高中物理动量、冲量、动量定理人教版必修加选修知识精讲

合集下载

高三物理 第五章 动量 第一单元 动量、冲量 动量定理 知识精讲 人教版

高三物理 第五章 动量 第一单元  动量、冲量 动量定理 知识精讲 人教版

高三物理 第五章 动量 第一单元 动量、冲量 动量定理 知识精讲 人教版一. 本周教学内容:第五章动量第一单元 动量、冲量动量定理二. 知识要点:1. 考点目标知识点要求程度动量、冲量、动量定理II 动量守恒定律II 碰撞II 航天技术的发展和宇宙航行 I动量定理和动量守恒定律的应用只限于一维的情况概述:本章内容包括动量和冲量两个根本概念与动量定理和动量守恒定律两条根本规律。

冲量是力对时间的累积,是过程量;动量是物体机械运动量的量度,是状态量。

动量定理明确了力对时间的累积效应使物体的动量发生改变。

物体在相互作用时物体间有动量的传递,但在系统外力的冲量为零时,物体系统的总动量将不改变,即动量守恒。

动量守恒定律比牛顿运动定律的适用范围更广泛,是自然界普遍适用的根本规律之一。

由于应用动量守恒定律解决的问题过程较复杂,又常常跟能量守恒综合考查,使得应用动量守恒定律求解的题目难度较大,加之动量定理、动量守恒定律都是矢量方程,这也给应用这些规律解决问题增加了难度。

所以,本章也是高中物理复习的难点之一。

本章知识可分两个单元组织复习:〔1〕动量和冲量,动量定理〔2〕动量守恒定律三. 知识点:1. 动量〔1〕定义:运动物体的叫做动量,动量的单位:。

〔2〕物体的动量表征物体的运动状态,其中的速度为瞬时速度,通常以地面为参考系。

〔3〕动量是量,其方向与的方向一样。

两个物体的动量一样必须是大小相等,方向一样。

〔4〕注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量,动量是矢量,动能是标量,动量和动能的关系是:p 2=2mE k 。

2. 动量的变化量〔1〕ΔP =0P P t -〔2〕动量的变化量是矢量,共方向与速度变化的方向一样,与合外力冲量的方向一样,跟动量的方向无关。

〔3〕求动量变化量的方法:①ΔP =0P P t -=mv t -mv 0;②Ft P =∆3. 冲量〔1〕定义:,叫做该力的冲量,I=,冲量的单位:。

高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律

高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律

高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。

2、冲量也是矢量,它是力在时间上的积累。

冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。

在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。

在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。

动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。

4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。

外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。

(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。

d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。

(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。

b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。

(5)动量守恒定律的应用步骤。

第一,明确研究对象。

第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。

高二物理第二册(必修加选修)第八章第1-2节冲量和动量;动量定理 人教版

高二物理第二册(必修加选修)第八章第1-2节冲量和动量;动量定理 人教版

高二物理第二册〔必修加选修〕第八章第1-2节冲量和动量;动量定理 人教版【本讲教育信息】一. 教学内容:第八章 动量第一节 冲量和动量第二节 动量定理二. 知识要点理解动量概念与其物理意义,理解冲量概念与其物理意义,理解动量定理意义会用动量定理求平均冲力。

三. 重点、难点解析〔一〕冲量1. 定义:力和力的作用时间的乘积叫冲量。

定义式Ft I =2. 冲量是矢量,方向由力的方向决定,假设力是恒力如此冲量方向与力的方向一致,假设力不是恒力如此由平均力确定冲量方向。

3. 冲量的单位牛·秒 记作s N ⋅4. 冲量的物理意义:冲量是力F 在时间t 内的积累效果。

不是瞬时效果。

如汽车启动时,为了达到一样的速度,牵引力要作用一段时间。

而牵引力大小不同,作用时间也不同。

牵引力大,加速时间短,牵引力小,加速时间就要长。

冲量就是描述力在一段时间内总的“作用〞多大和方向如何。

5. 力和冲量的区别,力F 和冲量Ft 都是描述力的作用效果的物理量都是矢量。

力是描述瞬时作用大小,力大如此物体运动状态改变得快。

而冲量是力在一段时间内总的效果,不只与力的大小有关还与作用时间有关。

较大的力作用较短的时间,与较小的力作用较长的时间起的作用是一样的,使物体运动状态改变多少是一样的。

冲量是过程量。

6. 冲量的计算 Ft I =只适合于恒力计算冲量其中F 是几个力的合力,即有几个力同时作用。

++==t F t F t F I 21合假设几个力作用时间不等n n t F t F t F I +++= 2211〔二〕动量1. 定义:物体的质量与速度的乘积叫动量定义式mv P =式中v 取地球作参考系2. 动量是矢量,方向与瞬时速度v 方向一样。

