工程力学课后习题答案(5-7章)
工程力学第7章答案

⼯程⼒学第7章答案第7章简单的弹性静⼒学问题7-1 有⼀横截⾯⾯积为A 的圆截⾯杆件受轴向拉⼒作⽤,若将其改为截⾯积仍为A 的空⼼圆截⾯杆件,其他条件不变,试判断以下结论的正确性:(A )轴⼒增⼤,正应⼒增⼤,轴向变形增⼤;(B )轴⼒减⼩,正应⼒减⼩,轴向变形减⼩;(C )轴⼒增⼤,正应⼒增⼤,轴向变形减⼩;(D )轴⼒、正应⼒、轴向变形均不发⽣变化。
正确答案是 D 。
7-2 韧性材料应变硬化之后,材料的⼒学性能发⽣下列变化:(A )屈服应⼒提⾼,弹性模量降低;(B )屈服应⼒提⾼,韧性降低;(C )屈服应⼒不变,弹性模量不变;(D )屈服应⼒不变,韧性不变。
正确答案是 B 。
7-3 关于材料的⼒学⼀般性能,有如下结论,试判断哪⼀个是正确的:(A )脆性材料的抗拉能⼒低于其抗压能⼒;(B )脆性材料的抗拉能⼒⾼于其抗压能⼒;(C )韧性材料的抗拉能⼒⾼于其抗压能⼒;(D )脆性材料的抗拉能⼒等于其抗压能⼒。
正确答案是 A 。
7-4 低碳钢材料在拉伸实验过程中,不发⽣明显的塑性变形时,承受的最⼤应⼒应当⼩于的数值,有以下四种答案,试判断哪⼀个是正确的:(A )⽐例极限;(B )屈服强度;(C )强度极限;(D )许⽤应⼒。
正确答案是 B 。
7-5 根据图⽰三种材料拉伸时的应⼒—应变曲线,得出的如下四种结论,试判断哪⼀种是正确的:(A )强度极限)3()2()1(b b b σσσ>=,弹性模量E(1)>E(2)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(B )强度极限)2()1()3(b b b σσσ<<,弹性模量E(2)>E(1)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(C )强度极限)3()1()2(b b b σσσ>>,弹性模量E(3)>E(1)>E(2),延伸率δ(3)>δ(2)>δ(1)⽐例极限;(D )强度极限)3()2()1(b b b σσσ>>,弹性模量E(2)>E(1)>E(3),延伸率δ(2)>δ(1)>δ(3)⽐例极限;正确答案是 B 。
工程力学课后习题答案

工程力学课后习题答案工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC 或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第一章静力学基础 9第二章平面力系2-1 电动机重P=5000N,放在水平梁AC 的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F F F F FB A y A B x 30sin 30sin ,0030cos 30cos ,0 解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F F P F F FBC y BC AB x解得:P F P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交N F NF F F F F F FC A GA y C A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩[1]
![工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩[1]](https://img.taocdn.com/s3/m/5939f6a70029bd64783e2cf5.png)
45D 30D
FB
C
FP
习题 5-6 图
习题 5-6 解图
∑ Fx = 0 , FB = 2 FA
(1) (2) (3)
∑ Fy = 0 ,
2 3 FA + FB − FP = 0 2 2
1+ 3 FB 2 π FB ≤ [σ ] ⋅ d 2 4 FP =
5
FP ≤
1+ 3 π 2 ⋅ d [σ ] 2 4 ` (4) 1+ 3 π = ⋅ × 20 2 × 10 − 4 × 157 × 106 = 67.4k N 2 4
解:1. 受力分析:由图(a)有
5 FP 3 4 4 ∑ Fx = 0 , F1 = − F3 = − FP 5 3
