆的半径为a.
(1)a是有理数吗?说说你的理由;
(2)估计a的值;(精确到0.1,并利用计算器验证你的估计)
(3)如果精确到0.01呢?
23.(6分)如图,在长方形ABCD中,∠DAE=∠CBE=45°,AD=3.
(1)求△ABE的面积;
(2)AE的长是有理数还是无理数?请说明理由.你能估计它的大小吗?(精确到0.1)
24.(8分) 观察图形(如图),回答问题:
(1)x,y,z,w哪些是有理数,哪些是无理数?x2,y2,z2,w2的值分别是什么?
(2)根据你发现的斜边长度的表示规律,求出第n次作出的三角形的斜边长度的平方.
25.(8分) 面积为7的正方形的边长为x.请你回答下列问题:
(1)x的整数部分是多少?
(2)把x的值精确到十分位时是多少?精确到百分位呢?
(3)x是有理数吗?请说明理由.
参考答案
1-5BDDAA 6-10BDDBC
11. 3
12. 2.2
13. 2,3
14. AB,EF ;CD,GH,MN
15. 2
16. 无理
17. 2,3
18. ①③
19. 解:有理数集:⎩⎨⎧⎭
⎬⎫-2213,0.5,429,-8,…; 无理数集:⎩
⎨⎧-13π,0.212 112 111 2…(相邻两个2} 之间1的个数逐次加1),…; 分数集:⎩⎨⎧⎭
⎬⎫-2213,0.5,429,…; 负无理数集:⎩⎨⎧⎭
⎬⎫-13π,…. 20. 解:设大正方形的边长为x cm.
因为大正方形的面积为32+32=18,而42=16,52=25,
所以16<x 2<25,所以4<x <5.
故正方形的边长不是整数,它的值在4和5之间.
21. 解:(1)在整数10和11之间
(2)x 精确到十分位时,x 在10.2与10.3之间,x 精确到百分位时,x 在10.29与10.30之间.
22. 解:因为πa 2=5π,所以a 2=5.(1)a 不是有理数,
∵a 既不是整数,也不是分数,而是无限不循环小数
(2)估计a≈2.2
(3)a≈2.24
23. 解:(1)∵∠DAE =∠CBE =45°,∴∠DEA =∠CEB =45°,
∴AD =DE =CE =BC =3,∠AEB =90°,
∴AB =CD =3+3=6,
∴S △ABE =12
×6×3=9 (2)AE 的长是无理数,理由:
∵AE2=18,4.242=17.9776,4.252=18.0625,
∴AE≈4.2
24. 解:(1)因为图中的三角形均是直角三角形,
所以由勾股定理,得x2=12+12=2,y2=2+12=3,
z2=3+12=4=22,w2=4+12=5.
所以z是有理数,x,y,w是无理数.
(2)根据以上规律可知,第n次作出的三角形的斜边长度的平方是n+1.
25. 解:(1)设正方形的面积为S,则S=x2=7.
当2<x<3时,4<S<9;
当2.6<x<2.7时,6.76<S<7.29;
当2.64<x<2.65时,6.969 6<S<7.022 5;
当2.645<x<2.646时,6.996 025<S<7.001 316.
x的整数部分是2.
(2)把x的值精确到十分位时,x≈2.6;
精确到百分位时,x≈2.65.
(3)x不是有理数.理由如下:
由计算可知,x是无限不循环小数,
所以x不是有理数.。

相关文档
最新文档