八年级数学上册 2.1.1 认识无理数导学案(新版)北师大版

合集下载

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
将学生分成小组,让学生根据讲授的新知,讨论无理数的性质和表示方法。
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。

2.1.1 认识无理数 教学设计 2023—2024学年北师大版数学八年级上册

2.1.1 认识无理数 教学设计 2023—2024学年北师大版数学八年级上册

2.1.1 认识无理数一、板书课题 师:同学们,今天我们来学习数怎么不够用了二、出示目标 师:为了学好本节课,请看本节课的学习目标学习目标会区别一个数是不是有理数三、自学指导 师:来看我们本节课的自学指导自学指导认真看课本21P 内容,要求:(1)怎样把两个小正方形剪开拼成一个大正方形,(2)完成做一做,思考这个数为什么不能用有理数表示五分钟后,比谁能快速的完成自学指导中的问题四、学自学(学生看书, 教师巡视,,督促每位学生认真看书)五、测与导1、问题一:怎样小正方形剪拼成一个大正方形,并求出它的边长,边长的平方等于A 引例1: 下面请同学们拿出准备好的两个边长为1的小正方形,把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形。

引例2: a 可能是整数吗?说说你的理由. 引导学生从多个方面进行拼接,理解22=a ,a 不是整数,由于⋅⋅⋅==42,1122,越来越大,则a 不是整数.引例3: a 可能是分数吗?说说你的理由.因为943232 412121=⨯=⨯,结果都是分数,所以a 不可能是分数. 生总结:a 既不是整数,也不是分数,所以a 不是有理数.归纳总结:有理数包括:整数和分数.如果一个数既不是整数也不是分数,那么这个数不是有理数.2、做一做:(1) 如图,以直角三角形的斜边为边的正方形的面积是多少?a 2=2a 12 b解:两条直角边分别为1和2,根据勾股定理,得12+22=5,所以正方形的面积是5.(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?解:b2=5.①因为22=4,32=9,4<5<9,所以b不可能是整数.②没有两个相同的分数相乘得5,故b不可能是分数.因为没有一个整数或分数的平方为5,所以b不是有理数.3、检测:随堂练习(引导学生回答正三角形的性质,强调书写格式)预设问题(1)正三角形的性质不会(2)格式书写不规范4、小结:本节课我们学习了不能用有理数表示的数六、练P 1必做:22选做:P 222七、教学反思:。

XX年八年级数学上2-1认识无理数导学案(北师大版)

XX年八年级数学上2-1认识无理数导学案(北师大版)

XX年八年级数学上2-1认识无理数导学案(北师大版)本资料为woRD文档,请点击下载地址下载全文下载地址科目数学课题认识无理数主备人审核人学案类型新授学案编号学习目标知识与能力:通过丰富的现实情景,使学生感受确定物体位置的方法,进而归纳出确定位置的条件和方法,并会用生动形象的语言概括总结的确定位置的方法.过程与方法:通过学习与探究,灵活地选择和运用不同的方式确定物体的位置情感态度和价值观:运用语言归纳概括确定物体的位置的方法,提高学生的语言表达能力,开拓学生的思路,发展学生的思维能力.重点:会坐标法,方向角加距离法确定位置,知道经纬定位法、区域定位法确定位置.难点:用方向角确定位置的方法,对确定位置方法多种多样的理解。

学法指导及使用说明:自主、合作探究、体验式教学法知识链接:温故知新:(1)谁知道在数轴上,确定一个点的位置需要几个数据?举例说明?新知:在平面内,又是如何确定一个点的位置呢?生活中我们常常需要确定物体的位置。

请同学们根据生活中的实例进行探究。

一、课前自学认真自学课本P54—P55页内容,将有疑问的部分标注。

二、课堂探究:、电影院中确定座位,引出有序数对在电影院内如何找到电影票上所指的位置?(2)在电影票上,“5排3号”和“3排5号”中的“5”的含义是什么?(3)如果将“3排5号”简记作(3,5),那么“5排3号”如何表示?(4,5)表示什么含义?议一议:1)在只有一层的电影院内确定一个座位一般需要几个数据?为什么?2)在生活中,确定物体的位置还有其他方法吗?与同伴进行交流。

