Ito's lemma and Black-Scholes model(伊藤定理的简单推导与BS模型的推理)

合集下载

伊藤对数微分公式积规则

伊藤对数微分公式积规则

伊藤对数微分公式积规则The Ito's lemma is a fundamental concept in stochastic calculus that allows us to calculate the derivative of a stochastic process. It is essential in financial mathematics and plays a vital role in modeling the dynamics of financial assets. 伊藤对数微分公式是随机微分方程中的一个基本概念,可以帮助我们计算随机过程的导数。

它在金融数学中至关重要,对于建模金融资产的动态具有重要作用。

When dealing with stochastic processes, the Ito's lemma provides a way to compute the derivative with respect to time and the underlying Brownian motion. It is particularly useful in situations where the dynamics of the process are influenced by random noise. 当处理随机过程时,伊藤对数微分公式提供了一种计算随时间和基础布朗运动的导数的方法。

在过程的动态受随机噪声影响的情况下,它特别有用。

The Ito's lemma follows a specific rule when dealing with products of stochastic processes. This rule is known as the product rule or the chain rule for stochastic calculus. It allows us to calculate the derivative of the product of two stochastic processes by considering the individual derivatives and their interactions. 当处理随机过程的乘积时,伊藤对数微分公式遵循特定的规则。

black-scholes公式

black-scholes公式

black-scholes公式Black-Scholes Model(Black-Scholes公式)是一种用于定价欧式期权的数学模型,是金融工程学中的重要成果之一、该模型由费舍尔·布莱克(Fischer Black)和默顿·斯科尔斯(Myron Scholes)于1973年首次提出,他们也因此获得了1997年诺贝尔经济学奖。

Black-Scholes Model基于一系列假设,包括市场具有无摩擦,交易是连续的,没有交易费用以及无风险无套利机会等。

Black-Scholes Model基于随机微分方程(随机演变过程),描述了金融资产(如股票)的价格波动。

该模型基于两个基本概念:股票价格是随机演变的几何布朗运动,市场是完全无套利的。

Black-Scholes Model的核心方程是Black-Scholes Equation,也称为Black-Scholes PDE(偏微分方程)。

Black-Scholes Model基于以下几个关键因素对期权价格进行估值:标的资产价格、执行价格、剩余期限、无风险利率和波动率。

其中,标的资产价格指的是期权所关联的金融资产(如股票)的当前价格。

执行价格是期权中约定的购买或出售标的资产的价格。

剩余期限是期权到期日与当前日期之间的时间间隔。

无风险利率是可以在市场上获得的无风险回报率。

波动率表示标的资产价格的波动性。

Black-Scholes Model的公式为:C=S_0*N(d1)-X*e^(-rT)*N(d2)P=X*e^(-rT)*N(-d2)-S_0*N(-d1)其中,C表示欧式看涨期权的价格,P表示欧式看跌期权的价格。

S_0是标的资产价格,X是执行价格,r是无风险利率,T是剩余期限,N表示标准正态分布的累积分布函数。

d1和d2分别为:d1 = (ln(S_0 / X) + (r + (sigma^2)/2)*T) / (sigma*sqrt(T))d2 = d1 - sigma*sqrt(T)其中,sigma表示标的资产价格的波动率。

