《高等流体力学》习题集与基本知识

合集下载

高等流体力学各章习题汇总

高等流体力学各章习题汇总
A t S ( Au ) 0
式中是 u 速度, dS 是流动方向的微元弧长. 7. 试证明对于滞止焓 h0 有以下方程成立
t ( h0 ) x j ( u j h0 ) p t x j ( ij u i k T x j ) fiu i
滞止焓
h0 h
1 u u 2
8.一个物质体系V 分为V1和V2 两部分, Σ 是V1和V2的分界面, S 是V的 边界曲面, 设交界面Σ以速度 u 运动,在 Σ 两侧物理量 F 有一个跃变. 试导出推广的雷诺输运公式
Dt
V
D
FdV

V
F t
dV

S
F V nd S
第五章 教科书 5.5, 5.6, 5.7 4. 证明在球坐标系下 (
A r
2
co s B r ) sin
2 2
可表示不可压缩流体
某轴对称无旋流动中的流函数,并求其速度势.
5. 已知流体绕流圆球的势函数
的力.
( r , ) U ( r
a
3 2
) co s
2r
, 式中 a 是
2
2
(1)沿下边给出的封闭曲线积分求速度环量,
0 x 10, y 0; 0 y 5, x 10; 0 x 10, y 5; 0 y 5, x 0.
(2)求涡量 ,然后求


n dA
A
式中A是 (1) 中给出的矩形面积, 是此面积的外单位法线矢量。

u i t u
j
t
u j
x
ij j
x k

流体力学 大学考试复习资料 知识点总结

流体力学 大学考试复习资料 知识点总结

第一章流体及流场的基本特性1、流体定义——受任何微小剪切力作用都会连续变形的物质。

2、流体的特性——流动性、连续性3、流体的主要物理性质【惯性:密度(单位体积流体内所具有的质量)、比容(单位质量的流体所占有的体积)、重度(单位体积的流体所具有的重量)、关系(流体的密度与比体积之间互为倒数)、密度影响因素(流体种类、温度、压力)】【压缩性(流体的体积随压力增大而缩小的性质)、膨胀性(流体的体积随温度升高而增大的性质)、不可压缩流体(当压力与温度变化时,体积变化不大,密度可以看作是常数的流体)】【粘性定义(流体流动时在流体层与层之间产生内摩擦力的特性)、影响因素(流体的种类、温度、压力)、粘度(动力黏度,运动黏度)、理想流体粘性】(理想流体——假想的没有黏性的流体、实际流体——自然界中存在的具有黏性的流体)(表面张力——液体自由表面存在的力、毛细现象——表面张力可以引起相当显著的液面上升或下降,形成上凸或下凹的曲面)4、水力要素(有效截面面积、湿周——有效截面上液体与固体壁接触线的长度、水力半径——有效截面面积与断面湿周的比值、当量直径——在非圆形的有效截面中,水力半径的四倍)(工程圆管——原因:1.在有效截面面积相等的条件下,湿周愈小,流体与管壁的接触线长度愈小,所引起的流动阻力损失也愈小。

2.节省材料.)5、运动要素(动压力——作用在运动液体内部单位面积上的压力、流速——该质点在空间中移动的速度、流量——单位时间内通过有效截面的流体数量、平均流速——假设在有效截面上的各点均以相同的假象速度流过时,通过的流量与实际力量相等,那么这个假想的流速为平均流速.)第二章流体静力学1、作用在流体上的力表面力:作用在流体表面上的力,与面积成正比。

(包括:压力、内摩擦力)质量力:作用在流体质点上的力,与质量成正比。

(包括:重力、惯性力、离心力)2、静压力概念:静压力(作用在质点上,流体力学)平均静压力(作用在面上,物理学)3、静压力特性:①静压力方向总是垂直并且指向作用面。