3. 动量单位:千克·米/秒记作s m kg /⋅4. 物理意义:速度是状态量,速度与质量乘积也是状态量。

一样动量的物体不管速度大小,质量大小,抑制一样阻力运动的时间一样,即它们具有的做机械运动的本领是一样的。

新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总

新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总

第一章 动量守恒定律1、2 动量 动量定理 .................................................................................................. - 1 - 3 动量守恒定律............................................................................................................ - 9 - 4 实验:验证动量守恒定律 ...................................................................................... - 17 - 5 弹性碰撞和非弹性碰撞 .......................................................................................... - 24 -1、2 动量 动量定理一、动量1.动量(1)定义:物理学中把物体的质量m 跟运动速度v 的乘积m v 叫作动量.(2)定义式:p =m v .(3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(4)矢量:由于速度是矢量,所以动量是矢量,它的方向与速度的方向相同.2.用动量概念表示牛顿第二定律(1)公式表示:F =Δp Δt .(2)意义:物体所受到的合外力等于它动量的变化率.二、动量定理 1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:I =F Δt =F (t ′-t ).(3)矢量:冲量是矢量,它的方向跟力的方向相同.(4)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大. 2.动量定理(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量.(2)公式表示⎩⎨⎧I =p ′-p F (t ′-t )=m v ′-m v (3)意义:冲量是物体动量变化的量度,合外力的冲量等于物体动量的变化量.考点一 动量1.(1)定义:物体的质量m和其运动速度v的乘积称为物体的动量,记作p=m v.①动量是动力学中反映物体运动状态的物理量,是状态量.②在谈及动量时,必须明确是哪个物体在哪个时刻或哪个状态所具有的动量.(2)单位:动量的单位由质量和速度的单位共同决定.在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(3)矢量性:动量是矢量,它的方向与物体的速度方向相同,遵循矢量运算法则.2.动量与动能的区别与联系3.动量的变化量(1)p′,初动量为p,则Δp=p′-p=m v′-m v=mΔv.(2)动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.(3)动量变化量Δp的计算方法①若物体做直线运动,只需选定正方向,与正方向相同的动量取正,反之取负.Δp=p′-p,若Δp是正值,就说明Δp的方向与所选正方向相同;若Δp是负值,则说明Δp的方向与所选正方向相反.②若初、末状态动量不在一条直线上,可按平行四边形定则求得Δp的大小和方向,这时Δp、p为邻边,p′为平行四边形的对角线.如图所示.动量为矢量,动量变化遵守矢量运算法则.【例1】质量为m=0.1 kg的橡皮泥,从高h=5 m处自由落下(g取10 m/s2),橡皮泥落到地面上静止,求:(1)橡皮泥从开始下落到与地面接触前这段时间内动量的变化;(2)橡皮泥与地面作用的这段时间内动量的变化;(3)橡皮泥从静止开始下落到停止在地面上这段时间内动量的变化.【审题指导】【解析】取竖直向下的方向为正方向.(1)橡皮泥从静止开始下落时的动量p1=0;下落5 m与地面接触前的瞬时速度v=2gh=10 m/s,方向向下,这时动量p2=m v=0.1×10 kg·m/s=1 kg·m/s,为正.则这段时间内动量的变化Δp=p2-p1=(1-0) kg·m/s=1 kg·m/s,是正值,说明动量变化的方向向下.(2)橡皮泥与地面接触前瞬时动量p1′=1 kg·m/s,方向向下,为正,当与地面作用后静止时的动量p2′=0.则这段时间内动量的变化Δp′=p2′-p1′=(0-1) kg·m/s=-1 kg·m/s,是负值,说明动量变化的方向向上.(3)橡皮泥从静止开始下落时的动量p1=0,落到地面后的动量p2′=0.则这段时间内动量的变化Δp″=p2′-p1=0,即这段时间内橡皮泥的动量变化为零.【答案】(1)大小为1 kg·m/s,方向向下(2)大小为1 kg·m/s,方向向上(3)0考点二冲量1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:通常用符号I表示冲量,即I=FΔt.(3)单位:在国际单位制中,冲量的单位是N·s.动量与冲量的单位关系是:1 N·s=1 kg·m/s.(4)对冲量的理解①时间性:冲量不仅与力有关,还与力的作用时间有关,恒力的冲量等于力与力作用时间的乘积,此公式I=Ft只适用于恒力.向变化的力来说,冲量的方向与相应时间内动量的变化量的方向一致,冲量的运算应遵循平行四边形定则.③绝对性:由于力和时间都跟参考系的选择无关,所以力的冲量也跟参考系的选择无关.④过程性:冲量是描述力F对时间t的累积效果的物理量,是过程量,必须明确是哪个力在哪段时间内对哪个物体的冲量.2.冲量与功的区别(1)冲量是矢量,功是标量.(2)由I=Ft可知,有力作用,这个力一定会有冲量,因为时间t不可能为零.但是由功的定义式W=F·s cosθ可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.(3)冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F-t”图像和“F-s”图像上用面积表示.如图所示.图甲中的曲线是作用在某一物体上的力F随时间t变化的曲线,图中阴影部分的面积就表示力F在时间Δt=t2-t1内的冲量.图乙中阴影部分的面积表示力F做的功.【例2】质量为2 kg的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力和滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图所示.重力加速度g取10 m/s2,则物体在t=0到t=12 s这段时间内合外力的冲量是多少?【审题指导】关键词信息物体与地面间的动摩擦因数为0.2物体受摩擦力物体受到方向不变、大小呈周期性变化的水平拉力F,F随时间t的变化规律如图所示图线的面积等于力F的冲量大小f=μmg=0.2×2×10 N=4 N则摩擦力的冲量为I f=-ft=-4×12 N·s=-48 N·s 力F的冲量等于F-t图线的面积则I F=(F1t1+F2t2)×2=(4×3+8×3)×2 N·s=72 N·s 则合外力的冲量I=I f+I F=(-48+72) N·s=24 N·s. 【答案】24 N·s冲量计算注意问题(1)冲量是矢量,在计算过程中要注意正方向的选取,在同一直线上的矢量合成转化为代数运算,较为简单.(2)不在同一直线上的冲量计算要应用平行四边形定则或三角形定则.(3)要明确F-t图像面积的意义,且要知道t轴以上与以下的面积意义不同,两者表示方向相反.考点三动量定理1.对动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式I=p′-p是个矢量式,式中的“=”表示合外力的冲量与动量的变化量等大、同向,但某时刻的合外力的冲量可以与动量的方向同向,也可以反向,还可以成某一角度.(4)动量定理具有普遍性,其研究对象可以是单个物体,也可以是物体系统,不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.动量定理的应用(1)定性分析有关现象①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.例如:车床冲压工件时,缩短力的作用时间,产生很大的作用力;而在搬运玻璃等易碎物品时,包装箱内放些碎纸、刨花、塑料等,是为了延长作用时间,减小作用力.因为越坚固,发生碰撞时,作用时间将会越短,由I=FΔt可知,碰撞时的相互作用力会很大,损坏会更严重.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.例如:自由下落的物体,下落时间越长,速度变化越大,动量变化越大,反之,动量变化越小.(2)定量计算有关物理量①两种类型a .已知动量或动量的变化量求合外力的冲量,即 p 、p ′或Δp ――→I =ΔpIb .已知合外力的冲量求动量或动量的变化量,即I ――→Δp =p ′-p =IΔp 或p 、p ′应用I =Δp 求平均力,可以先求该力作用下物体的动量变化,Δp 等效代换变力冲量I ,进而求平均力F =Δp Δt .a .选定研究对象,明确运动过程.b .进行受力分析和运动的初、末状态分析.c .选定正方向,根据动量定理列方程求解.【例3】 杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的条石,石裂而人不伤,试分析其中道理.【审题指导】【解析】 设条石的质量为M ,铁锤的质量为m .取铁锤为研究对象,设铁锤打击条石前速度大小为v ,反弹速度大小为v ′,根据动量定理得(F -mg )Δt =m v ′-m (-v ),F =m (v +v ′)Δt+mg .Δt 极短,条石受到的铁锤对它的打击力F ′=F 很大,铁锤可以击断条石.对条石下的人而言,原来受到的压力为Mg ,铁锤打击条石时将对人产生一附加压力,根据牛顿第三定律,条石受到的冲量F ′Δt =F Δt =m (v +v ′)+mg Δt ,条石因此产生的动量变化量Δp =m (v +v ′)+mg Δt ,因人体腹部柔软,缓冲时间t较长,人体受到的附加压力大小为F 1=Δp t =m (v +v ′)t+mg Δt t ,可知附加压力并不大.【答案】 见解析应用动量定理的四点注意事项(1)明确物体受到冲量作用的结果是导致物体动量的变化.冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则.(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小.(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系.(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量.动量定理与牛顿定律的综合应用1.动量定理与牛顿定律(1)力F的大小等于动量对时间的变化率.在质量一定的问题中,反映的是力越大,运动状态改变越快,即产生的加速度越大.(2)动量定理与牛顿第二定律在实质上虽然是一致的,但是牛顿第二定律适用于解决恒力问题,而动量定理不但适用于恒力还适用于变力,所以动量定理在解决变力作用问题上更方便.但是要注意,通过动量定理得到的力,是作用过程的平均作用力.2.综合应用动量定理与牛顿定律解题该类问题除要明确研究对象的初、末状态外,还要对合理选取的研究对象进行受力分析,应用动量定理和牛顿第二定律列式求解.【典例】一枚竖直向上发射的火箭,除燃料外火箭的质量m火箭=6 000 kg,火箭喷气的速度为1 000 m/s,在开始时每秒大约要喷出多少质量的气体才能托起火箭?如果要使火箭开始时有19.6 m/s2向上的加速度,则每秒要喷出多少气体?【解析】火箭向下喷出的气体对火箭有一个向上的反作用力,正是这个力支持着火箭,根据牛顿第三定律,也就知道喷出气体的受力,再根据动量定理就可求得结果.设火箭每秒喷出的气体质量为m,根据动量定理可得Ft=m v2-m v1=m(v2-v1),其中F=m火箭g,v2-v1=1 000 m/s,得m=Ftv2-v1=m火箭gtv2-v1=58.8 kg.当火箭以19.6 m/s2的加速度向上运动时,由牛顿第二定律得F′-m火箭g=m 火箭a,设此时每秒喷出的气体质量为m′,根据动量定理有F′t=m′v2-m′v1,得m′=F′tv2-v1=m火箭(g+a)tv2-v1=176.4 kg.