[]相似三角形判定三边两边夹角

合集下载

4.4第2课时利用两边及夹角判定三角形相似(教案)

4.4第2课时利用两边及夹角判定三角形相似(教案)
3.重点难点解析:在讲授过程中,我会特别强调两边对应成比例和夹角相等这两个重点。对于难点部分,我会通过实际例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相似相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用纸片折叠和测量,来演示三角形相似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形相似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在新课讲授环节,我发现大部分学生能够理解两边及夹角判定三角形相似的概念,但在案例分析时,还是有一些学生对于如何运用这个性质感到困惑。我尝试通过详细的解释和图示来帮助他们,但效果并不理想。我反思,可能需要设计更多具有层次性的问题,引导学生逐步深入思考,从而更好地理解这个性质。
实践活动环节,学生们的参与度很高,但我也注意到,有些小组在讨论问题时,还是容易陷入僵局。这时,我作为引导者,应该及时介入,提供适当的提示和引导,帮助他们找到解决问题的思路。此外,在实验操作过程中,我发现学生们对于实际动手操作非常感兴趣,这也让我意识到,在今后的教学中,可以适当增加实验操作环节,让学生在实践中学习。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形相似的基本概念。三角形相似是指两个三角形在形状上完全相同,但大小可以不同。它是解决几何问题的重要工具,可以帮助我们求解未知长度和角度。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何利用两边及夹角判定三角形相似,并在实际问题中求解未知长度。

相似三角形的判定边角边定理

相似三角形的判定边角边定理
完善相似三角形的理论体系
目前相似三角形的判定定理已经比较完善,但仍有一些细节 和边缘问题需要进一步研究和探讨,以完善几何学的理论体 系。
05
练习与思考题
基础练习题
01
总结词
理解边角边定理的基本应用
02 03
题目1
已知$triangle ABC$和$triangle ABD$中,AB=AB,AC=AD,且 $angle BAC = angle BAD$,求证:$triangle ABC cong triangle ABD$。
03
边角边定理的应用
证明两个三角形相似
总结词
边角边定理是证明两个三角形相似的重要定理之一,通过比较两个三角形的两边和夹角是否相等,可 以判断两个三角形是否相似。
详细描述
边角边定理指出,如果两个三角形的两边和夹角分别相等,则这两个三角形相似。具体来说,如果 $triangle ABC sim triangle A'B'C'$,且$AB = A'B'$,$AC = A'C'$,$angle B = angle B'$,则根据 边角边定理,可以推断出$triangle ABC$与$triangle A'B'C'$相似。
性质
边角边定理是相似三角形判定定理的 一种,它提供了判断两个三角形是否 相似的依据。
边角边定理的证明
证明方法一
通过三角形的性质和角的相等关系,利用三角形的 全等定理进行证明。
证明方法二
利用反证法,假设两个三角形不相似,然后通过一 系列推理和计算,得出矛盾,从而证明边角边定理 。
证明方法三
利用向量方法,通过向量的加法、数乘和向量的模 长等性质,证明两个三角形的向量相等,从而得出 两个三角形相似的结论。

相似三角形的判定3两边及夹角ppt课件

相似三角形的判定3两边及夹角ppt课件
练习:下列每个图形中,是否存在相似三角形?若存
在,用字母表示出来,并写出对应的比例式。 A
A
D 50° E
D
70°E
B 70°
B 50°
C
C
A
DC
A 4
C
E3
E
6
B
B
2 D
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
Q
B
PC
这是探索结论的题型,要先观察,猜测
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
例2.如图,在△ABC中,D在AC上,已知 AD=2 cm,AB=4cm,AC=8cm,
求证:△ABD∽△ABC.
A D
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
典例:
变式:已知:如图,△ABC和△ADE中,
知识回顾 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
我们学习了哪些判定三角形相似的方法
,请你用符号语言叙述。 A
A
D
A D
D
E
E
F
B
CE
F (2B)∵DE∥BC C B
∴△ADE∽△ABC
C
(1)∵∠A=∠D, ∠B= ∠E,

相似三角形的判定3(三边对应成比例)

相似三角形的判定3(三边对应成比例)