高等流体力学各章习题汇总

高等流体力学各章习题汇总

(1). 证明圆周 x 2
y a
2
2
上的任意一点的速度都与 y 轴平行,且此
速度大小与 y 成反比. (2). 求 y 轴上的速度最大点;
(3). 证明 y 轴是一条流线.
7. 已知速度势φ, 求相应流函数ψ. (1). (2).
xy

x x y
2 2
b
b
U p
8. 求图示不脱体绕流平板上下表面压强, 压强系数和速度分布.
2
2
(1)沿下边给出的封闭曲线积分求速度环量,
0 x 10, y 0; 0 y 5, x 10; 0 x 10, y 5; 0 y 5, x 0.
(2)求涡量 ,然后求


n dA
A
式中A是 (1) 中给出的矩形面积, 是此面积的外单位法线矢量。

u i t u
j
t
u j
x
ij j
x k
u j u k

ij
xi
f
j
可简化为
u i x
j
fi
6. 流体在弯曲的变截面细管中流动,设 A 为细管的横断面积, 在 A 断面上的流动物理量是均匀的,试证明连续方程具有下述形式,
L1
C
L2
第四章 教科书 4.1, 4.4, 4.7, 4.12 5. 设复位势为
F ( z ) m ln ( z 1 z )
(1). 问流动是由哪些基本流动组成; (2). 求流线方程;
(3). 求通过 z i 和 z
1 2
两点连线的流体体积流量.
6. 在点 (a, 0), ( -a, 0) 上放置等强度的点源,

高等流体力学课后习题

高等流体力学课后习题
p RT
【1.4】 理想流体的特征是: a )黏度是常数; ( (b)不可压缩; (c)无黏性; (d)符合 解:不考虑黏性的流体称为理想流体。 【1.5】 当 水 的 压 强 增 加 一 个 大 气 压 时 ,水 的 密 度 增 大 约 为 : ( 000; d) 1/2 000。 (

解:牛顿内摩擦定律是
dv dv d d dy ,而且速度梯度 dy 是流体微团的剪切变形速度 dt ,故 dt 。
(b )
【1.3】 流体运动黏度 υ 的国际单位是: a )m2/s; ( (b)N/m2; (c)kg/m; (d)N· 2。 s/m 解:流体的运动黏度 υ 的国际单位是 m /s 。

(c)
a )1/20 000; b)1/1 000; c)1/4 ( (
1 20 000 。
d
解:当水的压强增加一个大气压时,其密度增大约 (a) 【1.6】 从力学的角度分析, 一般流体和固体的区别在于流体: a ) ( 能承受拉力, 平衡时不能承受切应力; (b) 不能承受拉力,平衡时能承受切应力; (c)不能承受拉力,平衡时不能承受切应力; (d)能承受拉力, 平衡时也能承受切应力。 解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。 (c) 【1.7】下 列 流 体 哪 个 属 牛 顿 流 体 : a ) 汽 油 ; b) 纸 浆 ; c) 血 液 ; d) 沥 青 。 ( ( ( ( 解:满足牛顿内摩擦定律的流体称为牛顿流体。 (a) 【1.8】 15 C 时空气和水的运动黏度 空气 15.2 10 m /s ,水 1.146 10 m /s , 这说明: 在运动中 a ) ( 空气比水的黏性力大; (b)空气比水的黏性力小; (c)空气与水的黏性力接近; (d)不能直接比较。 解:空气的运动黏度比水大近 10 倍,但由于水的密度是空气的近 800 倍,因此水的黏度反而比空气 大近 50 倍,而 黏性力除了同 流体的黏度 有关,还和 速度梯度有 关,因此它们 不能直接比 较。