【答案】58.8 kg176.4 kg应用动量定理解题时所选研究对象一般是动量发生变化的物体,此题中是“喷出的气体”,再结合牛顿运动定律求解.3动量守恒定律一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统,简称系统.(2)内力:系统中物体间的作用力称为内力.(3)外力:系统以外的物体施加给系统内物体的力称为外力.二、动量守恒定律的普适性1.动量守恒定律与牛顿运动定律用牛顿运动定律解决问题要涉及整个过程中的力.动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关.这样,问题往往能大大简化.动量守恒定律并不是由牛顿运动定律推导出来的,它是自然界普遍适用的自然规律.而牛顿运动定律适用范围有局限性.(1)相互作用的物体无论是低速还是高速运动,无论是宏观物体还是微观粒子,动量守恒定律均适用.(2)高速(接近光速)、微观(小到分子、原子的尺度)领域,牛顿运动定律不再适用,而动量守恒定律仍然正确.考点一应用动量守恒定律解决问题的基本思路和一般方法1.分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.2.要对各阶段所选系统内的物体进行受力分析弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态即系统内各个物体的初动量和末动量的值或表达式.【注意】在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.4.确定好正方向建立动量守恒方程求解【例1】(多选)如图所示,A、B两物体质量之比m A m B=32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒在多个物体组成的系统中,动量是否守恒与研究对象的选择有关.系统可按解决问题的需要灵活选取.【审题指导】要判断A、B组成的系统是否动量守恒,要先分析A、B组成的系统受到的合外力与A、B之间相互作用的内力;看合外力是否为零,或者内力是否远远大于合外力.【解析】如果物体A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A m B=32,所以F A F B=32,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,选项A错;对A、B、C组成的系统,A、B与C 间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,选项B、D均正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,选项C正确.【答案】BCD考点二多个物体组成的系统动量守恒问题多个物体相互作用时,物理过程往往比较复杂,分析此类问题时应注意:(1)正确进行研究对象的选取,有时需应用整体动量守恒,有时只需应用部分物体动量守恒.研究对象的选取,一是取决于系统是否满足动量守恒的条件,二是根据所研究问题的需要.(2)正确进行过程的选取和分析,通常对全程进行分段分析,并找出联系各阶段的状态量.列式时有时需分过程多次应用动量守恒,有时只需针对初、末状态建立动量守恒的关系式.【例3】质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图所示.一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静止在车上,求平板车最后的速度是多大.【审题指导】1.子弹与物体A能否组成系统?水平方向动量是否守恒?2.子弹射穿物体A后,物体A与小车是否可以组成系统?水平方向动量是否守恒?3.子弹、物体A和小车能否组成系统?该系统在水平方向动量是否守恒?【解析】解法一:子弹射穿A的过程极短,因此在射穿过程中车对A的摩擦力及子弹的重力作用可忽略,即认为子弹和A组成的系统水平方向动量守恒;同时,由于作用时间极短,可认为A的位置没有发生变化.设子弹击穿A后的速度为v′,由动量守恒定律m B v0=m B v′+m A v A,得v A=m B(v0-v′)m A=0.02×(600-100)2m/s=5 m/s.A获得速度v A后相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有m A v A=(m A+M)v,故v=m A v Am A+M=2×52+2m/s=2.5 m/s.解法二:因地面光滑,子弹、物体A、车三者组成的系统在水平方向不受外力,水平方向动量守恒,最后A与车速度相同.对于三者组成的系统,由动量守恒定律得m B v0=m B v′+(m A+M)v,得v=m B(v0-v′)m A+M=0.02×(600-100)2+2m/s=2.5 m/s.【答案】 2.5 m/s考点三碰撞、爆炸问题的处理方法碰撞和爆炸现象很多,如交通事故中人被车撞了、两车相撞、球与球之间相撞等,那么它们有什么特点呢?我们可以从以下几个方面分析:(1)过程的特点①相互作用时间很短.②在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外力,因此作用过程的动量可看成守恒.(2)位移的特点碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、打击的瞬间可忽略物体的位移.可以认为物体在碰撞、爆炸、打击前后在同一位置.(3)能量的特点爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可能不变.【例4】以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块弹片.其中质量较大的一块弹片沿着原来的水平方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向;(2)爆炸过程中有多少化学能转化为弹片的动能.【审题指导】1.手榴弹在空中受到的合力是否为零?2.手榴弹在爆炸过程中,各弹片组成的系统动量是否守恒,为什么?3.在爆炸时,化学能的减少量与弹片动能的增加量有什么关系?【解析】(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v=v0cos60°=12v0,设v的方向为正方向,如图所示,由动量守恒定律得3m v=2m v1+m v2,其中爆炸后大块弹片速度v1=2v0,小块弹片的速度v2为待求量,解得v2=-2.5v0,“-”号表示v2的方向与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量.ΔE k=12×2m v21+12m v22-12(3m)v2=6.75m v20.【答案】(1)大小为2.5v0,方向与原来的速度方向相反(2)6.75m v20考点四动量守恒定律和机械能守恒定律的比较和综合应用动量守恒定律和机械能守恒定律的比较定律名称项目动量守恒定律机械能守恒定律相同点研究对象研究对象都是相互作用的物体组成的系统研究过程研究的都是某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1+p2=p1′+p2′E k1+E p1=E k2+E p2表达式的矢量式标量式矢标性某一方向上应用情况可在某一方向独立使用不能在某一方向独立使用运算法则用矢量法则进行合成或分解代数运算光滑圆槽顶端由静止滑下.在槽被固定和可沿着光滑平面自由滑动两种情况下,木块从槽口滑出时的速度大小之比为多少?【审题指导】槽被固定时,木块的机械能守恒;槽不被固定时,木块和槽组成的系统的机械能守恒,且水平方向上动量守恒.【解析】圆槽固定时,木块下滑过程中只有重力做功,木块的机械能守恒.木块在最高处的势能全部转化为滑出槽口时的动能.设木块滑出槽口时的速度为v1,由mgR=12m v21①木块滑出槽口时的速度:v1=2gR②圆槽可动时,在木块开始下滑到脱离槽口的过程中,木块和槽所组成的系统水平方向不受外力,水平方向动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则:m v2-Mu=0③又木块下滑时,只有重力做功,机械能守恒,木块在最高处的重力势能转化为木块滑出槽口时的动能和圆槽的动能,即mgR=12m v22+12Mu2④联立③④两式解得木块滑出槽口的速度:v2=2MgRm+M⑤两种情况下木块滑出槽口的速度之比:v1 v2=2gR2MgR/(m+M)=m+MM.【答案】m+MM多运动过程中的动量守恒包含两个及两个以上物理过程的动量守恒问题,应根据具体情况来划分过程,在每个过程中合理选取研究对象,要注意两个过程之间的衔接条件,如问题不涉及或不需要知道两个过程之间的中间状态,应优先考虑取“大过程”求解.(1)对于由多个物体组成的系统,在不同的过程中往往需要选取不同的物体组成的不同系统.(2)要善于寻找物理过程之间的相互联系,即衔接条件.【典例】如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C 向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v ABA与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立以上各式,代入数据得v A=2 m/s.【答案】 2 m/s动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑.类题试解如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为m′,绳长为l,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.【解析】 在子弹射入木块的这一瞬间,系统动量守恒.取向左为正方向,由动量守恒定律有0+m v =(m +m ′)v ′,解得v ′=m v m +m ′. 随着整体以速度v ′向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m +m ′)g 和绳子的拉力F 作用,由牛顿第二定律有(取向上为正方向)F -(m +m ′)g =(m +m ′)v ′2l .将v ′代入即得F =(m +m ′)g +m 2v 2(m +m ′)l. 【答案】 (m +m ′)g +m 2v 2(m +m ′)l4 实验:验证动量守恒定律一、实验思路两个物体在发生碰撞时,作用时间很短,相互作用力很大,如果把这两个物体看作一个系统,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是有些力的矢量和为0,有些力与系统内两物体的相互作用力相比很小.因此,在可以忽略这些外力的情况下,碰撞满足动量守恒定律的条件.我们研究最简单的情况:两物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动.应该尽量创设实验条件,使系统所受外力的矢量和近似为0.二、物理量的测量确定研究对象后,还需要明确所需测量的物理量和实验器材.根据动量的定义,很自然地想到,需要测量物体的质量以及两个物体发生碰撞前后各自的速度.物体的质量可用天平直接测量.速度的测量可以有不同的方式,根据所选择的具体实验方案来确定.三、数据分析根据选定的实验方案设计实验数据记录表格.选取质量不同的两个物体进行碰撞,测出物体的质量(m1,m2)和碰撞前后的速度(v1,v′1,v2,v′2),分别计算出两物体碰撞前后的总动量,并检验碰撞前后总动量的关系是否满足动量守恒定律,即m1v′1+m2v′2=m1v1+m2v2四、参考案例参考案例1:研究气垫导轨上滑块碰撞时的动量守恒(1)实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.(2)实验步骤:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前后的速度(例如:①改变滑块的质量;②改变滑块初速度的大小和方向),验证一维碰撞中的不变量.(3)实验方法①质量的测量:用天平测出两滑块的质量.②速度的测量:挡光板的宽度设为Δx,滑块通过光电门所用时间为Δt,则滑块相当于在Δx的位移上运动了时间Δt,所以滑块做匀速直线运动的速度v=Δx Δt.(4)数据处理将实验中测得的物理量填入相应的表格中,注意规定正方向,物体运动的速度方向与正方向相反时为负值.通过研究以上实验数据,找到碰撞前、后的“不变量”.考点一利用气垫导轨验证动量守恒定律[实验器材]气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.[实验步骤]本方案优点:气垫导轨阻力很小,光电门计时准确,能较准确地验证动量守恒定律.。

