【七年级寒假班讲义】第4讲 实数复习(学生版)
七年级下册数学讲义之实数单元复习-学生-春季班

学科教师辅导讲义学员学校:年级:初一课时数:2学员姓名:辅导科目:数学学科教师:课题实数全章复习授课时间:备课时间:教学目标1、理解实数的分类,了解无理数的概念2、会求无理数的绝对值、相反数,会对实数进行大小比较.3、理解平方根、算术平方根和立方根等概念会求一个数的平方根和立方根4、掌握实数间的运算法则,会计算简单的实数运算。
重点及难点1、理解平方根、算术平方根和立方根等概念会求一个数的平方根和立方根2、掌握实数间的运算法则,会计算简单的实数运算。
教学内容知识精讲一、主要知识点:注意:(1)实数还可按正数,零,负数分类.(2)整数可分为奇数,偶数,零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2n -1或2n +1(n 为整数)表示.(3)正数和零常称为非负数.1.1.2平方根、算术平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根),即如果a x =2,那么x 就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根,记作:a ±.正数a 的正的平方根叫做a 的算术平方根.记作:a .正数和零的算术平方根都只有一个.零的算术平方根是零.⎩⎨⎧<-≥==.,)0()0(2a a a a a a注意:a 的“双重非负性” :⎩⎨⎧≥≥.,00a a1.1.3立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或叫做a 的三次方根),即如果a x =3,那么x 就叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:33a a -=-,这说明三次根号内的负号可以移到根号外面.例题精讲(一)、有理数无理数的判别:1. 在-1.732,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ). A.5 B.2 C.3 D.4(二)、算术平方根、平方根、立方根的概念:1. 若1-m 与3m+1是同一个数的平方根,则这个数可能是2.一个正数x 的平方根为2a-3和5-a ,则x=.巩固练习1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、23的倒数的平方是 ,2的立方根的倒数的立方是 。
初中数学七年级寒假班讲义实数概念

学员编号: 年 级:七年级 课 时 数:3 学员姓名: 辅导科目:数学 学科教师:朱兴 课程主题: 实数概念授课时间: 2018年学习目标 实数概念+开平方教学内容课堂引入:(1)我们已经学习了有理数,有理数的分类是怎么分的?(2)有理数都可以表示为哪种统一的形式?(3)是不是所有的数都能表示为分数)0,( q q p qp 都是整数,且的形式?问题引入:面积为2的正方形的边长是多少?知识点一:无理数概念2是一个无限不循环小数。
常见的无理数类型:(1)一般的无限不循环小数,如:1.41421356···(2)看似循环而实际不循环的小数(有规律),如0.1010010001···(相邻两个1之间0的个数逐次加1);0.12345678···(连续不断地依次写正整数)。
(3)有特定意义的数,如:π=3.14159265···(4)开方开不尽的数,如:2,35,等。
知识精讲无限不循环小数叫做无理数练习:1. 判断对错:①无限小数都是无理数.②无理数就是开方开不尽的数.③开方开不尽的数都是无理数.④一个小数,不是有理数,就是无理数.2.无理数是( )A . 无限循环小数B . 开方开不尽的数C . 除有限小数以外的所有实数D . 除有理数以外的所有实数3. 在0、π、0.01、16、0.010010001……、3中,属于无理数的是 .【参考答案】1.错,错,对,对;2.D ;3. π、0.010010001 (3)【巩固】(1)在下列实数中,是无理数的为( ).A 0; .B 3.5-; .C 2; .D 9 .(2)在3220.61887-π,,,,8中,无理数的个数是( ) .A 1; .B 2; .C 3; .D 4. (3)实数中12,,346π中,分数的个数是( ).A 0个; .B 1个 ; .C 2个 ; .D 3个参考答案:(1)C ; (2)B ; (3)B知识点二:实数的概念问题:什么叫实数?实数可以怎样分类?⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数有理数零——有限小数或无限循环小数负有理数实数正无理数无理数——无限不循环小数负无理数补充:有理数的两种分类方式:有理数和无理数统称为实数。