高等流体力学习题

高等流体力学习题

真诚为您提供优质参考资料,若有不当之处,请指正。

1 / 71、 柱坐标下V V ⋅∇的表达式(112233V V e V e V e =++):()()()()()()2211i i i i i i ji i j i i j j j j j j i j j i j j i i i i i i ii i j j j j j i i j j i j i i iV e V e V V V e e V e e e V h q h q q V VV V VV h V e V e V V e e i j i j e e i j h q h q h q h q h h q h q ⎡⎤⎡⎤∂⎛⎫∂∂⎢⎥⋅∇=⋅=⋅+⎢⎥ ⎪ ⎪∂∂∂⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦∂∂∂∂∂∂=+≠+==+≠+∂∂∂∂∂∂1321231,;,,h h h r q r q q zε======2121122222121311323332133dV V dV dV V dV V dVdV V V =V ++V e +V ++V +e dr r d dz r dr r d dz r dV dVdV V +V ++V e dr d dz V V r εεε∴⋅∇⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭2、 利用哈密尔顿算子证明以下各式: (1)()a =0∇⋅∇⨯()()2222221233132231121222331213a j ji i i j i j ijk k i ii j i j i j ae x aaaa =e e e e e e e e x x x x x x x x a a a e e e e e e x x x x x x a e ⎛⎫∂∂⨯ ⎪ ⎪∂∇⨯∂⎛⎫⎛⎫∂∂∂⎝⎭∇⋅∇⨯⋅=⋅=⋅⨯=⨯⋅=⋅ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂=⋅+⋅+⋅∂∂∂∂∂∂∂+223312321212131320a ae e e e e x x x x x x ∂∂⋅+⋅+⋅=∂∂∂∂∂∂(2) ()0ψ∇⨯∇=()()22222123313223213232121311121222213331323212i i jijk k i i j i j =e e e e e x x x x x e e e e e e x x x x x x e e e e e e x x x x x x ψψψψψψψψψψ⎛⎫∂∇⨯∂∂∇⨯∇⨯=⨯= ⎪ ⎪∂∂∂∂∂⎝⎭∂∂∂=++∂∂∂∂∂∂∂∂∂+++=∂∂∂∂∂∂(3)()()()a b a b b a∇⋅⨯=∇⨯⋅-∇⨯⋅()()()()i iiiii iiia b a b a b a b e e b a e b e a a b b ax x x x dx ∂⨯⎛⎫∂∂∂∂∇⋅⨯=⋅=⋅⨯+⨯=⨯⋅-⨯⋅=∇⨯⋅-∇⨯⋅⎪∂∂∂∂⎝⎭(4)()()()a b a b a b b a b a∇⋅=⨯∇⨯+⋅∇+⋅∇+⨯∇⨯()()iiiiiia b a b a b e e b e a a b b ax x x ⋅∇⋅=⋅∂∂∂=∂∂∂+⋅=∇⋅+∇⋅()()b b b b ba a i i ii i i i i i i a b e e a e e a a e b a a b x x x x x ⎛⎫⎛⎫⎛⎫∂∂∂∂∂⨯∇⨯=⨯⨯=⋅-⋅=⋅-⋅=∇⋅-⋅∇ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭()()i i ii i i i i i i a a a a ab a b e b e b e e b b e a b b a x x x x x ⎛⎫⎛⎫⎛⎫∂∂∂∂∂⨯∇⨯=⨯⨯=⋅-⋅=⋅-⋅=∇⋅-⋅∇ ⎪ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎝⎭3、 如果n 为闭曲面A 上的微元面dA 的单位外法线向量,12,ϕϕ是闭曲面满足20ϕ∇=的两个不同的解,试证明:(38页,6)(1)AndA=0⎰⎰(2)2112AAdA dA nn ϕϕϕϕ∂∂=∂∂⎰⎰⎰⎰证明:(1)1AndA=d 0ττ∇=⎰⎰⎰⎰⎰()()()()()()211221122112212212122121221221120AAAAdA dA n n dAn n n n dA d d d τττϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕτϕϕϕϕϕϕϕϕτϕϕϕϕτ∂∂-=⋅∇-⋅∇∂∂⎡⎤=⋅∇-⋅∇=∇⋅∇-∇⎣⎦=∇+∇∇-∇-∇∇=⋅⋅=∇-∇⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有两族平面正交曲线()(),,,x y c x y dζη==,已知22,2x y y ζ=-=时4x η=,求()x,y η,(40页,10)解:,ηζ正交=0x x y y ζηζη∂∂∂∂∴+∂∂∂∂即2x 2y =0x y ηη∂∂-∂∂40y y =22x 4-22x ηη∂∂=⋅⨯=∂∂当时,,代入得22y x xy cηη∂∴=⇒=+∂ 240y x c η===由时,知2xy η∴=求半径为a 的四分之一圆的垂直平面上流体的总的作用力F 和压力中心C 的位置,已知0x 与流体自由水平面重合,自由面上压力为零。