金融风险管理的理论与实践第10章PPT课件

金融风险管理的理论与实践第10章PPT课件
10.1.5.3 THETA
10.1.5.4 GAMMA 10.1.5.5 泰勒级数展开和套期保值参数
10.2 非线性头寸风险值的险阵求 解方法
10.2.1 解析方法 10.2.2 结构化蒙特卡洛模拟 10.布3 族将Vp, t 矩匹配到Johnson分
10.3.1 非线性头寸(期权) 10.3.2 包含有期权的投资组合的
• 如果采用离散的形式,式(10-4)和式(10-5)可以写成:
DS mSDt sSDz;
Df
f S
mS f t
1 2
2 S
f
2
s
2S
2
Dt
f S
sS
Dz
(10-6)
• 式中,Df 和DS为 f 和S在一个很小的时段Dt 中的变化。求解式
(10-6)的思想是消去其中的维纳过程,使之成为一个一般的微分
• 值得指出的是,Black-Scholes-Merton的期权定价公式仅对有限 的(也可以说是特殊的)期权工具(如欧式期权)有效。许多 期权工具(也可以说针对大多数的期权工具,如在利率期权定 价中)不能完全套用此公式定价。也就是说许多期权工具并没 有诸如(10-13)和(10-14)式那样的解析解,如美式看跌期权。
2021/2/12
华中科技大学经济学院 田新时 430074
2第Biblioteka 0章: 非线性头寸的风险 值度量VaR Measure for Nonlinear Positions
2021/2/12
华中科技大学经济学院 田新时 430074
10.1 非线性头寸的风险度量
10.1.1 Ito Lemma 10.1.2 Black-Scholes期权定价公式 10.1.3 风险中性定价 10.1.4 鞅和测度 10.1.4.1 风险的市场价格 10.1.4.2 微分方程形式 10.1.4.3 鞅 10.1.4.4 测度 10.1.4.5 等效鞅测度 10.1.4.6 货币市场账户作为基准 10.1.4.7 零息票债券价格作为计价基准 10.1.5 期权头寸的希腊字母 10.1.5.1 裸露的与有“顶”的头寸 10.1.5.2 Delta-套期保值

赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(曲率、时间与Quanto调整)

赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(曲率、时间与Quanto调整)

赫尔《期权、期货及其他衍⽣产品》(第7版)课后习题详解(曲率、时间与Quanto调整)29.2 课后习题详解⼀、问答题1. 解释你如何去对⼀个在5年后付出100R 的衍⽣产品定价,其中R 是在4年后所观察到的1年期利率(按年复利)。

当⽀付时间在第4年时,会有什么区别?当⽀付时间在第6年时,会有什么区别?Explain how you would value a derivative that pays off 100R in five years where R is the one-year interest rate (annually compounded) observed in four years. What difference would it make if the payoff were in four years? What difference would it make if tile payoff were in six years?答:衍⽣产品的价值是,其中P(0,t)是⼀个t 期零息债券的价格,为期限在和之间的远期利率,以年复利计息。

当⽀付时间在第4年时,价值为,其中c 为由教材中⽅程(29-2)得到的曲率调整。

曲率调整公式为:其中,是远期利率在时间和之间的波动率。

表达式100(R4,5 + c)为在⼀个远期风险中性的世界中,⼀个4年后到期的零息债券的预期收益。

如果在6年后进⾏⽀付,由教材中的⽅程(29-4)得到其价值为:其中,ρ为(4,5)和(4,6)远期利率之间的相关系数。

作为估计,假定,近似计算其指数函数,得到衍⽣产品的价值为:。

2. 解释在下⾯情况下,有没有必要做出任何曲率或时间调整?(a)要对⼀种期权定价,期权每个季度⽀付⼀次,数量等于5年的互换利率超出3个⽉LIBOR利率的部分(假如超出的话),本⾦为100美元,收益发⽣在利率被观察到后的90天。

(b)要对⼀种差价期权定价,期权每季度⽀付⼀次,数量等于3个⽉的LIBOR利率减去3个⽉的短期国库券利率,收益发⽣在利率被观察后的90天。

black-scholes 方程的简单推导

black-scholes 方程的简单推导

Risk-neutral pricing
Let us start by assuming that the correct way to value a call option is by discounting the expected option payoff at expiry, where the expectation is calculated in a risk-neutral world. We will also assume that log share prices follow a normal distribution with mean M and standard deviation √V; hence ln ST ~ N (M,V). Along the way we will define d2 to equal (M-ln(X)) / √V and use a standard normal random variable ZT ~ N (0,1).
The call has a value equal to the discounted expectation of it’s payoff, under the risk-neutral probability measure Q:
c = exp(-rT) EQ [ max (ST – X, 0) ]
The original Black-Scholes paper is littered with stochastic calculus and partial differential equations and, to my mind, this obscures the assumptions made about asset returns and, to a lesser extent, risk-neutrality. We’re going to provide an alternative derivation free from any mention of Ito’s lemma, integral signs and mathematical gobbledygook (such as add the exponents by using the trick known as completing the square). This alternative derivation highlights the key role played by the assumption that asset returns are lognormal and, in so doing, leads on to models that use higher moments such as skewness and kurtosis to reflect the volatility smile.