高中物理动量定理知识点精讲

高中物理动量定理知识点精讲

高中物理动量定理知识点精讲在高中物理的学习中,动量定理是一个非常重要的知识点,它对于理解物体的运动和相互作用有着关键的作用。

一、动量定理的基本概念动量,用符号 p 表示,定义为物体的质量 m 与速度 v 的乘积,即 p = mv 。

动量是一个矢量,其方向与速度的方向相同。

而动量定理则表述为:合外力的冲量等于物体动量的增量。

用公式表示就是:I =Δp ,其中 I 表示合外力的冲量,Δp 表示动量的增量。

冲量的定义是力 F 与作用时间 t 的乘积,即 I = Ft 。

冲量也是矢量,其方向与力的方向相同。

二、动量定理的推导我们从牛顿第二定律 F = ma 开始推导。

加速度 a 可以表示为速度的变化量Δv 与时间 t 的比值,即 a =Δv / t 。

将 a =Δv / t 代入 F = ma 中,得到 F =m(Δv / t) ,整理可得 Ft =mΔv 。

因为动量 p = mv ,所以动量的变化量Δp =mΔv ,也就得到了 Ft=Δp ,这就是动量定理。

三、动量定理的理解1、合外力的冲量决定了动量的变化冲量是力在时间上的积累效应。

即使力的大小在变化,但只要作用时间足够长,冲量就可能很大,从而引起动量的显著变化。

2、动量定理的矢量性冲量和动量都是矢量,在应用动量定理时,要注意它们的方向。

如果力的方向在变化,我们需要分别计算各个方向上的冲量和动量变化。

3、适用范围动量定理适用于单个物体,也适用于多个物体组成的系统。

对于系统,如果系统所受的合外力为零,那么系统的总动量保持不变,这就是动量守恒定律。

四、动量定理的应用1、解释生活中的现象比如,为什么跳远运动员在起跳前要助跑?这是因为助跑可以增加运动员的速度,从而增大起跳时的动量,使运动员跳得更远。

又比如,为什么运输易碎物品时要用泡沫等柔软材料包装?这是因为在碰撞时,柔软材料可以延长作用时间,减小冲击力,从而保护物品。

2、解决物理问题在解决碰撞、打击等问题时,动量定理常常能发挥很大的作用。

高二物理人教版选修3-5动量和动量定理

高二物理人教版选修3-5动量和动量定理

动量和动量定理重/难点重点:动量、冲量的概念,动量定理的应用。

难点:动量、冲量的矢量性。

重/难点分析重点分析:物体的质量和速度的乘积叫做动量。

力和力的作用时间的乘积叫做冲量。

动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

难点分析:动量是矢量,它的方向和速度的方向相同。

冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。

对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

突破策略一、动量概念及其理解(1)定义:物体的质量及其运动速度的乘积称为该物体的动量p=mv(2)特征:①动量是状态量,它与某一时刻相关;②动量是矢量,其方向与物体运动速度的方向相同。

(3)意义:速度从运动学角度量化了机械运动的状态,动量则从动力学角度量化了机械运动的状态。

二、冲量概念及其理解(1)定义:某个力与其作用时间的乘积称为该力的冲量I=F△t(2)特征:①冲量是过程量,它与某一段时间相关;②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。

(3)意义:冲量是力对时间的累积效应。

对于质量确定的物体来说,合外力决定着其速度将变多快;合外力的冲量将决定着其速度将变多少。

对于质量不确定的物体来说,合外力决定着其动量将变多快;合外力的冲量将决定着其动量将变多少。

三、关于冲量的计算(1)恒力的冲量计算恒力的冲量可直接根据定义式来计算,即用恒力F乘以其作用时间△t而得。

(2)方向恒定的变力的冲量计算。

如力F的方向恒定,而大小随时间变化的情况1中阴(4)合力的冲量计算几个力的合力的冲量计算,既可以先算出各个分力的冲量后再求矢量和,又可以先算各个分力的合力再算合力的冲量。

选修3-5 1冲量 动量 动量定理

动量守恒定律一、冲量和动量(一)知识要点1.动量:按定义,物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。

⑵动量是矢量,它的方向和速度的方向相同。

2.冲量:按定义,力和力的作用时间的乘积叫做冲量:I =Ft⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

⑶高中阶段只要求会用I=Ft 计算恒力的冲量。

对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

⑷要注意的是:冲量和功不同。

恒力在一段时间内可能不作功,但一定有冲量。

(二)例题分析例1:质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?例2:一个质量是0.2kg 的钢球,以2m/s 的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s 的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?例3:一个质量是0.2kg 的钢球,以2m/s 的速度斜射到坚硬的大理石板上,入射的角度是45º,碰撞后被斜着弹出,弹出的角度也是45º,速度大小仍为2m/s ,用作图法求出钢球动量变化大小和方向?例4(12分)如图所示,在光滑、固定的水平杆上套着一个光滑的滑环,滑环下通过一根不可伸长的轻绳悬吊一重物M ,轻绳长为L ,将滑环固定在水平杆上,给M 一个水平冲量作用,使M 摆动,且恰好刚碰到水平杆。