高等流体力学复习总结

高等流体力学复习总结

m y 2 x 2 y 2
四、倒数函数-偶极子
m 1 m x yi w( z ) i 2 2 2 x yi 2 x y
m 1 w( z ) 2 z
m是实数
dw m 1 iQ dw dz dz 0 2 c c dz c 2 z
正压流体
流体在流动过程中,若流体的密度仅
是压力的函数,则该流动是正压的。或
者,若等密度面与等压面重合,则流动 正压。
d ( )v ( v) dt
1 1 F p v ( v) 3
直角坐标系中的形式
u 2 u v w p xx p 2 x y z x 3 v 2 u v w p yy p 2 x y z y 3 w 2 u v w p zz p 2 x y z z 3



w( z ) a ln z
a是实数
i
w( z ) i a ln(re ) a ln r i
Q a 2 Q w( z ) ln z 2
点源 若点源不在坐标原点而在z0点,则复位势为: 点汇
Q w( z ) ln( z z0 ) 2
w( z) ib ln z b是实数 z re i w( z ) i bi ln(re ) bi(ln r i ) b bi ln r
第二章 流体力学的基本概念
一 流体的定义和特征
二、流体连续介质假设
三 描述流体运动的两种方 法
四 迹线与流线 P104 例题 P140习题 五 速度分解定理 变形速度二阶张量

高等流体力学-习题集

高等流体力学-习题集
解:
由题可得速度场 ,则由 得 ,解微分方程得 ,即为流体质点运动的拉格朗日表达式,其中 为任意常数。
则 ,
得速度的拉格朗日表达式为:
得加速度的拉格朗日表达式为:
4、已知质点的位置表示如下:
求:(1)速度的欧拉表示;
(2)加速度的欧拉表示及拉格朗日表示,并分别求 及 的值;
(3)过点 的流线及 在 这一质点的迹线;
由迹线微分方程为 ,将 代入得质点轨迹方程为
(4)散度
旋度
涡线微分方程为 ,又因为 ,涡线微分方程转化为 ,即
涡线方程为
(5)速度梯度 = ,
∴应变率张量
∴旋转张量
5、已知拉格朗日描述为
(1)问运动是否定常,是否是不可压缩流体,是否为无旋流场;
(2)求t=1时在点(1,1,1)的加速度;
(3)求过点(1,1,1)的流线。
解:
6、已知 ,求
(1)速度的拉格朗日描述;
(2)质点加速度;
(3)散度及旋度;运动是否有旋;流体是否不可压;
(4)迹线及流线。
解:
(1)由 ,又由 得 ,由 得 。再由初始条件 得 ,则速度的拉格朗日描述为
(2)质点加速度为
(3)散度
(4)散度、旋度及涡线;
(5)应变率张量及旋转张量。
解:
(1)由 得
由题得 ,则速度的欧拉表示为
(2)加速度分量为 ,
则加速度的欧拉表示为 ;
则加速度的拉格朗日表示为 ;
当 时,
(3)流线微分方程式为 ,因为 所以,流线微分方程转化为 ,消去中间变量积分得 ,又因为 ,当 时,得到 =0, ,即过点(1,0,0)的流线为
高等流体力学
1、流体的运动用