伊藤引理

伊藤引理

Itō's lemmaIn mathematics,Itō's lemma is used in Itōstochastic calculus to find the differential of a function of a particular type of stochastic process. It is named after its discoverer,Kiyoshi Itō.It is the stochastic calculus counterpart of the chain rule in ordinary calculus and is best memorized using the Taylor series expansion and retaining the second order term related to the stochastic component change.The lemma is widely employed in mathematical finance and its best known application is in the derivation of the Black–Scholes equation used to value options.Ito's Lemma is also referred to currently as the Itō–Doeblin Theorem in recognition of the recently discovered work of Wolfgang Doeblin.[1]Mathematical formulation of Itō's lemmaIn the following subsections we discuss versions of Itō's lemma for different types of stochastic processes.Itōdrift-diffusion processesIn its simplest form,Itō's lemma states the following:for an Itōdrift-diffusion processand any twice differentiable functionƒ(t,x)of two real variables t and x,thenThis immediately implies thatƒ(t,X)is itself an Itōdrift-diffusion process.In higher dimensions,Ito's lemma stateswhere is a vector of Itōprocesses, is the partial differential w.r.t.t,is the gradient of ƒw.r.t.X,and is the Hessian matrix ofƒw.r.t.X.[edit]Continuous semimartingalesMore generally,the above formula also holds for any continuousd-dimensional semimartingale X=(X1,X2,…,X d),and twice continuously differentiable and real valued function f on R d.Some people prefer to present the formula in another form with cross variation shown explicitly as follows,f(X)is a semimartingale satisfyingrepresents the partial derivative of f(x) In this expression,the term fiwith respect to x i,and[X i,X j]is the quadratic covariation process of X i and X j.[edit]Poisson jump processesWe may also define functions on discontinuous stochastic processes. Let h be the jump intensity.The Poisson process model for jumps is that the probability of one jump in the interval[t,t+Δt]is hΔt plus higher order terms.h could be a constant,a deterministic function of time or a stochastic process.The survival probability p s(t)is the probability that no jump has occurred in the interval[0,t].The change in the survival probability isSoLet S(t)be a discontinuous stochastic process.Write S(t−)for the valueof S as we approach t from the left.Write d j S(t)for the non-infinitesimalchange in S(t)as a result of a jump.ThenLet z be the magnitude of the jump and letη(S(t−),z)be the distribution of z.The expected magnitude of the jump isDefine dJ S(t),a compensated process and martingale,asThenConsider a function g(S(t),t)of jump process dS(t).If S(t)jumps byΔsthen g(t)jumps byΔg.Δg is drawn from distributionηg()which may dependon g(t−),dg and S(t−).The jump part of g isIf S contains drift,diffusion and jump parts,then Itō's Lemma for g(S(t),t) isItō's lemma for a process which is the sum of a drift-diffusion process and a jump process is just the sum of the Itō's lemma for the individual parts.[edit]Non-continuous semimartingalesItō's lemma can also be applied to general d-dimensional semimartingales, which need not be continuous.In general,a semimartingale is a càdlàg process,and an additional term needs to be added to the formula to ensure that the jumps of the process are correctly given by Itō's lemma.For anycadlag process Yt ,the left limit in t is denoted by Yt-,which is aleft-continuous process.The jumps are written asΔYt =Yt-Yt-.Then,Itō's lemma states that if X=(X1,X2,…,X d)is a d-dimensional semimartingale and f is a twice continuously differentiable real valued function on R d then f(X)is a semimartingale,andThis differs from the formula for continuous semimartingales by the additional term summing over the jumps of X,which ensures that the jump of the right hand side at time t isΔf(Xt).[edit]Informal derivationA formal proof of the lemma requires us to take the limit of a sequence of random variables,which is not done here.Instead,we give a sketch of how one can derive Itō's lemma by expanding a Taylor series and applying the rules of stochastic calculus.Assume the Itōprocess is in the form ofExpanding f(x,t)in a Taylor series in x and t we haveand substituting a dt+b dB for dx givesIn the limit as dt tends to0,the dt2and dt dB terms disappear but the dB2term tends to dt.The latter can be shown if we prove thatsinceDeleting the dt2and dt dB terms,substituting dt for dB2,and collecting the dt and dB terms,we obtainas required.The formal proof is somewhat technical and is beyond the current state of this article.[edit]Examples[edit]Geometric Brownian motionA process S is said to follow a geometric Brownian motion with volatility σand driftμif it satisfies the stochastic differential equation dS =S(σdB+μdt),for a Brownian motion B.Applying Itō's lemma with f(S)=log(S)givesIt follows that log(St )=log(S)+σBt+(μ−σ2/2)t,andexponentiating gives the expression for S,[edit]The Doléans exponentialThe Doléans exponential(or stochastic exponential)of a continuous semimartingale X can be defined as the solution to the SDE dY=Y dXwith initial condition Y= 1.It is sometimes denoted byƐ(X).Applying Itō's lemma with f(Y)=log(Y)givesExponentiating gives the solution[edit]Black–Scholes formulaItō's lemma can be used to derive the Black–Scholes formula for an option. Suppose a stock price follows a Geometric Brownian motion given by the stochastic differential equation dS=S(σdB+μdt).Then,if thevalue of an option at time t is f(t,St),Itō's lemma givesThe term(∂f/∂S)dS represents the change in value in time dt of the trading strategy consisting of holding an amount∂f/∂S of the stock.If this trading strategy is followed,and any cash held is assumed to grow at the risk free rate r,then the total value V of this portfolio satisfies the SDEThis strategy replicates the option if V=f(t,S).Combining these equations gives the celebrated Black-Scholes equation。