AB=14千米,AD=28千米, BD=21千米,
BC=42千米,DC=31.5千米,公路AB与CD平
行吗?说出你的理由。
解:公路AB与CD平行。

AB 14 2
BD 21 3
AD 28 2 BC 42 3
28 D
A
31.5 21
14
42
B
C
BD 21 2 DC 31.5 3
AB AD BD
例2、已知:如图,DE,DF,EF是△ABC的中位线 .求证:△ABC∽△FED
A
证明:∵ DE,DF,EF是△ABC的中位线
∴ DE= 1 BC,DF= 1 AC,EF= 1 AB
D
E
2
2
2B
F
C
∴ DE
BC
DF AC
EF
AB
1 2
∴ △ABC∽△FED
例3:如图,某地四个乡镇建有公路,已知
B 12
C
E
F
3:如图,在6×6的正方形方格中,△ABC与△DEF的 顶点都在边长为1的小正方形的顶点上,
(1)填空: BC=___2___, AC=___1_0____ EF=_2___2__, DF=__2__1_0____.
(2)△ABC与△DEF相似 A 吗?若相似,请给出证明, 若不相似,请说明理由.
三角对应相等, 三边对应成比例 两边对
应成比 例,且 夹角相 等(SAS)
类似全等三角形的判定,除上述外,还有 其他情况吗?继续探索三角形相似的条件。
三边对应成比例
A
A’
B’
C’
B
C
A'B' B'C' A'C'

相似三角形的判定两边及夹角

相似三角形的判定两边及夹角

5.如图△ABC中,D、E是AB、AC上点,AB=7.8,AD=3,AC
=6,CE=2.1,试判断△ADE与△ABC是否会相似,
小张同学的判断理由是这样的:
A
【解析】∵ AC=AE+CE,而AC=6,CE=2.1
D
∴ AE=6-2. 1=3.9
由于
AD AE

AB AC
∴ △ADE与△ABC不会相似.
那么两个三角形是否相似呢?
思考
AB
AC
对于△ABC和△A´B ´C ´中,

A' B' A' C '
∠B=∠B´,
这两个三角形一定相似吗?试着画画看.

A
B
C

这两个三角形不一定相似
D

例题1:
• 如图,AD=3,AE=4,BE=5,CD=9,△ADE和△ABC,
相似吗?
解:∵ AD=3,AE=4,BE=5,CD=9
相交于O,且将这个四边形分成①、②、③、④四个三角
形.若OA:OC=0B:OD,则下列结论中一定正确的
是 (
) .


A.①与②相似
B.①与③相似
C.①与④相似
D.②与④相似


【解析】选B.根据两边对应成比例且夹角相等得选择项.
4.已知:如图,△ABC中,P是AB边上的一点,连结CP.试增添一
A
A.AB2=BC·BD
B.AB2=AC·BD
C.AB·AD=BD·BC
D.AB·AD=AD·CD
2.(2010·吉林中考)如图,在
△ABC中,∠C=90°,D是AC上一点,

相似三角形的判定3

相似三角形的判定3

AD DE
AE
,找出图中
A
相 等的角,并说明你的理由。 解:在ΔABC和ΔADE 中, 思考:1、根据已知的比例式, AB BC AC 如何找出哪两个三角形相似? = = ∵ 2、如何找出相似三角形的对应 AD DE AE 角? ∴ ΔABC∽ΔADE
CБайду номын сангаас
B

∠BAC=∠DAE, ∠B= ∠D,
∠C= ∠E
例2: 如图,某地四个乡镇建有公路,已知AB=14千米,AD=28千
米, BD=21千米, BC=42千米,DC=31.5千米,公路AB与CD平行 吗?说出你的理由。
解:公路AB与CD平行。 ∵
AB 14 2 BD 21 3
AD 28 2 BC 42 3
BD 21 2 DC 31.5 3
D
28
A
31.5 21 14
B
C
42
要证明线平行需证明角相等 ∴ △ABD∽△BDC, 要证明角相等需证明三角形相似 要证明三角形相似需看条件
∴ ∠ABD=∠BDC 条件给出线段的长度,考虑应用 ∴ AB∥DC
相似三角形的判定三
这节课我学到了........
三边对应成比例, 判定方法3: 三角形相似 文字语言: 如果一个三角形的三条边分别与另一个三角形的三 条边对应成比例,那么这两个三角形相似。 图形语言: 符号语言: AB AC BC ∵ = = A D DE DF EF
∴△ABC∽△DEF B C
E
F
例1: 如图,已知 AB = BC = AC
课前回顾
1、到目前,你知道多少能判定两三角形相似的方法呢? 定义法、
判定1(两角型)、