问(1)M 在摆动过程中,滑环对水平杆的压力的最大值是多少?(2)若滑环不固定,仍给M 以同样大小的冲量作用,则M 摆起的最大高度为多少?二、动量定理(一)知识要点1.动量定理:物体所受合外力的冲量等于物体的动量变化。

既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

高二物理冲量与动量知识点总结

高二物理冲量与动量知识点总结
高二物理冲量与动量知识点总结
冲量与动量反应的是物体的受力与动量的变化,以下是冲量与动量知识点,请大家掌握。

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
2.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失。

3.冲量:I=Ft {I:冲量(Ns),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=p或Ft=mvtmvo {p:动量变化p=mvtmvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p也可以是
m1v1+m2v2=m1v1+m2v2
6.弹性碰撞:EK=0 {即系统的动量和动能均守恒}
7.非弹性碰撞0EKEKm {EK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞EK=EKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 。

冲量与动量知识点的内容就为大家分享到这里,查字典物理。

高二物理(人教版)精品讲义—动量

高二物理精品讲义—动量课程标准课标解读1.通过阅读、观察,了解生产、生活中的各种碰撞现象。

2.通过实验探究,经历猜想和寻找碰撞中的“不变量”的过程。

3.通过日常生活现象和实例分析,掌握求解动量及动量变化量的常用方法。

1.明确探究物体碰撞中的不变量的基本思路。

2.探究一维碰撞中的不变量.3.掌握同一条直线上运动的两个物体碰撞前后速度的测量方法知道动量和动量变化量均为矢量,会计算一维情况下的动量变化量。

4.知道冲量是矢量,结合生活实际会冲量的计算。

知识点01追寻不变量在一维碰撞的情况下,设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1′、v2′,如果速度与我们规定的正方向一致,取正值,相反取负值,依次研究以下关系是否成立:①m1v1+m2v2=m1v1′+m2v2′;②m1v21+m2v22=m1v1′2+m2v2′2;③v1m1+v2m2=v1′m1+v2′m2.探究以上各关系式是否成立,关键是准确测量和计算碰撞前与碰撞后的速度v1、v2、v1′、v2′. 1.质量的测量:用天平测量2.速度的测量:有下列三种方案.方案1:利用气垫导轨结合光电门实验装置如图所示:(1)速度的测量及计算:设滑块上挡光片的宽度为Δx,挡光片经过光电门的时间为Δt,则v=ΔxΔt.(2)碰撞情景的实现①用细线将弹簧片压缩,放置于两个滑块之间,并使它们静止,然后烧断细线,弹簧片弹开,两个滑块随即向相反方向运动(图甲).②在两滑块相碰的端面上装上弹性碰撞架(图乙),可以得到能量损失很小的碰撞.③在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针插入橡皮泥中,把两个滑块连成一体运动(图丙),这样可以得到能量损失很大的碰撞.(3)器材:气垫导轨、光电计时器、天平、滑块两个(带挡光片)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.方案2:单摆结合机械能守恒定律实验装置如图所示:(1)速度的测量及计算:可以测量小球被拉起的角度,根据机械能守恒定律算出小球碰撞前对应的速度;测量碰撞后两小球分别摆起的对应角度,根据机械能守恒定律算出碰撞后对应的两小球的速度.(2)碰撞情景的实现:用贴胶布的方法增大两小球碰撞时的能量损失.(3)器材:带细线的小球(两套)、铁架台、天平、量角器、坐标纸、胶布等.方案3:纸带结合打点计时器实验装置如图所示(在光滑长木板上)(1)速度的测量及计算:用刻度尺测出纸带上两计数点间的距离Δx ,Δt 为对应Δx 所用的时间,则小车的速度v =Δx Δt.(2)碰撞情景的实现:两小车的碰撞端分别装上撞针和橡皮泥.碰撞时,撞针插入橡皮泥中,两小车连在一起运动.(3)器材:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥等.【即学即练1】利用气垫导轨做“探究碰撞中的不变量”的实验时,不需要测量的物理量是()A .滑块的质量B .挡光时间C .挡光片的宽度D .滑块移动的距离【答案】D【解析】根据实验原理可知,滑块的质量、挡光时间、挡光片的宽度都是需要测量的物理量,其中滑块的质量用天平测量,挡光时间用光电计时器测量,挡光片的宽度可事先用刻度尺测量;只有滑块移动的距离不需要测量,D 正确.【即学即练2】用气垫导轨进行实验时,经常需要使导轨保持水平,检验气垫导轨是否水平的方法之一是,轻推一下滑块,使其先后滑过光电门1和光电门2,如图所示,其上的遮光条将光遮住,电子计时器可自动记录滑块先后经过光电门1、2时的遮光时间Δt1和Δt2,比较Δt1和Δt2即可判断导轨是否水平,为使这种检验更精准,正确的措施是()A.换用质量更大的滑块B.换用宽度Δx更小的遮光条C.提高测量遮光条宽度Δx的精确度D.尽可能增大光电门1、2之间的距离L【答案】D【解析】本题中如果导轨水平,则滑块应做匀速运动,因此要想更准确的进行检验可以增大光电门1、2之间的距离,从而更准确的判断速度是否发生变化;而换用质量更大的滑块、宽度更小的遮光条以及提高测量遮光条宽度Δx的精确度对速度变化均没有影响,D正确.知识点02动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=mv;单位:千克·米/秒,符号:kg·m/s.2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).【即学即练3】(多选)竖直向上抛出一篮球,球又落回原处,已知空气阻力的大小与篮球速率的二次方成正比,则下列说法正确的是()A.上升过程中克服重力做的功大于下降过程中重力做的功B.上升过程中动能的改变量大于下降过程中动能的改变量C.上升过程中合力的冲量大于下降过程中合力的冲量D.上升过程中动量的改变量小于下降过程中动量的改变量【答案】BC【解析】重力做功的大小只与物体的重力和物体的初末位置有关,与物体的路径等无关,所以在上升和下降的过程中,重力做功的大小是相等的,即克服重力做功相等,A错误;根据动能定理知上升过程中合外力做的功大于下降过程合外力做的功,故上升过程动能的改变量大于下降过程中动能的改变量,B正确;由于克服空气阻力做功,故落回原处的速度小于初速度,并=mΔv知,上升过程中动量的改变量大于下降过程中动量的改变量,且上升过程合力的由F合t冲量大于下降过程合力的冲量,C正确,D错误.能力拓展训练考法01追寻不变量一、实验步骤不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下:1.用天平测量相关碰撞物体的质量m1、m2.2.安装实验装置.3.使物体发生一维碰撞.4.测量或读出碰撞前后相关的物理量,计算对应的速度.5.改变碰撞条件,重复步骤3、4.6.进行数据处理,通过分析比较,找出碰撞中的“不变量”.7.整理器材,结束实验.二、数据处理:将实验中测得的物理量填入下表,填表时需注意物体碰撞后运动的速度与原来的方向相反的情况。

人教版高中物理选修3-5讲义03知识讲解 动量定理及其应用(基础)