Black-Scholes模型综述


( j !(n j)!) p (1 p)
j j 0
n
n!
n j
max[0, u j d n jS K ]] / r n
a na
假设存在最小的 a,使得当股票价格上涨次数为 a,而下跌次数为 n-a 时, u d
n
S K >0 成立。可以解出
a 是大于 log(K/ Sd ) / log(u/ d) 的最小整数。接下来我们可以改写定价公式为:
X t X 0e
1 (r 2 ) t Bt 2
,注意到 Bt / t 是正态分布,那么可以改写④为:
1 (r 2 )(T t) BT t 2
C (X, t) E[e
r (T t)
g(xe
)] e
r (T t)



g (xe
1 (r 2 )(T t) T t z 2

Cu Cd , (u d)S
B
uCd dCu ⑥ ( u d ) r
由无套利条件,该组合与期权 C 在期末价值相同,则期初价值也应该相同,即 C=ΔS+B。把⑥代入,得
r d ur ) Cu ( ) Cd ] / r ud ud r d 简记为 C [ p Cu (1 p) Cd ] / r ,其中 p 。 ud C [(
一、 B-S 模型简介
首先,在建立 Black-Scholes 模型时,我们用到了如下假设: 资产价格遵从随机微分方程: 不限制卖空。 无交易费用和税收。 不存在套利机会。 证券交易为连续进行。 短期无风险利率 r 是常数。 在期权期限内,股票不支付股息。
dSt dt dB(t) ,其中 和 为常数。 St

投资分析BlackScholes期权定价模型


st xt , a(st ,t) st ,b(st ,t) st dst stdt stdwt
省略下标t,变换后得到几何布朗运动方程
ds dt dw
s
证券的预期回报与其价格无关。
(13.6)
2024/6/27
11
▪ ITO定理:假设某随机变量x的变动过程可由ITO 过程表示为(省略下标t)
价格波动率σ和无风险利率r有关,它们全都是客观
变量。因此,无论投资者的风险偏好如何,都不会 对f的值产生影响。
在对衍生证券定价时,可以采用风险中性定价,即 所有证券的预期收益率都等于无风险利率r。
只要标的资产服从几何布朗运动,都可以采用B-S微
分方程求出价格f。
2024/6/27
22
13.4 几何布朗运动与对数正态分布
2024/6/27
4
wt t t
(13.1)
这里,wt wt wt1,t iidN (0,1)
2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
cov(wt , ws ) 0
(13.2)
其中,wt wt wt1, ws ws ws1
Ct St N (d1) Xer N (d2 )
其中,d1
ln(St
/
X
)
(r
2
/
2)
d2 d1 t [0,T ], T t
2024/6/27
27
B-S买权定价公式推导
▪ (1)设当前时刻为t,到期时刻T,若股票 价格服从几何布朗运动,若已经当前时刻t 的 值股 为票价格为St,则T时刻的股票价格的期望
2024/6/27

北大光华衍生品定价理论 第八章 Black-Scholes 模型

第八章 Black-Scholes 模型金融学是一门具有高度分析性的学科,并且没有什么能够超过连续时间情形。

概率论和最优化理论的一些最优美的应用在连续时间金融模型中得到了很好地体现。

Robert C. Merton ,1997年诺贝尔经济学奖得主,在他的著名教科书《连续时间金融》的前言中写到: 过去的二十年证明,连续时间模型是一种最具有创造力的多功能的工具。