三角形相似的判定方法

三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

相似三角形的判定2(两边及夹角)


AB AC , 对于△ABC和△A’B’C’,如果 A' B' A' C '
∠B=∠B’,这两个三角形一定相似吗?试着画画看?
A
A’
B
C B’
D
C’
这两个三角形不一定相似
在△ABC中,D﹑E分别在AB﹑AC上,请你加一 个条件使△ADE∽△ABC,这个条件可以是__ DE∥BC _________
A
B
D
E
CC
1如图,AB•AE=AD•AC,且∠1=∠2, 求证:△ABC∽△AED.
A 1 D B 2 E C
练习题
练习题
2.已知:如图,P为△ABC中线AD上 2 的一点,且 BD = PD AD 求证:△ADC∽△CDP.
A P B D C
练习题
3如图在正方形网格上有 、如图在正方形网格上有△A C A1 B1C1和A C 1B 1和 2 B21 2, △A 它们相似吗?如果相似 ,求出相似比;如果 2B2C2,它们相似吗?如果相似,求 出相似比;如果不相似,请说明理由。 不相似,请说明理由。
判定定理2:如果两个三角形的两组对应边的比相等 并且相应的夹角相等,那么这两个三角形相似。 可以简单说成:两边对应成比例且夹角相等,两 A’ 三角形相似。 A
B
C B’ C’
在△ABC和△A’B’C’中,
AB AC k , ∠A=∠A’, A' B ' A' C '
∴△ABC∽△A’B’C’
答案是2:1
AD AE AC AB
D B A D E C B E C A
例1 根据下列条件,判断△ABC和△A’B’C’ 是否相似,并说明理由: ∠A=120°,AB=7cm,AC=14cm, ∠A’=120°,A’B’=3cm,A’C’=6cm,

相似三角形与三角函数

初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。

三角形相似的判定方法

三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。

22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过点D作DE∥BC交 AC于点E.
D
E
B
C
A
A’
B
C B’
C’
A'B' B'C' A'C' △ABC∽△A’B’C’
AB BC AC
如果一个三角形的三组对应边的
比相等,那么这两个三角形相似.
简单地说:
三边对应成比例,两三角形相似.
类似于判定三角形全等的方法, 我们能通过两边和夹角来判断两个 三角形相似呢?
答案是2:1
如果有一点E在边AC上,那么点E应该在什么
位置才能使△ADE△ABC相似呢?
此时,
C AD
AB
1? 3
AE AC
1 =?3
B
D
E
A= A
A
要作两个形状相同的三角形框架,其中 一个三角形的三边的长分别为4、5、6, 另一个三角形框架的一边长为2,怎样 选料可使这两个三角形相似?
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
D
2、如图,在△ ABC中, ∠C的平分线交AB于D, B 过 点 D 作 DE∥BC 交 AC 于 E , 若 AD:DB=3:2 , 则
EC:BC=__3_:_5__。
A
F EC
B D
EC
请你帮忙:
图纸上上有不锈钢三角架的长分别为 3cm,4cm,5cm,库存的不锈钢条有两根中,一根长 60cm,另一根长180cm,工人师傅想用其中一根做 三角架的一边,在另一根上取两截,用来做三角 架的另外两边,使做成的三角架与图纸上的形状 相同(即图形相似)。请帮他确定:共有几种不同 的做法(焊接用料略去不计)?哪一种放大的倍数 最大?最大的倍数是多少?
1. 对应角___相__等__, 对应边—成——比—例——的两个三角形, 叫做相似三角形 .
2. 相似三角形的—对—应——角—相——等, 各对应边——成—比——例—。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延
长线)相交,所构成的三角形与原三角形相似。
A
D
E
D
E
O
D
C
B
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
2如图,AB•AE=AD•AC,且∠1=∠2, 求证:△ABC∽△AED.
A
1
D
2
B
EC
3.已知:如图,P为△ABC中线AD上
的一点,且 BD 2 PDAD
求证:△ADC∽△CDP.
A
P
B
D
C
如如图图在在 正方正形方网形格网 上有格 A△1上 B1AC有 1和 1B1AC2B21C和2, △A 2B它2们 C2相 ,它似们吗 相似?吗如?果 ,如相 求 果似 相出似相,似求比 出; 相 如果 似不比相;似 如果,不请相说似明 ,请理说由明。理由。
如果两个三角形的两组对应边 的比相等,并且相应的夹角相等,那 么这两个三角形相似.
类似于证明通过三边判定三角形相似 的方法,请你自己证明这个结论.
已知:如图△ABC和 △A`B`C`中,∠A=∠A` ,
A`
∠A` ,A`B`:AB=A`C`:AC.
C`
求证:△ABC∽△A`B`C` B`
A
DE
∠A’=1200,A’B’=3cm,A’C’=6cm. (2)AB=4 cm,BC=6cm,AC=8cm,
A’B’=12cm,B’C’=18cm,A’C’=21cm.
AB BC
1.如图已知, AD DE ∠BAD=∠CAE.
解 AB BC AC AD DE AE
AACE, 试说明
A E
∴ΔABC∽ΔADE ∴∠BAC=∠DAE
三边对应成比例
A
A’
B’
C’
B
C
A'B' B'C' A'C'
AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中
A`B`:AB=A`C`:AC=B`C`:BC.
A`
求证:△ABC∽△A`B`C`
证明:在△ABC的边AB(或延
B` A
C`
长线)上截取AD=A`B`,
∵ DE∥BC
∴ △ ADE ∽ △ ABC
B
CB
C
练习:
1.如图,在△ABC中,
DG∥EH∥FI∥BC,
△ADG∽△AEH∽△ AFI∽△ABC
(1)请找出图中所有的相似三角形;
(2)如果AD=1,DB=3,那么DG:
BC=_1__:__4。
A
DG
E
H
F
I
B
C
2.如图,△ABC 中,DE∥BC, GF∥AB,DE、GF交于点O,
4
5
6 2
如图,AB⊥BC,DC⊥BC,垂足分别为 B、C,且AB=8,DC=6,BC=14,BC上是 否存在点P使△ABP与△DCP相似?若有, 有几个?并求出此时BP的长,若没有, 请说明理由。
8 6
14
相似三角形的判定方法
方法1:通过定义(不常用)
三个角对应相等 三边对应成比例
方法2: 平行于三角形一边的直线与