由图(b)由
2. 强度计算:
3m
F1
F3
F4
C
θ
B
F2
FP
F3
习题 5-7 图
(a)
(b)
∑ F y = 0 , F3 =
4 4 F3 = FP 5 3 5 ∑ F y = 0 , F2 = − F3 = − FP 3
(2)
∴
x=
5 b 6
5-11 电线杆由钢缆通过旋紧张紧器螺杆稳固。已知钢缆的横截面面积为 1× 103 mm 2 , E=200GPa, [σ ] = 300MPa 。欲使电杆有稳固力 FR=100kN,张紧器的螺杆需相对移动多少? 并校核此时钢缆的强度是否安全。
FR
习题 5-11 图
解: (1)设
= 2.947 +
100 ×103 × 2500 × 4 = 5.286 mm 105 ×103 × π × 362
(完整版)工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
工程力学第五章习题答案
工程力学第五章习题答案工程力学第五章习题答案工程力学是一门研究物体受力和变形的学科,它在工程实践中起着重要的作用。
第五章是工程力学课程中的重要章节,主要讲述了刚体平衡和平面力系的平衡。
在这一章中,有许多习题需要我们进行解答和分析。
下面我将为大家提供一些工程力学第五章习题的答案,希望能对大家的学习有所帮助。
1. 习题:一个悬臂梁的长度为L,梁的质量为m,质心距离支点的距离为a。
求悬臂梁在支点处的支反力和力矩。
答案:根据平衡条件,悬臂梁在支点处的支反力应该等于悬臂梁的重力,即F= mg。
而力矩可以通过计算重力的力矩和质心的力矩来求解。
重力的力矩为0,因为支点处的支反力通过支点,所以力臂为0。
质心的力矩为Ma,即力矩M = mga。
2. 习题:一个平面力系由三个力组成,分别是F1 = 10N,F2 = 5N,F3 = 8N。
已知F1与F2夹角为60度,F2与F3夹角为120度,求力系合力的大小和方向。
答案:首先,我们需要将力系中的三个力进行分解。
根据三角函数的知识,可以得到F1在x轴和y轴上的分量分别为F1x = 10N * cos60°,F1y = 10N *sin60°;F2在x轴和y轴上的分量分别为F2x = 5N * cos120°,F2y = 5N *sin120°;F3在x轴和y轴上的分量分别为F3x = 8N * cos0°,F3y = 8N * sin0°。
然后,将各个力在x轴和y轴上的分量相加得到合力的分量Fx和Fy。
最后,利用勾股定理可以求得合力的大小F和方向θ。
3. 习题:一个物体质量为m,放在一个斜面上,斜面的倾角为θ。
已知斜面的摩擦系数为μ,求物体在斜面上的静摩擦力的大小和方向。
答案:物体在斜面上的重力可以分解为垂直于斜面的分力mgcosθ和平行于斜面的分力mgsinθ。
根据静摩擦力的定义,静摩擦力的大小不超过μmgcosθ。
《工程力学》详细版习题参考答案
∑ Fx
=FAx
+
FBx
+
FCx
=− 1 2
F
+
F
−
1 2
F
=0
∑ Fy
= FAy
+
FBy
+
FCy
= − 3 2
F
+
3 F = 0 2
∑ M B= FBy ⋅ l=
3 Fl 2
因此,该力系的简化结果为一个力偶矩 M = 3Fl / 2 ,逆时针方向。
题 2-2 如图 2-19(a)所示,在钢架的 B 点作用有水平力 F,钢架重力忽 略不计。试求支座 A,D 的约束反力。
(a)
(b)
图 2-18
解:(1)如图 2-18(b)所示,建立直角坐标系 xBy。 (2)分别求出 A,B,C 各点处受力在 x,y 轴上的分力
思考题与练习题答案
FAx
= − 12 F ,FAy
= − 3 F 2
= FBx F= ,FBy 0
FCx
= − 12 F ,FCy
= 3 F 2
(3)求出各分力在 B 点处的合力和合力偶
(3)根据力偶系平衡条件列出方程,并求解未知量
∑ M =0 − aF + 2aFD =0
《工程力学》
可解得 F=Ay F=D F /2 。求得结果为正,说明 FAy 和 FD 的方向与假设方向相同。 题 2-3 如 图 2-20 ( a ) 所 示 , 水 平 梁 上 作 用 有 两 个 力 偶 , 分 别 为
3-4 什么是超静定问题?如何判断问题是静定还是超静定?请说明图 3-12 中哪些是静定问题,哪些是超静定问题?