虽然在数学上更复杂,但相对离散时间模型而言,它能够提供充分的特性来得到更精确的理论解和更精练的经验假设。

因此,在动态跨世模型中引入的真实性越多,就能够得到比离散时间模型越合理的最优规则。

在这种意义上来说,连续时间模型是静态和动态之间的分水岭。

直到目前为止,我们已经利用二项树模型来讨论了衍生证券的定价问题。

二项树模型是一种离散时间模型,它是对实际市场中交易离散进行的一种真实刻画。

离散时间模型的极限情况是连续时间模型。

事实上,大多数衍生定价理论是在连续时间背景下得到的。

与离散时间模型比较而言,尽管对数学的要求更高,但连续时间模型具有离散时间模型所没有的优势:(1)可以得到闭形式的解。

这对于节省计算量、比较静态分析定价问题至关重要。

(2)可以方便的利用随机分析工具。

任何一个变量,如果它的值随着时间的变化以一种不确定的方式发生变化,我们称它为随机过程。

如果按照随机过程的值发生变化的时间来分,随机过程可以分为离散时间随机过程和连续时间随机过程。

如果按照随机过程的值所取的范围来分,随机过程可以分为连续变量随机过程和离散变量随机过程。

在这一章中,我们先介绍股票价格服从的连续时间、连续变量的随机过程:布朗运动和几何布朗运动。

理解这个过程是理解期权和其他更复杂的衍生证券定价的第一步。

与这个随机过程紧密相关的一个结果是Ito 引理,这个引理是充分理解衍生证券定价的关键。

本章的第二部分内容在连续时间下推导Black-Scholes 欧式期权定价公式,我们分别利用套期保值方法和等价鞅测度方法。

财务风险管理 Chapter_9 信用风险计量模型


信用矩陣模型
• 不同於KMV模型僅以公司違約為唯一的信用 事件, 信用矩陣模型認為信用風險不單單只 是違約而已,應該也要將信用品質改變的影響 考慮進來,而違約只是信用品質改變的特例。 • 這樣的想法並非新創,然而信用矩陣模型是首 套將信用品質變化、違約、回收率及違約相關 性一起分析的信用計量模型。
• 進一步將殖利率減去無風險利率,即是信用價差。再 由信用價差估計違約機率。
9.1 莫頓(Merton)模型
• 選擇權評價模型應用在衡量信用風險的技術上始於
莫頓(Robert Merton)在1975年的文章。 • 假設公司資產價值VA服從幾何布朗運動:
dV
A
V A dt A V A dz
解答
2. KMV模型中的違約間距:
DD=($12,511-$10,000)/(9.6%x$12,511) =2.8
所以公司資產價值目前距離其違約點有2.8個標準差。
解答
3. 預期違約機率:
• 我們並沒有KMV公司的違約距資料庫,因此無法直接判 斷公司的違約機率。
• 僅能利用莫頓模型的常態分配性質,在風險中立的假設下 來估計公司的預期違約機率。 • 假設資產價值的分配是一常態分配,則以違約間距為2.8的 情況計算,則期望違約頻率(EDF)可查表求出約為
判斷公司違約機率 (EDF)
• 實務上使用KMV模型時,我們並沒有KMV公司
的違約距資料庫,因此無法採取上述方法判斷公 司的違約機率。
• 一般常用的方法則是在風險中立的假設下,利用
莫頓模型的性質來估計公司的預期違約機率:
PT=EDF=N(-d2)=N(-DD)
(9.8)
計算實例 9.2
• 假設有一上市公司千千股份有限公司,其股價的 市場總值為3,000萬元,而股價市場價值的波動 值為每年40%,一年內即將到期的短期負債總值 4,000萬元,長期負債總值12,000萬元,而無風險 利率5%。 • 試根據KMV模型計算公司一年的預期違約機率 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ito’s lemma and Black-Scholes modelZhiming Liao (chiminhlyao@)Ito’s lemma and Black-Scholes model are indispensable tools in financial applications. Ito lemma, named after its discoverer, Kishi Ito, is of great importance in finding the differential of a function of a particular type of stochastic process. When Fischer Black and Myron Scholes published their work-the pricing of options and corporate liabilities in the Journal of Political Economy in the 1970s, their prominent work immediately drew the interest of the Chicago option market, in 1997, they were awarded Nobel Prize in economics for this significant contribution to financial theory. Since then, Black-Scholes model has been playing a vital role in calculating options. This short paper will address Ito’s lemma and Black-Scholes model and their proofs.Ito’s lemmaSuppose y(t) follows a diffusive stochastic process, that is to saydy t=u y dt+σy dz tHere, u y is the instantaneous expected rate of change in the y and σy is its instantaneous standard deviation.And f y,t is a function differentiable twice in the first argument and once in the second. Then f also follows a diffusive processd f y,t=ðf+ðfu y+1ð2f2σy2dt+ðfσy z tProof (informal derivation using Taylor series expansion formula) Taylor series expansion in two variablesf(x.y)=f(x0.y0)+x−x01!f x x0.y0+y−y01!f y x0.y0+x−x022!f xx