动量定理及其应用 编稿: 审稿:【学习目标】1.理解动量的概念,知道动量的定义,知道动量是矢量; 2.理解冲量的概念,知道冲量的定义,知道冲量是矢量;3.知道动量变化量也是矢量,理解动量定理的确切含义和表达式,知道动量定理适用于变力的计算;4.)会用动量定理解释现象和处理有关问题.【要点梳理】要点一、动量、动量定理 1.动量及动量变化(1)动量的定义:物体的质量和运动速度的乘积叫做物体的动量,记作p mv =.动量是动力学中反映物体运动状态的物理量,是状态量.在谈及动量时,必须明确是物体在哪个时刻或哪个状态所具有的动量.在中学阶段,动量表达式中的速度一般是以地球为参照物的.(2)动量的矢量性:动量是矢量,它的方向与物体的速度方向相同,服从矢量运算法则. (3)动量的单位:动量的单位由质量和速度的单位决定.在国际单位制中,动量的单位是千克·米/秒,符号为kg m/s ⋅.(4)动量的变化p ∆:动量是矢量,它的大小p mv =,方向与速度的方向相同.因此,速度发生变化时,物体的动量也发生变化.速度的大小或方向发生变化时,速度就发生变化,物体具有的动量的大小或方向也相应发生了变化,我们就说物体的动量发生了变化.设物体的初动量11p mv =,末动量22p mv =,则物体动量的变化 2121p p p mv mv ∆==--.由于动量是矢量,因此,上式一般意义上是矢量式. 2.冲量(1)冲量的定义:力和力的作用时间的乘积叫做力的冲量,记作I F t =⋅.冲量是描述力对物体作用的时间累积效果的物理量.(2)冲量的矢量性:因为力是矢量,所以冲量也是矢量,但冲量的方向不一定就是力的方向. (3)冲量的单位:由力的单位和时间的单位共同决定.在国际单位制中,冲量的单位是牛·秒,符号为N s ⋅.(4)在理解力的冲量这一概念时,要注意以下几点:①冲量是过程量,它反映的是力在一段时间内的积累效果,所以它取决于力和时间两个因素.较大的力在较短时间内的积累效果,可以和较小的力在较长时问内的积累效果相同.求冲量时一定要明确是哪一个力在哪一段时间内的冲量.②根据冲量的定义式I Ft =,只能直接求恒力的冲量,无论是力的大小还是方向发生变化时,都不能直接用I Ft =求力的冲量.③当力的方向不变时,冲量的方向跟力的方向相同,当力的方向变化时,冲量的方向一般根据动量定理来判断.(即冲量的方向是物体动量变化的方向)3.动量变化与冲量的关系——动量定理(1)动量定理的内容:物体所受合外力的冲量等于物体动量的变化.数学表达式为0I Ft mv mv ==-.式中0mv 是物体初始状态的动量,mv 是力的作用结束时的末态动量.动量定理反映了物体在受到力的冲量作用时,其状态发生变化的规律,是力在时间上的累积效果. (2)动量定理的理解与应用要点:①动量定理的表达式是一个矢量式,应用动量定理时需要规定正方向.②动量定理公式中F 是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力在作用时间内的平均值. ③动量定理的研究对象是单个物体或系统.④动量定理中的冲量是合外力的冲量,而不是某一个力的冲量.在所研究的物理过程中,如果作用在物体上的各个外力的作用时间相同,求合外力的冲量时,可以先求所有外力的合力,然后再乘以力的作用时间,也可以先求每个外力在作用时间内的冲量,然后再求所有外力冲量的矢量和.如果作用在物体上各外力的作用时间不同,就只能先求每一个外力在其作用时间内的冲量,然后再求所有外力冲量的矢量和.⑤动量定理中,是合外力的冲量,是使研究对象的动量发生变化的原因,并非产生动量的原因,不能认为合外力的冲量就是动量的变化.合外力的冲量是引起研究对象状态变化的外在因素,而动量的变化是合外力冲量作用后导致的必然结果.⑥动量定理不仅适用于宏观物体的低速运动,对微观物体和高速运动仍然适用. ⑦合外力的冲量是物体动量变化的量度.要点二、有关计算1.动量变化量的计算动量是矢量,当动量发生变化时,动量的变化p p p ∆=末初-,应运用平行四边形定则进行运算.如图所示,当初态动量和末态动量不在一条直线上时,动量变化由平行四边形定则进行运算.动量变化的方向一般与初态动量和末态动量的方向不相同.当初、末动量在同一直线上时可通过正方向的选定,动量变化可简化为带有正、负号的代数运算.2.冲量的计算方法(1)若物体受到恒力的作用,力的冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致;若力为同一方向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力则不能直接计算冲量.(2)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关. (3)冲量的计算公式I Ft =既适用于计算某个恒力的冲量,又可以计算合力的冲量.根据I Ft =计算冲量时,只考虑该力和其作用时间这两个因素,与该冲量作用的效果无关.(4)冲量的运算服从平行四边形定则.如果物体所受的每一个外力的冲量都在同一条直线上,那么选定正方向后,每个力冲量的方向可以用正负号表示,此时冲量的运算就可简化为代数运算. (5)冲量是一过程量,求冲量必须明确研究对象和作用过程,即必须明确是哪个力在哪段时间内对哪个物体的冲量.(6)计算冲量时,一定要明确是计算分力的冲量还是合力的冲量.如果是计算分力的冲量还必须明确是哪个分力的冲量.(7)在F t -图象下的面积就是力的冲量.如图(a )所示,若求变力的冲量,仍可用“面积法”表示,如图(b )所示.3.动量定理的应用(1)一个物体的动量变化p ∆与合外力的冲量具有等效代换关系,二者大小相等,方向相同,可以相互代换,据此有:①应用I p ∆=求变力的冲量:如果物体受到大小或方向改变的力的作用,则不能直接用Ft 求变力的冲量,这时可以求出该力作用下物体动量的变化p ∆,等效代换变力的冲量I .②应用p F t ∆∆=求恒力作用下的曲线运动中物体动量的变化:曲线运动的物体速度方向时刻在变化,求动量变化p p p ∆='-需要应用矢量运算方法,比较麻烦.如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化.(2)用动量定理解释相关物理现象的要点.由Ft p p p ∆=='-可以看出,当p ∆为恒量时,作用力F 的大小与相互作用的时间t 成反比.例如,玻璃杯自一定高度自由下落,掉在水泥地面上,玻璃杯可能破碎,而掉在垫子上就可能不破碎,其原因就是玻璃杯的动量变化虽然相同,但作用时间不同:当F 为恒量时,物体动量的变化与作用时间成正比.例如,叠放在水平桌面上的两物体,如图所示,若施力快速将A 水平抽出,物体B 几乎仍静止,当物体A 抽出后,物体B 竖直下落. (3)应用动量定理解题的步骤: ①选取研究对象;②确定所研究的物理过程及其始、终状态;③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式;⑤解方程,统一单位,求得结果.要点三、与其它相关知识的关联和区别 1.几个物理量的区别 (1)动量与速度的区别动量和速度都是描述物体运动状态的物理量.它们都是矢量,动量的方向与速度的方向相同.速度是运动学中描述物体运动状态的物理量,在运动学中只需知道物体运动的快慢,而无需知道物体的质量.例如两个运动员跑百米,是比速度的大小,而无需考虑运动员的质量;动量是动力学中描述物体运动状态的物理量,可以直接反映物体受到外力的冲量后,其机械运动的变化情况,动量是与冲量及物体运动变化的原因相联系的.如以相同速度向你滚过来的铅球和足球,你敢用脚踢哪一个?当然是足球,因为足球的质量小,让它停下来所需的冲量小. (2)动量与动能的区别及其联系. ①动量是矢量,动能是标量.②动量的改变由合外力的冲量决定,而动能的改变由合外力所做的功决定.③动量和动能与速度一样,它们都是描述物体运动状态的物理量,只是动能是从能量的角度描述物体的状态.物体具有一定的速度,就具有一定的动量,同时还具有一定的动能.例如:质量 5 kg m =的小球,在水平地面上运动的速度是10 m/s .则它具有的动量50 kg m/s p mv ==⋅,它具有的动能2221()250J 222k mv p E mv m m====.即22k p E m=或2k p mE =.又如:A B 、两物体的质量分别为A B m m 、,且A B m m >,当它们具有相同的动能时,由2k p mE =知A 物体的动量A p 大于B 物体的动量B p ;反之当它们具有相同的动量时,由22k p E m=可知,A 物体的动能kA E 小于B 物体的动能kB E .(3)冲量与功的区别. ①冲量是矢量,功是标量.②由I F t =⋅可知,有力作用,这个力一定会有冲量,因为时间t 不可能为零.但是由功的定义式 cos W F s θ=⋅可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.③冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F t -”图象和“F s -”图象上用面积表示. 如图所示,(a )图中的曲线是作用在某一物体上的力F 随时间t 变化的曲线,图中阴影部分的面积就表示力F 在时间21t t t ∆=-内的冲量.(b )图中阴影部分的面积表示力F 做的功.2.用动量概念表示牛顿第二定律 (1)牛顿第二定律的动量表达式v pF ma mt t∆∆===∆∆. 此式说明作用力F 等于物体动量的变化率.即pF t∆=∆是牛顿第二定律的另一种表示形式.(2)动量定理与牛顿第二定律的区别与联系.①从牛顿第二定律出发可以导出动量定理,因此牛顿第二定律和动量定理都反映了外力作用与物体运动状态变化的因果关系.②牛顿第二定律反应力与加速度之间的瞬时对应关系;而动量定理则反应力作用一段时间的过程中,合外力的冲量与物体初、末状态的动量变化间的关系.动量定理与牛顿第二定律相比较,有其独特的优点.因在公式0Ft mv mv =-中,只涉及两个状态量mv 和0mv 及一个过程量Ft .至于这两个状态中间是怎样的过程,轨迹是怎样的,加速度怎样,位移怎样全不考虑.在力F 作用的过程中不管物体是做直线运动还是做曲线运动,动量定理总是适用的.动量定理除用来解决在恒力持续作用下的问题外,尤其适合用来解决作用时间短,而力的变化又十分复杂的问题,如冲击、碰撞、反冲运动等.应用时只需知道运动物体的始末状态,无需深究其中间过程的细节.只要动量的变化具有确定的值,就可以用动量定理求冲力或平均冲力,而这是用牛顿第二定律很难解决的.因此,从某种意义上说,应用动量定理解题比牛顿第二定律更为直接,更加简单.③牛顿第二定律只适用于宏观物体的低速运动情况,对高速运动的物体及微观粒子不再适用,而动量定理却是普遍适用的.④牛顿第二定律和动量定理都必须在惯性系中使用. 3.动量定理与动能定理的比较动量定理 动能定理公式 'F t mv mv =-合22211122F s mv mv =-合 标矢性 矢量式 标量式因果关系因 合外力的冲量 合外力的功(总功)果动量的变化动能的变化应用侧重点涉及力与时间涉及力与位移要点四、应用动量定理解题的步骤①选取研究对象;②确定所研究的物理过程及其始末状态;③分析研究对象在所研究的物理过程中的受力情况;④规定正方向,根据动量定理列式;⑤解方程,统一单位,求得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二物理动量、冲量、动量定理人教版【本讲教育信息】一. 教学内容:动量、冲量、动量定理二. 知识要点:1. 动量(1)运动物体的质量和速度的乘积叫做物体的动量。