(a)
工程力学课后答案
⼯程⼒学课后答案第三章圆轴的扭转1. 试画出图⽰轴的扭矩图。
解:(1)计算扭矩。
将轴分为2段,逐段计算扭矩。
对AB段:∑M X=0, T1-3kN·m=0可得:T1=3kN·m对BC段:∑M X=0, T2-1kN·m=0可得:T2=1kN·m(2)画扭矩图。
根据计算结果,按⽐例画出扭矩图如图。
2.图⽰⼀传动轴,转速n=200r/min,轮A为主动轴,输⼊功率P A=60kW,轮B,C,D 均为从动轮,输出功率为P B=20kW,P C=15kW,P D=25kW。
1)试画出该轴的扭矩图;2)若将轮A和轮C位置对调,试分析对轴的受⼒是否有利?解:(1)计算外⼒偶矩。
M A=9549×60/200=2864.7N·m同理可得:M B=954.9N·m,M C=716.2N·m,M D=1193.6N·m(2)计算扭矩。
将将轴分为3段,逐段计算扭矩。
对AB段:∑M x=0, T1+M B=0可得:T1=-954.9N·m对BC段:∑M x=0, T2+M B-M A=0可得:T2=1909.8N·m对BC段:∑M x=0, T3-M=0可得:T3=1193.6N·m(3)画扭矩图。
根据计算结果,按⽐例画出扭矩图如右图。
(4)将轮A和轮C位置对调后,由扭矩图可知最⼤绝对值扭矩较之原来有所降低,对轴的受⼒有利。
3. 圆轴的直径d=50mm,转速n=120r/min。
若该轴横截⾯的最⼤切应⼒τmax=60MPa,问圆轴传递的功率多⼤?解:W P=πd3/16=24543.7mm3由τmax=T/W P可得:T=1472.6N·m由M= T=9549×P/n可得:P=T×n/9549=18.5kW4. 在保证相同的外⼒偶矩作⽤产⽣相等的最⼤切应⼒的前提下,⽤内外径之⽐d/D=3/4的空⼼圆轴代替实⼼圆轴,问能够省多少材料?5. 阶梯轴AB如图所⽰,AC段直径d1=40mm,CB段直径d2=70mm,外⼒偶矩M B=1500N·m,M A=600N·m,M C=900N·m,G=80GPa,[τ]=60MPa,[φ/]=2(o)/m。
工程力学第5章答案
习题5-1图习题5-2图习题5-3图第二篇 弹性静力学第5章 静力学基本原理与方法应用于弹性体5-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Qx q xF =;Q d d F x M=;(B ))(d d Qx q xF -=,Qd d F x M-=; (C ))(d d Qx q xF -=,Qd d F x M=;(D ))(d d Qx q xF =,Qd d F x M-=。
正确答案是 B 。
5-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
正确答案是 b 、c 、d 。
5-3 已知梁的剪力图以及a 、e 截面上的弯矩M a 和M e ,如图所示。
为确定b 、d 二截面上的弯矩M b 、M d ,现有下列四种答案,试分析哪一种是正确的。
(A ))(Q F b a a b A M M -+=,)(Q F d e e d A M M -+=; (B ))(Q F b a a b A M M --=,)(Q F d e e d A M M --=; (C ))(Q F b a a b A M M -+=,)(Q F d e e d A M M --=; (D ))(Q F b a a b A M M --=,)(Q F d e e d A M M -+=。
上述各式中)(Q F b a A -为截面a 、b 之间剪力图的面积,以此类推。
正确答案是 B 。
5-4 应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定 m a x Q ||F 、maxM。
解:(a )0=∑A M ,l MF B 2R =(↑)0=∑y F ,lM F A2R -=(↓)F R AF R BF R BABABCDCEF R AF R B F R Al MF 2||m a x Q =, M M 2||max =(b )0=∑A M022R 2=⋅+⋅+⋅--l F l ql lql ql BqlF B41R =(↑)=∑y F ,ql F A 41R -=(↓)2R 4141ql l ql l F M B C =⋅=⋅=(+)2ql M A =ql F 45||max Q =, 2max ||ql M =(c )0=∑y F ,ql F A =R (↑)0=∑A M ,2ql M A =0=∑D M ,022=-⋅-⋅+D M lql l ql ql223ql M D=ql F =max Q ||, 2max 23||qlM =(d )0=∑B M 0232R =⋅-⋅⋅-⋅l ql ll q l F Aq lF A 45R =(↑)0=∑y F ,qlF B 43R =(↑)0=∑B M ,22l q M B= 0=∑D M ,23225ql M D=ql F 45||max Q =, 2max 3225||ql M =(e )0=∑y F ,F R C = 0 0=∑C M ,0223=+⋅+⋅-C M lql l ql2ql M C =0=∑B M ,221ql M B ==∑y F ,ql F B =Qql F =max Q ||, 2max ||ql M =M ACF R ABABACF R BF R AF R CBAF R AF R CM CCABC习题5-6图(f)0=∑AM,qlF C21R=(↑)=∑y F,qlF A21R-=(↓)=∑y F,021Q=-+-BFqlqlqlF B21Q==∑DM,042221=+⋅-⋅DMllqlql,8D, 8EqlF21||maxQ=,2max81||qlM=5-5其剪力图如图所示。