2、利用教室内的座位等形式探索有序数对确定位置的方法问题:你能用两个数据表示你现在所坐的位置吗?3、经纬度定位法据新华社报道,1976年7月28日凌晨3时40分,我国河北省唐山市发生里氏7.8级的大地震,震中位于唐山市吉祥路一带,即北纬39˚38’,东经118˚11’。

在这次地震中,有24万人丧生,是有史以来地震给人类造成的特大灾难之一。

八年级数学上册 2.1.1 认识无理数导学案(无答案)(新版)北师大版

八年级数学上册 2.1.1 认识无理数导学案(无答案)(新版)北师大版

2.1.1认识无理数课题 2.1.1认识无理数活动安排 达标练习:为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a 米,则由勾股定理得a 2=12+22,即a 2=5,a 的值大约是多少?这个值可能是分数吗?新知拓展:如图,正三角形ABC 的边长为2,高为h ,h 可能是整数吗?可能是分数吗?[达标反馈]: 1._________小数或____________小数是有理数。

2.x 2=3,则x______分数,______整数,______有理数.(填“是”或“不是”)3.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定4.边长为1的正方形的对角线长是( ) A. 整数 B. 分数 C. 有理数 D. 不是有理数 5.设面积为5π的圆的半径为a ,a 是有理数吗?说说你的理由.6. 如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC=6,AD=5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?[总结升华]:上述题中a ,b 确实存在,但都不是有理数,那么它们是什么数呢? 总结反思:学习目标 1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.探究任务二: 1、独学3分钟 组学2分钟抽展(展台展示)2分2.达标练习:2分钟新知拓展: 5分钟达标反馈:10分钟总结升华2分钟活动安排 【情境引入】我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题. 【学习探究】探究任务一:若a 2=2中,a 是什么数呢? 请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?假设拼成大正方形的边长为a ,则a 应满足什么条件呢?因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.小组讨论a 是整数吗?是分数吗?是有理数吗?达标小测:x 2=8,则x______分数,______整数,______有理数.(填“是”或“不是”) 探究任务二:b 是有理数吗?(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗?(课件出示) 复习旧知:什么是有理数及其分(2分钟) 探究任务一1:学生动手得到面积为2的正方形,教师课件演示,学生小组讨论a 是整数吗?是分数吗?是有理数吗? (10分钟) 2:达标小测:(2分钟)。

八年级数学上册2.1认识无理数说课稿(新版北师大版)

八年级数学上册2.1认识无理数说课稿(新版北师大版)

八年级数学上册2.1认识无理数说课稿(新版北师大版)一. 教材分析八年级数学上册2.1认识无理数是北师大版初中数学的一个重要内容。

这一节主要让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握无理数的估算方法。

教材通过丰富的例子,引导学生探索无理数的特点,培养学生的抽象思维能力。

二. 学情分析八年级的学生已经学习了有理数的概念,对数的运算有一定的了解。

但是,他们对无理数的概念可能感到陌生,理解起来有一定的困难。

因此,在教学过程中,我需要关注学生的认知水平,通过生动的例子和实际操作,帮助学生理解和掌握无理数的概念。

三. 说教学目标1.知识与技能:让学生了解无理数的概念,理解无理数与有理数的关系,掌握无理数的估算方法。

2.过程与方法:通过观察、操作、探索等活动,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.重点:无理数的概念和性质。

2.难点:无理数与有理数的关系,无理数的估算方法。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2.教学手段:多媒体课件、实物模型、几何画板等。

六. 说教学过程1.导入:通过一个故事引入无理数的概念,激发学生的兴趣。

2.新课导入:讲解无理数的概念,通过例子让学生理解无理数的特点。

3.案例分析:分析一些实际问题,让学生了解无理数在生活中的应用。

4.小组讨论:让学生分组讨论无理数与有理数的关系,分享各自的观点。

5.课堂练习:让学生做一些相关的练习题,巩固所学知识。

6.总结:对本节课的内容进行总结,强调无理数的概念和性质。

7.拓展:介绍一些无理数的应用领域,激发学生的学习兴趣。

七. 说板书设计板书设计要清晰、简洁,能够突出无理数的概念和性质。

主要包括以下几个部分:1.无理数的概念2.无理数的特点3.无理数与有理数的关系4.无理数的估算方法八. 说教学评价通过课堂表现、练习题和小组讨论等方式对学生的学习情况进行评价。