x0.y0+x−x0y−y0f xy x0.y0+y−y02f yy x0.y0+x−x03f xxx x0.y0+x−x022!y−y01!f xxy x0.y0+x−x01!y−y022!f xyy x0.y0+y−y03f yyy x0.y0+⋯Assume that we are initially at some α,t and that a short interval of time ∆t passes. During this ephemeral period there will be some associated∆z. Using the Taylor expansion above,f α+u y∆t+σy∆z,t+∆t=fα,t+ u y∆t+σy∆z f y+∆tf t+1u y∆t+σy∆z 2f yy+ u y∆t2+σy∆z∆t f yt+1∆t2f tt+t ird and ig er order termsTherefore,∆f=f α+u y∆t+σy∆z,t+∆t −fα,t= u y∆t+σy∆z f y+∆tf t+12u y∆t+σy∆z 2f yy+ u y∆t2+σy∆z∆t f yt+12∆t2f tt+t ird and ig er order termsSince z is following a standard Brownian motion, ∆z is normally distributed with expected value 0 and variance ∆t. It is easy to check that, E∆z2=∆t.E∆f=1σy2f yy+u y f y+f t∆t+second and ig er order terms in∆tWhen ∆t tends to 0 or small enough, we can ignore higher order terms, so we can get the expected rate of change in f in accord with Ito’s lemma above.Thus,∆f−E∆f=σy∆zf y+second and ig er order terms in∆t and∆zThis e quation is the last part of the Ito’s lemma expression.A formal correct proof can be fo und in Malliaris and Brock’s paper-Stochastic methods in economics and finance.ExampleIn a world with a constant nominal interest rate r, a bond portfolio with value of $1 at time 0 and continuously reinvested coupon payments will be worth B(t)=e rt at time t. Suppose that the price level evolves randomly according to the stochastic processdP=μPdt+σPdzWhere μ is the expected inflation rate and σ is its proportional standard deviation per unit time. The real value of the bond portfolio at time t will beb t=B tWhat is the expected real return on the bonds?Example 2 in the textbook- copula methods in finance-page 9Notice that, givends t=μS t dt+σS t dz tWe can get f S,t=ln S t to obtaind ln S t= μ−12σ2dt+σdz tIf μ and σ are constant parameters, it is easy to obtainln Sτ∼N ln S t+ μ−1σ2τ−t,σ2τ−tWhere N m.s is the normal distribution with mean m and variance s. Then, Pr Sτℑt is described by the lognormal distribution.Black- Scholes modelIn the simplest form, this model involves two underlying assets, a riskless asset like cash bond and a risky asset such as stock. The riskless asset appreciates at the short rate, or riskless rate of return r t, which is assumed to be nonrandom, although possibly time-varying. Thus, the price of the riskless at time t is assumed to satisfy the differential equationdB t=r t B t Whose solution for the value B 0=1is B t =exp r s ds t0 ProofdB t dt =r t B t ⇔dB t B t =r t dt ⇒dln B tdt =r t ⇔ln B t = r s tds +c⟹B t =exp r s t0 ds (As B 0=1, c=0)The share price S t of the risky asset stock at time t is assumed to follow a stochastic differential equation of the formdS t =μt S t dt +σS t dW t ,Where W t is a standard Brownian motion, μt is a nonrandom function of t, and σ>0 is a constant called the volatility of the stock. Lemma 1If the drift coefficient function μt is bounded, then the SDE(stochastic differential