即mv p =。

(2)动量是一个矢量,其方向即为物体的速度方向。

(3)式中的速度是瞬时速度,故动量是一个状态量。

(4)动量的单位由质量的单位和速度的单位共同决定,在国际单位制中其单位为:千克米/秒,符号为:s m kg /⋅。

(5)动量的大小与动能的关系式是k mE p 22=。

(6)动量是矢量:物体动量的方向与物体的瞬时速度方向相同,动量的运算应使用平行四边形定则,如果物体的运动变化前后的动量都在同一直线上,那么选定正方向后,动量的方向可以用正、负号表示,动量的运算就简化为代数运算了。

(7)动量是相对量:由于物体运动的速度与参考系的选择有关,所以物体的动量也跟参考系的选择有关。

选用不同的参考系时,同一运动物体的动量可能不同,通常在不说明参考系的情况下,物体的动量是指物体相对地面的动量。

2. 冲量(1)力和力的作用时间的乘积Ft (一般用I 表示:Ft I =),叫做该力的冲量。

(2)冲量反映了力对时间的积累过程,是一个过程量。

(3)冲量也是矢量,它的方向由力的方向决定,如果在作用时间内力的方向不变,冲量的方向就是力的方向。

(4)在国际单位制中,冲量的单位为NS 与动量单位相同,但在平常练习中,两者不能混用。

(5)Ft I =中力F 为恒力。

(6)变力冲量的计算:① 利用t F -图像求解 ② 利用动量定理求解3. 动量定理:物体所受合外力的冲量等于它的动量的变化量。

即p p Ft -'=或mv v m Ft -'=(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。

(2)动量定理的研究对象可以是单个物体,也可以是物体系统,对物体系统,只需分析系统受的外力,不必考虑系统内力,系统内力的作用不改变整个系统的总动量。

(3)用牛顿第二定律和运动学公式能解的恒力作用下的匀变速直线运动的问题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。

但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力,对于变力,动量定理中的力F 应当理解为变力在作用时间内的平均值。

(4)根据ma F =得t p p t v v mma F ∆-'=∆-'==即tp F ∆∆=,这是牛顿第二定律的另一种表达形式:作用力F 等于物体动量的变化率t p ∆∆。

(5)动量与参考系的选取有关,所以用动量定理时必须注意参考系的选取。

中学阶段以地球为参考系。

(6)动量定理不仅适用于宏观物体的低速运动,对微观现象的高速运动仍然适用。

(7)不能认为合外力的冲量就是动量的变化。

合外力的冲量是引起动量变化的原因,而动量变化是冲量作用的必然结果。

(8)动量定理的研究对象是单个质点或由质点所构成的系统,当研究对象为质点系统时,动量定理中的动量应是该系统内所有质点在同一时刻动量的矢量和,而冲量是该系统内各个质点在同一物理过程中所受一切外力冲量的矢量和,不包括系统内各质点之间相互作用力(内力)的冲量,这是因为内力总是成对出现的,且大小相等,方向相反,故其内力的总冲量必定为零。

(9)应用动量定理解题的注意事项:① 因为动量定理中的冲量为研究对象所受外力的总冲量,所以必须准确地选择研究对象,并进行全面的受力分析,画出受力图,如果在过程中外力有增减,还需进行多次受力分析。