大学科目《流体力学》习题及答案

大学科目《流体力学》习题及答案

一、选择题1.按连续介质的概念,流体质点是指A .流体的分子; B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

2.作用在流体的质量力包括A. 压力;B. 摩擦力;C. 重力;D. 惯性力。

3.单位质量力的国际单位是:A . N ; B. m/s ; C. N/kg ; D. m/s 2。

4.与牛顿内摩擦定律直接有关系的因素是A. 切应力和压强; B. 切应力和剪切变形速率; C. 切应力和剪切变形。

5.水的粘性随温度升高而A . 增大; B. 减小; C. 不变。

6.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

7.流体的运动粘度υ的国际单位是A. m 2/s ;B. N/m 2 ; C. kg/m ;D. N ·s/m2 8.理想流体的特征是A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT 。

9.当水的压强增加1个大气压时,水的密度增大约为A. 200001; B. 100001;C. 40001 。

10.水力学中,单位质量力是指作用在A. 单位面积液体上的质量力;B. 单位体积液体上的质量力; C. 单位质量液体上的质量力;D. 单位重量液体上的质量力 11.以下关于流体粘性的说法中不正确的是A. 粘性是流体的固有属性;B. 粘性是在运动状态下流体具有抵抗剪切变形速率能力的量度C. 流体的粘性具有传递运动和阻滞运动的双重作用;D. 流体的粘性随温度的升高而增大。

12.已知液体中的流速分布µ-y 如图所示,其切应力分布为 A.τ=0;B.τ=常数; C. τ=ky (k 为常数)。

13.以下关于液体质点和液体微团的正确论述是A. 液体微团比液体质点大;B. 液体微团包括有很多液体的质点; C. 液体质点没有大小,没有质量;D. 液体质点又称液体微团。

14.液体的汽化压强随温度升高而 A. 增大;B. 减小;C. 不变;15.一封闭容器盛以水,当其从空中自由下落时(不计空气阻力),其单位质量力为 A. 0 ; B. -g ; C. mg ;D. –mg 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等流体力学》复习题一、 基本概念1. 什么是理想流体?正压流体,不可压缩流体? [答]:教材P57当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。

内部任一点的压力只是密度的函数的流体,称为正压流体。

流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。

2. 什么是定常场;均匀场;并用数学形式表达。

[答]:如果一个场不随时间的变化而变化,则这个场就被称为定常场。

其数学表达式为:)(r ϕϕ=如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。

其数学表达式为:)(t ϕϕ=3. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无粘性?为什么? [答]:理想流体运动时无切应力。

粘性流体静止时无切应力。

但是,静止时无切应力,而有粘性。

因为,粘性是流体的固有特性。

4. 流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系? [答]:教材P119-123如果流体运动是无旋的,则称此流体运动为有势运动。

对于无旋流动来说,其速度场V 总可以由某个速度标量函数(场)),(t r φ的速度梯度来表示,即φ∇=V ,则这个标量函数(场)),(t r φ称为速度场V 的速度势函数。

无旋运动与有势运动的关系:势流运动与无旋运动是等价的,即有势运动是无旋的,无旋运动的速度场等同于某个势函数的梯度场。

5. 什么是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?) [答]:6. 平面流动中用复变位势描述的流体具有哪些条件(性质)? [答]:教材P126-127理想不可压缩流体的平面无旋运动,可用复变位势描述。

7. 什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?Stokes 假设的基本事实依据是什么? [答]:教材P89第一粘性系数μ:反映了剪切变形对应力张量的贡献,因此称为剪切变形粘性系数; 第二粘性系数μ’:反映了体变形对应力张量的贡献,因而称为体变形粘性系数。