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。

八年级数学上册 2.1.1 认识无理数教 精品导学案 北师大版

八年级数学上册 2.1.1 认识无理数教 精品导学案 北师大版

认识无理数学 科数学课题2.1认识无理数 (一)授课教师教学 目标通过拼图活动,让学生感受无理数产生的背景和学习它的必要性。

重点对无理数的认识。

德育 目标丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数的产生感性认识。

难点 无理数产生的实际背景和学习它的必要性。

1.什么叫有理数?举例说明。

2.勾股定理的内容是什么?若Rt ⊿ABC 的两直角边是5、12,那么它的斜边是多少教学过程课堂笔记二、互动导学随着人类的认识不断发展,人们发现,现实社会生活中确实存在不同于有理数的数,本章我们将学习无理数、实数、平方根、立方根的概念。

学习利用估算或借助计数器求一个无理数的近似值,并解决有关的实际问题拼图活动(课本32页) 把准备好的两块边长为1的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。

(1)设大正方形的边长为a ,a 满足条件是什么? (2)a 可能是整数吗?(3)a 可以是以2为分母的分数吗?a 可以是以3为分母的分数吗?说说你的理由。

(4)a 可能是分数吗?说说你的理由,与同伴交流。

,93,42,11222===越来越大,所以a 不可能是整数 ,41)21(2= 94)32(2=结果都是分数,所以a 不可能是分数” 事实上,在等式22=a 中,a 既不是整数也不是分数,所以a 不是有理数。

说明社会生活中存在着不是有理数的数。

做一做1.课本P32页“做一做”内容(1)以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件?(3)b 是有理数吗? 生活中的确存在一些不是有理数的数。

三:当堂练习 一、填空题1.在⊿ABC 中,∠C = 90°,若4,3==b a ,则c =_______;2.用长cm 4,宽cm 3的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等于________cm ;3.平方等于16的数是 ;4.如果492=a ,则=a 。

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究任务一1:学生动手得到面积为2的正方形,教师课件演示,学生小组讨论a是整数吗?是分数吗?是有理数吗?(10分钟)
2:达标小测:(2分钟)
2.1.1认识无理数
课题
2.1.1认识无理数
活动安排
达标练习:
为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?
新知拓展:
如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?
[达标反馈]:
1._________小数或____________小数是有理数。
2.x2=3,则x______分数,______整数,______有理数.(填“是”或“不是”)
3.面积为6的长方形,长是宽的2倍,则宽为()
A.小数B.分数C.无理数D.不能确定
4.边长为1的正方形的对角线长是()
A.整数B.分数C.有理数D.不是有理数
5.设面积为5π的圆的半径为a,a是有理数吗?说说你的理由.
6.如图,在△ABC中,CD⊥AB,垂足为D,AC=6,AD=5,问:CD可能是整数吗?可能是分数吗?可能是有理数吗?
[总结升华]:上述题中a,b确实存在,但都不是有理数,那么它们是什么数呢?
总结反思:
学习目标
1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
达标小测:
x2=8,则x______分数,______整数,______有理数.(填“是”或“不是”)
探究任务二:b是有理数吗?
(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?
(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?
(课件出示)
复习旧知:什么是有理数及其分(2分钟)
2.能判断给出的数是否为有理数;并能说出理由.
探究任务二:
1、独学3分钟
组学2分钟
抽展(展台展示)2分
2.达标练习:2分钟
新知拓展:
5分钟
达标反馈:
10分钟
总结升华
2分钟
活动安排
【情境引入】我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
【学习探究】
探究任务一:若a2=2中,a是什么数呢?
请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?
假设拼成大正方形的边长为a,则a应满足什么条件呢?因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.小组讨论a是整数吗?是分数吗?是有理数吗?
相关文档
最新文档