七年级下册数学《实数》实数的分类知识点整理

实数的分类一、本节学习指导本节本身并不难,同学们只要明白无理数、实数、绝对值的概念,再做适当练习题就能完全掌握。
我们要注意理解绝对值的几何意义。
本节有配套学习视频。
二、知识要点1、无理数(1)无限不循环小数的小数叫做无理数;注意:它必须满足“无限”以及“不循环”这两个条件。
在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率以及含有圆周率的一些数;(2)开方开不尽的数,如:根号2,根号3等;(3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
应当特别注意的是:带根号的数不一定是无理数,如:根号9等;无理数也不一定带根号,如:圆周率2、有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
3、实数(1)有理数与无理数统称为实数。
在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1.(2)实数的性质:实数a的相反数是-a;实数a的倒数是1/a(a≠0);实数a的绝对值它的几何意义是:在数轴上的点到原点的距离。
注意:绝对值的几何意义是:在数轴上的点到原点的距离,比如|5|表示的是数轴上到原点距离为5的所有点,即有两个:-5,5,这两点到原点的距离都为5,所以|±5|=5.(3)实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。
(在数轴上,右边的数总是大于左边的数)。
对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。
(4)实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。
运算法则和运算顺序与有理数的一致。
三、经验之谈:本节考得最多的是无理数的概念和绝对值的几何意义。
第四讲 函数常考知识复习讲义(学生版)

第四讲函数常考知识复习讲义I本章知识思维导图 2 II典型例题 3题型一:求具体函数与抽象函数的定义域 3题型二:求函数的解析式 4题型三:求函数的值域 5题型四:函数的单调性 6题型五:函数的奇偶性 8题型六:函数性质的综合应用 10题型七:幂函数 12题型八:函数的实际应用 14 III数学思想方法 19①分类讨论思想 19②转化与化归思想 19③数形结合思想 20I本章知识思维导图II典型例题题型一:求具体函数与抽象函数的定义域【例1】(2024·广东深圳·高一校考期中)函数y=9-x2x的定义域是.【例2】(2024·上海松江·高一校考期末)函数y=xx2-1的定义域为(用区间表示).【例3】(2024·河南新乡·高一校联考期末)函数f x =8x2-x2-1的定义域为.【例4】(2024·新疆乌鲁木齐·高一校考期中)若函数f x 的定义域为-1,2,则函数f3+2x的定义域是.【例5】(2024·高一课时练习)已知函数f(x+1)的定义域是[-2,2],则函数f(x)的定义域是.【例6】(2024·吉林长春·高一长春市解放大路学校校考阶段练习)已知函数f x 的定义域为0,+∞,则函数F x =f x+2+3-x的定义域为.【例7】(2024·全国·高一专题练习)已知函数f x+1的定义域为1,2,则f2x的定义域为.【例8】(2024·全国·高一专题练习)已知函数f x 的定义域为-1,1则y=f x+1x2-2x-3的定义域为【例9】(2024·全国·高一专题练习)已知函数f2x的定义域为12,2,则函数f x2的定义域为.【例10】(2024·全国·高一专题练习)函数f3x+1的定义域为1,7,则函数f x 的定义域是.【例11】(2024·河南郑州·高一校考阶段练习)已知函数f(x)是一次函数且f(f(x))+2f(x)=-x-2,则函数f(x)的解析式为.【例12】(2024·全国·高一专题练习)已知f x 是二次函数.