对于不可压缩流体,可不考虑第二粘性系数。

Stokes 假设的基本事实依据:平均法向正应力ε就是压力函数的负值,即体变形粘性系数032=+='λμμ。

8. 从运动学观点看流体与固体比较有什么不同? [答]:教材P55若物质分子的平均动能远小于其结合能,即E mv ∆<<221,这时物质分子间所形成的对偶结构十分稳定,分子间的运动被严格地限定在很小的范围内,物质的分子只能在自己的平衡位置周围振动。

这时物质表现为固态。

若物质分子的平均动能与其结合能大致相等,即E mv ∆≈221,其分子间的对偶结构不断地遭到破坏,又不断地形成新的对偶结构。

这时,物质分子间不能形成固定的稳定对偶结构,而表现出没有固定明确形状的液态。

若物质分子的平均动能远大于其结合能,即E mv ∆>>221,物质几乎不能形成任何对偶结构。

这时,物质表现为气态。

9. 试述流体运动的Helmholts 速度分解定律。

[答]:教材P65可变形流体微团的速度分解:流体微团一点的速度可分解为平动速度分量与转动运动分量和变形运动分量之和,这称为流体微团的Helmholts 速度分解定理r S r V V δδω⋅+⨯+=010. 流体微团有哪些运动形式?它们的数学表达式是什么? [答]:r S r V V δδω⋅+⨯+=0 1)平动运动:0V V = 2)转动运动:r δω⨯ V rot 21=ω3)变形运动:r S δ⋅11. 描述流体运动的基本方法有哪两种?分别写出其描述流体运动的速度、加速度的表达式。

[答]:教材P58-60描述流体运动的基本方法:1) 拉格朗日方法:对流体介质的每一质点进行跟踪,着眼于流体介质中的每个质点,需要对流体介质中的每个质点进行区别。

各质点速度表达式:tt c b a r t c b a V ∂∂=),,,(),,,(各质点加速度表达式:22),,,(),,,(t t c b a r t c b a V∂∂=•2) 欧拉方法:定点观察描述流场的运动,着眼于空间的定点,而不是流体质点。

速度表达式:332132321213211321),,,(),,,(),,,(),,,(),(e t x x x u e t x x x u e t x x x u t x x x V t r V V ++=== 加速度表达式:V V t V V t V x u u t u rV t V t r r t V dt V d j i j i )(∇⋅+∂∂=∇⋅+∂∂=∂∂⋅+∂∂=∂+∂∂=∂∂∂+∂∂=12. 什么是随体导数(加速度)、局部导数(加速度)及位变导数(加速度)?分别说明0=dt v d ,0=∂∂tv及()0=∇⋅v v的物理意义?[答]:教材P60随体导数:流体质点在其运动过程中的加速度所对应的微商,叫做随体导数; 局部导数:流体位置不变时的加速度所对应的微商,叫做局部导数; 位变导数:质点位移所造成的加速度所对应的微商,叫做位变导数。

物理意义:0=dt vd :随体导数为0,流体质点在其运动过程中的加速度为0;0=∂∂t v:局部导数为0,流体位置不变时的加速度为0,流体是定常流动; ()0=∇⋅v v :位变导数为0,流体质点位移所造成的加速度为0,流体速度分布均匀。

13. 什么是流体的速度梯度张量?试述其对称和反对称张量的物理意义。

[答]:教材P65-67对流体微团M ,其中o r 处的速度为0V ,那么r 处的速度可以表示为 j jx x VV V δ∂∂+=0,或者j j i i i x x u u u δ∂∂+=0, 即)(0V r V V ∇⋅+=δ。