② 因为动量定理是矢量式,而多数情况下物体的运动是一维的,所以在应用动量定理前必须建立一个一维坐标,确定正方向,并在受力图中标出。

在应用动量定理列式时,已知方向的动量、冲量均需带符号(与正方向一致时为正,反之为负),未知方向的动量、冲量通常先假设为正,解出后再判断其方向。

③ 对过程较复杂的运动,可分段列动量定理,也可整个过程列动量定理。

4. 动量定理的理解:(1)I 为合力冲量,如外力是恒力,可先求合力合F ,再求合力冲量t ⋅合F ;若物理过程较长,分几个阶段,或者在该过程中有变力,则“合力冲量”应理解为“外力的总冲量”,等于各个外力冲量的矢量和,即n n t F t F t F t F I ΛΛ+++=332211。

(2)冲量和动量都是矢量,所以该定理的表达式为矢量式,等式两边大小相等方向相同。

对于作用前后各量的方向均在一条直线上的情况,可选取某一方向为正方向,与正方向相同的取正值,反之则取负值,从而将矢量运算转化成代数运算。

(3)动量定理对于直线运动、曲线运动、恒力、变力、单一物体和多物体系统均适用。

5. 动量定理的分类应用:动量定理是由牛顿第二定律推导出来的,能用牛顿运动定律解答的题,一般都可用动量定理来解,用动量定理还能解答一些牛顿运动定律难于解答的问题,而且过程更简捷,下面分类说明其应用。

(1)解释一些常见的物理现象[例1] 玻璃杯从同一高度自由落下,掉落在硬质水泥地板上易碎,掉落在松软地毯上不易碎,这是由于玻璃杯掉在松软地毯上( )A. 所受合外力的冲量较小B. 动量的变化量较小C. 动量的变化率较小D. 地毯对杯子的作用力小于杯子对地毯的作用力解析:杯子从同一高度自由落下,与地面相碰前的瞬时速度、动量都是一定的。

与地面相碰到刚静止时,不管玻璃杯是否破碎,其动量的改变量都相等,由动量定理得:合外力的冲量也都相等。

可见A 、B 选项是错误的。

由p t F ∆=∆得,玻璃杯受到的合外力等于其动量的变化率t p ∆∆。

玻璃杯掉在松软的地毯上,动量减小经历的时间t ∆较长,tp ∆∆较小,玻璃杯受到的合力较小,玻璃杯就不易碎,故C 选项对。

地毯对杯子的作用力与杯子对地毯的作用力是一对相互作用力,所以他们大小相等,故选项D 是错误的,正确答案是C 。

搬运玻璃等易碎品时,在木箱里放些纸屑、刨花等物;人从高处跳向地面,人与地面接触时,人要往下蹲的现象也可以类似的用动量定理解释。

[例2] 如图1所示,把重物G 压在纸带上,用一水平力缓缓拉动纸带,重物将随纸带一起运动;若快速拉动纸带,则纸带可能会从重物下抽出。

试解释这一现象。

解析:当缓缓拉动纸带时,重物与纸带之间的摩擦为静摩擦,由于作用时间长,其获得的冲量较大,可以改变物体的静止状态,从而带动重物一起运动。

在快拉时,尽管这时重物与纸带因分离将产生滑动摩擦力,但由于作用时间短,重物获得的冲量并不大,还未来得及改变其运动状态,纸带已抽出来了。

(2)计算作用力[例3] 一个质量为kg m 2=的物体,在N F 81=的水平推力作用下,从静止开始沿水平面运动了s t 51=,然后推力减小为N F 52=,方向不变,物体又运动了s t 42=后撤去外力,物体再经过s t 63=停下来,试求物体在水平面上所受的摩擦力。

解法1:取物体为研究对象,它的运动可分为三个过程。

设第—、二过程的末速度分别为1v 和2v ,物体所受摩擦力为f F ,规定推力的方向为正方向,根据动量定理对三个过程分别有:111)(mv t F F f =-; 1222)(mv mv t F F f -=-;230mv t F f -=- 联立上述三式得N N t t t t F t F F f 464545583212211=++⨯+⨯=+++= 解法2:规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量01=P ,末动量02=P 。

据动量定理有:0)(3212211=++-+t t t F t F t F f即0)645(4558=++-⨯+⨯f F 解得N F f 4=由解法2可知,合理选取研究过程,能简化解题步骤,提高解题速度。

本题也可以用牛顿运动定律求解,同学们可比较这几种求解方法的简繁情况。

[例4] 据报道,1980年一架英国战斗机在威尔士上空与一只秃鹰相撞,飞机坠毁。

小小的飞鸟撞坏庞大、坚实的飞机,真难以想象。

试通过估算,说明鸟类对飞机的威胁,设飞鸟的质量为kg m 1=,飞机的飞行速度为s m v /800=,若两者相撞,试估算鸟对飞机的撞击力。

解析:以鸟为研究对象。

和飞机相撞前其速度可忽略(与飞机速度相比)相撞后可认为鸟和飞机一起运动,速度为s m v /800=(因鸟的质量远小于飞机的质量,故相撞后飞机的速度几乎不变)。

设鸟与飞机相撞变形改变的尺寸为m L 2.0=(基本为鸟的尺寸),则撞击时间为vL t =。

由动量定理得:mv t F =⋅,N L mv t mv F 62103⨯≈==。

可见,鸟对飞机的威胁很大,所以,在大型机场附近,都设有驱赶鸟的装置。

(3)计算作用时间[例5] 有一重为G 的铁块从沙面上方自由下落,经时间t 后与沙面接触。

已知铁块在沙中运动时受到的阻力为f F ,求铁块在沙中运动的时间。

解析:小铁块在运动过程中,只受到重力G 和沙对铁块竖直向上的阻力f F 的作用,且整个运动过程中铁块的动量变化量p ∆为零,设铁块在沙中运动的时间为t ',取竖直向下为正方向,由动量定理得:0)(='-'+⋅t F t t G f 解得:t GF G t f -=' (4)计算物体的质量[例6] 一架质量为kg 500的直升机,其螺旋桨把空气以s m /50的速度向下推,恰好使其悬在空中,则每秒钟螺旋桨推下的空气的质量为多少?解析:飞机通过向下推空气而获得反冲力F ,可根据平衡条件,求出飞机与空气的相互作用力Mg F =,每秒钟被推下的空气的动量变化量应等于飞机的推力的冲量。

即mv t Mg ∆=⋅,所以kg kg v Mgt m 985018.9500=⨯⨯==∆ (5)计算曲线运动中物体动量的变化[例7] 以速度0v 水平抛出一个质量为kg 1的物体,若在抛出s 3后它未与地面及其它物体相碰,则它在s 3内动量的变化量为多少?解析:此题如果用公式01mv mv p -=∆来计算是很复杂的,因为是一个矢量式,3s 末的动量与开始时的动量又不在一条直线上,所以要用平行四边形定则来计算。

如果我们用动量定理来计算就方便得多,因为物体在s 3内只受到一个重力G ,所以重力的冲量就等于物体动量的变化,故s m kg s m kg t G p /30/3101⋅=⋅⨯⨯=⋅=∆(6)计算变力的冲量[例8] 如图2所示,一个质量为kg 1的滑块在固定于竖直平面内的半径为R 的光滑轨道内运动,若滑块在与圆心等高处C 点由静止释放,到达最低点B 时的速度为s m /5,求滑块从C 点到B 点的过程中合外力的冲量。

图2解析:滑块从C 点滑到B 点的过程中,受到重力G 和支持力N F 的作用,支持力是变力,故滑块受到的合力F 也是一个变力,变力的冲量不能用t F I ⋅=来计算,但用动量定理很容易计算。

相关文档
最新文档