BD BA=
BBMC=
2, 5
MC BC
=
3 5
又∵ ME∥AB,
∴△CEM∽△CAB
∴ CE= CA
CM = 3 CB 5
1、如图,在 ABCD中,E是边BC
上 的 一 点 , 且 BE:EC=3:2 , 连 接
ABEE:A、D=_B3_D:_5__交,B于F:F点D=_F__3,_:_5。A则
∴ AE FE
=B E
CE
C ∵∠1=∠2
∴△AEB∽△FEC
已知:如图,在正方形ABCD中,P是BC上 的点,且BP=3PC,Q是CD的中点.ΔADQ与 ΔQCP是否相似?为什么?
例1:根据下列条件,判断△ABC与△A’B’C’ 是否相似,并说明理由. (1)∠A=1200,AB=7cm,AC=14cm.
则图中与△ABC相似的三角形共 有多少个?请你写出来.
解: 与△ABC相似的三角形有3个:A
△ADE △GFC △GOE
D
B F
G
OE C
3、如图,E是平行
四边形ABCD的边BC
的延长线上一点,
连接AE交CD于F,则
图中共有相似三角
A
D
3 形_______对
F
B
CE
任意画一个三角形,再画一 个三角形,使它的各边长都是原 来三角形各边长的K倍,度量这 两个三角的对应角,它们相等吗? 这两个三角形相似吗?相互交流 一下,看看是否有同样的结论.
其他两边(或延长线)相交,所构成的三 角形与原三角形相似;
方法3: 三边对应成比例的,两三角形
相似.
方法4两边对应成比例且夹角相等,两
三角形相似.
4.如图:在△ABC中,点M是 BC上任一点, MD∥AC, D
A E
ME∥AB, BD 2,求CE .B 2份 M 3份 C
AB 5 AC
5份
解:∵MD∥AC, ∴△BDM∽△BAC
B
C
? 思定相似吗? 试着画画看.
A
4
3.2
50° 3.2
BC
G
D
2
50°
1.6
E
F
判断图中△AEB和△FEC是否相似?
解:∵ AE = 54 =1.5 FE 36
B 45
B E = 4 5 =1.5
CE 30
A
1 54
3E0236 F
相关文档
最新文档