这里,V x uji ∇=∂∂为二阶张量,是速度的梯度,因此称之为速度梯度张量。

速度梯度张量分解为对称和反对称部分:S A x u V ij +=∂∂=∇反对称张量的物理意义:反对称张量表征了流体微团旋转运动,所对应的矢量ω为流体微团的角速度矢量。

k ijk z v y w z u x w z v y w yu x v z u x w y u x v A ωεωωωωωω=⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂-∂∂-∂∂-∂∂-∂∂-∂∂∂∂-∂∂-∂∂-∂∂∂∂-∂∂=0000) (21) (21) (210) (21) (21)(210121323V rot e e e z y x 21321=++=ωωωω对称张量的物理意义:对称张量表征了流体微团的变形运动。

其中,对角线上的元素()321 , , εεε表示了流体单元微团在3个坐标轴上的体变形分量,而三角元素⎪⎭⎫ ⎝⎛32121 ,21 ,21θθθ表示了流体单元微团在3个坐标平面上的角变形分量的一半。

⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=312123231212121212121) (21) (21) (21) (21) (21) (21 εθθθεθθθεz w zv y w z u x w z v y w y v y u x v z u x w yu x v x u A yu∂∂xw ∂∂-zv ∂∂-反对称部分Z z∂14. 流体应力张量的物理意义是什么?它有什么性质? [答]:教材P71流体应力张量的物理意义:应力张量表示了坐标面的三个面力密度矢量z y x p p p, ,的九个分量}{ij p 组成的一二阶张量,即为面力密度张量。

应力张量的性质:应力张量是对称张量,具有对称性 应力张量具有二阶对称张量的性质(1) 应力张量的几何表示为应力椭球面,即二次型1222)(222=+++++=⋅⋅zx p yz p xy p z p y p x p r P r zx yz xy zz yy xx(2) 应力张量有三个互相垂直的主轴方向,即是应力椭球的三个对称的直径的方向。

在主轴坐标系下,应力张量具有标准形式:⎪⎪⎪⎭⎫ ⎝⎛='000'000'332211p p p P (3) 应力张量的三个不变量为:反对称部分⎪⎩⎪⎨⎧+--++=---++=++=223112123323122322113312312332211321223122322111133332223322111p p p p p p p p p p p p p p p I p p p p p p p p p I p p p I15. 某平面上的应力与应力张量有什么关系?nm mn p p =的物理含义是什么? [答]:教材P71应力n p 与应力张量P 的关系:P n p n p ij n ⋅=⋅= ,即:空间某点处任意平面上的应力等于这点处的应力张量与该平面法向单位矢量的左向内积。

nm mn p p =的物理意义:i ji j j ji i j ij i n nm n p m m p n m p n m p m P n p ===⋅=⋅⋅=)(mn m p n p n P m =⋅=⋅⋅=)(应力张量的对称性,使得在以n 为法线的平面上的应力np在 m 方向上的投影等于(=)在以m 为法线的平面上的应力mp 在 n方向上的投影。

16. 流体微团上受力形式有哪两种?它们各自用什么形式的物理量来表达? [答]:教材P68-71(1)质量力,也称体力,这种力作用在物质中每个质点上,其大小与每个质点的质量成正比。

作用于某物质体上质量力的合力将通过该物质体的质心。

δτρδ)(r F f = , ⎰=τδτρ)(r F f )(r F 为质量力密度,与位置有关。

(2)面力,作用于流体微团表面S 上的力。

S p p n δδ= , ⎰=S n S p p δ n p 为面力分布密度,P n p n p ij n ⋅=⋅=17. 什么是广义的牛顿流体和非牛顿流体? [答]:教材P86-87牛顿内摩擦定律:流体微团的运动变形的的大小与其上所受的应力存在线性关系。

遵从或近似遵从牛顿内摩擦定律的一类流体称为牛顿流体。

不遵从牛顿内摩擦定律的流体称为非牛顿流体。

广义牛顿内摩擦定律:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。

遵从或近似遵从广义牛顿内摩擦定律的一类流体称为广义牛顿流体。

18. 试述广义牛顿内摩擦定律的物理意义及相应的数学表达式? [答]:教材P87广义牛顿内摩擦定律的物理意义:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。

相关文档
最新文档