且f x+1+f x-1=2x2-4x.则f x =.【例13】(2024·四川眉山·高一校考阶段练习)已知f x+1=2x2+3,则f x =.【例14】(2024·高一课时练习)已知函数f x+1=x,则函数f x 的解析式是.【例15】(2024·全国·高一专题练习)已知f1x=x1-x2,则f x =.【例16】(2024·江苏盐城·高一统考期中)已知函数f(x)满足f3-2x=x2-x,则f(x)=.【例17】(2024·全国·高一专题练习)已知f1+1 x=1x-1,则f x =.【例18】(2024·上海·高一专题练习)已知函数f x 满足2fx-1x+f x+1x=1+x,其中x∈R且x≠0,则函数f x 的解析式为【例19】(2024·高一课时练习)已知函数y=f(x)满足f(x)=2f1x+x,则f(x)的解析式为.【例20】(2024·全国·高一专题练习)求下列函数的值域.(1)f x =2x+41-x;(2)f x =5x+4x-2;(3)f x =x2-2x-3,x∈-1,4(4)y=x2+x+1x【例21】(2024·高一课时练习)求下列函数的值域.(1)y=5x+4x-1;(2)y=x-1-2x;(3)y=2--x2+4x.【例22】(2024·高一课时练习)求下列函数的值域.(1)y=16-x2;(2)y=x2-4x+61≤x≤5;(3)y=xx+1;(4)y=2x+41-x.【例23】(2024·全国·高一课堂例题)求下列函数的值域:(1)y=x+1,x∈1,2,3,4,5;(2)y=x2-2x+3,x∈0,3;(3)y=2x+1x-3x>4;(4)y=2x-x-1;(5)y=x2-2x+4x-2x>2;(6)y=2xx2+3x+4x<0;(7)y=2x2+2x+5x2+x+1.【例24】(2024·高一校考课时练习)求下列函数的值域:(1)y =2x +1x -3,(2)y =x +4xx >0 ,(3)y =-2x 2+x +3,(4)y =x +41-x题型四:函数的单调性【例25】(2024·高一课时练习)定义域为(-2,0)∪(0,2)的函数f (x )在区间(-2,0)上是增函数,在区间(0,2)上是减函数,则:(1)函数y =-f (x )的单调递增区间是;单调递减区间是;(2)函数y =-f (x +1)的单调递增区间是;单调递减区间是.【例26】(2024·山东·高一山东省实验中学校考阶段练习)函数y =7+6x -x 2的单调递增区间为.【例27】(2024·全国·高一专题练习)已知函数f x =x +1x -52x >0 ,则f x 的递减区间是.【例28】(2024·黑龙江齐齐哈尔·高一校联考期中)函数f x =xx -1,x ≤0-x 2-a +1 x +2a ,x >0在R 上单调递减,则实数a 的取值范围是.【例29】(2024·全国·高一课堂例题)已知函数f x 在0,+∞ 上单调递减,对任意x ∈0,+∞ ,均有f x ⋅f f x +2x =13,记g x =f x +4x 2,x ∈0,+∞ ,则函数g x 的最小值为.【例30】(2024·安徽安庆·高一安庆市第七中学校考期中)若f x =x 2-ax +2a 在区间1,+∞ 上是增函数,则实数a 的取值范围是.【例31】(2024·全国·高一专题练习)设函数f x =x +1,x <a a x -2 2,x ≥a,若f x 存在最大值,则实数a 的取值范围为.【例32】(2024·全国·高一专题练习)函数f (x )=x +1x-a +a 在区间[1,2]上的最大值为5,则a =.【例33】(2024·湖北武汉·高一校联考期中)函数f x 是定义在0,+∞ 上的增函数,若对于任意正实数x ,y ,恒有f xy =f x +f y ,且f 3 =1,则不等式f x +f x -8 <2的解集是.【例34】(2024·全国·高一专题练习)已知函数y =f x 的定义域为R ,对任意的x 1、x 2,且x 1≠x 2都有f x 1 -f x 2 x 1-x 2 >0成立,若f x 2+1 >f t 2-t -1 对任意x ∈R 恒成立,则实数t 的取值范围是.【例35】(2024·全国·高一假期作业)定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则f (-1)与f (3)的大小关系是.【例36】(2024·全国·高一课堂例题)证明函数f x =x +1xx >0 在区间0,1 上递减,在区间1,+∞ 上递增,并指出函数在区间0,+∞ 上的最值点和最值.