equation) has unique solution with initial condition S 0; and it is given byS t =S 0exp σW t −σ2t2+ μs ds tMoreover, under the risk-neutral measure, it must be the case thatr t =μt .Proof.dW t =0+1dW t (u w =0,σw =1) Consider function S W t ,t =S 0exp σW t −σ2t 2+ μsds t0 Applying Ito’s Lemma,S W =S t σ S WW =S t σ2S t =S t μt −σ22Then,d S W t ,t = ðS ðt +ðS ðW u w +12ð2S ðW 2σw 2 dt +ðS ðW σWdW t = S t μt −σ22 +12S t σ2 dt +S t σdW t =μt S t dt +σS t dW tSo dS t =μt S t dt +σS t dW t , thus proved the first argument of this lemma.Under risk-neutral assumption, the discounted share price of stock must be a martingale. The discount factor is B t , so the discounted share price of stock isS t ∗=S t t =S 0exp σW t −σ2t2+ μs ds t 0 exp r sds t 0=S 0exp σW t −σ2t + μS −r s ds t 0 Applying Ito’s lemma once more, we can havedS t ∗=σS t ∗dW t +S t ∗ μS −r s dtIn order that S t∗ be a martingale, the dt term must be 0; this implies that r t=μt.Lemma 2Under the risk-neutral measure, the ln of the discounted stock price at time t is normally distributedwith mean lnS0−σ2t2 and variance σ2t.Proof,Consider function f S t∗,t=lnS t∗,From the proof of Lemma 1, we can saydS t∗=σS t∗dW t+S t∗μS−r s dt=σS t∗dW t (Under risk-neutral assumption,μS−r s=0) That is dS t∗=σS t∗dW tApplying Ito’s lemma, dlnS t∗=−σ22dt+σdW tAnalogous with example 2 in Ito’s lemma,E(lnS t∗)=E lnS0−σ22t+σdW t=lnS0−σ22tVar(lnS t∗)=Var lnS0−σ22t+σdW t=VarσdW t=σ2Var dW t=σ2tThe Black-Scholes formula for the price of a European Call optionEuropean Call on the asset Stock with strike K and expiration date T is a contract that allows the owner to purchase one share of stock at price K at time T. Thus, the value of the Call at time T is S T−K+. According to the fundamental theorem of arbitrage pricing, the price of the asset Call at time t=0 must be the discounted expectation, under the risk-neutral measure, of the value at time t=T, which, byLemma 1, isC S0,0;K,T =E S T∗−KB T+Where S T∗ has the distribution specified in Lemma 2. A routine calculation, using integration by parts, shows that C x,0;K,T may be rewritten asC x,0;K,T=xΦz−KB TΦ z−σTWhere z=ln xB TK+σ22TσTand Φis the cumulative normal distribution function.ProofAs proved before,S t∗=S tB t=S0exp σW t−σ2t2+μS−r s dstUnder the risk-neutral measure, we haveS T∗=S0exp σW T−σ2T 2Where W T follows standard Brownian motion, W T~N0,T Let W T=g T, so g~N0,1ThereforeS T∗=S0exp σg T−σ2T2g~N0,1C X,0;K,T=E S T∗−KT+S T∗−KT≥0 ⟺xexp σg T−σ2T≥KT⟹σg T−σ2T≥lnKT⟺g≥σ2T2−lnxB TKσTDenote z=ln xB TK+σ22TσT, then S T∗−KB T≥0 ⟺g≥σT−ZC X,0;K,T=E S T∗−KB T+=E xexp σg T−σ2T2−KB T+= xexp σy T−σ2T2−KB Te−y222π∞σT−Z= xexp σy T−σ2T2e−y222π∞σT−Z −KBe−y222π∞σT−Z=x exp σy T−σ2T2e−y222π−∞σT−Z KB Te−y222π∞σT−Z=x exp −σy T−σ2T2e−y222π−z−σT −∞KB T−y222πz−σT−∞=x exp −σy T−σ2T e−y222π−KTΦ z−σTz−σT −∞While x exp −σy T−σ2T2−y222πz−σT −∞=x2π −σ s−σT T−σ2T2− s−σT22d s−σTz(Substitute y=s−σT)=x12π−s22ds z−∞=xΦz。

相关文档
最新文档