【例37】(2024·全国·高一专题练习)已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x>0时,f (x )>1.求证:函数f (x )在R 上是增函数.【例38】(2024·河北邯郸·高一校考期末)已知定义在(0,+∞)上的函数f (x )满足:①对任意的x ,y ∈(0,+∞),都有f (xy )=f (x )+f (y );②当且仅当x >1时,f (x )<0成立.(1)求f (1);(2)用定义证明f (x )的单调性;【例39】(2024·天津·高一统考期中)已知函数f(x)=x2+a2ax+b是奇函数,且f1 =2.(1)求f x 的解析式;(2)判断f x 在区间0,1上的单调性并说明理由.题型五:函数的奇偶性【例40】(2024·新疆巴音郭楞·高一八一中学校考期中)已知f x =11+x(x∈R,且x≠-1),g x =x2+2x∈R.(1)求f g2的值;(2)判断函数g x =x2+2x∈R的奇偶性;(3)证明函数g x =x2+2在0,+∞上是增函数.【例41】(2024·湖南株洲·高一株洲二中校考阶段练习)已知定义在-1,1上的奇函数f x =ax-bx2+1,且f-12=-25.(1)求函数f x 的解析式;(2)判断f x 的单调性(并用单调性定义证明);(3)解不等式f(3t)+f(2t-1)<0.【例42】(2024·全国·高一随堂练习)判断下列函数是否具有奇偶性:(1)f(x)=5x+3;(2)f(x)=5x;(3)f(x)=2x2+1;(4)f(x)=x2+6x+9;(5)f(x)=1x2+2x4;(6)f(x)=x+1x3.【例43】(2024·全国·高一期中)已知函数f(x)=2x-ax,且f(2)=92.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.【例44】(2024·甘肃白银·高一校考期中)已知函数f x =x2-ax+4,g x =x+b ax2+2.(1)若f x+1在b-1,b+1上为偶函数,求a,b的值;(2)设g x 的定义域为-1,1,在(1)的条件下:①判断函数g x 在定义域上的单调性并证明;②若g t-1+g2t<0,求实数t的取值范围.【例45】(2024·全国·高一期中)已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足:①∀x,y∈(-∞,0)∪(0, +∞),f(x⋅y)=f(x)+f(y);②当x>1时,f(x)>0,且f2 =1.(1)试判断函数f x 的奇偶性;(2)判断函数f x 在0,+∞上的单调性;(3)求函数f x 在区间[-4,0)∪(0,4]上的最大值;(4)求不等式f(3x-2)+f(x)≥4的解集.【例46】(2024·江西南昌·高一南昌市八一中学校考阶段练习)已知函数y=f x 是定义在R上的奇函数,当x>0时,f x =x2-ax,其中a∈R(1)求函数y=f x 的解析式;(2)若函数y=f x 在区间0,+∞不单调,求出实数a的取值范围.【例47】(2024·黑龙江牡丹江·高一牡丹江市第二高级中学校考期末)设函数f x 是增函数,对于任意x,y∈R都有f x+y=f x +f y .(1)写一个满足条件的f x 并证明;(2)证明f x 是奇函数;(3)解不等式12f x2-f x >12f3x.题型六:函数性质的综合应用【例48】(多选题)(2024·黑龙江齐齐哈尔·高一校联考期中)函数f(x)=x+1,g(x)=(x+1)2,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则下列说法正确的是()A.M(2)=3B.∀x≥1,M(x)≥4C.M(x)有最大值D.M(x)最小值为0【例49】(多选题)(2024·江苏南通·高一统考期末)奇函数f x 与偶函数g x 的定义域均为R,在区间a,ba<b上都是增函数,则()A.0∉a,bB.f x 在区间-b,-a上是增函数,g x 在区间-b,-a上是减函数C.f x g x 是奇函数,且在区间a,b上是增函数D.f x -g x 不具有奇偶性,且在区间a,b上的单调性不确定【例50】(多选题)(2024·福建福州·高一校联考期中)已知连续函数f x 对任意实数x恒有f(x+y)=f(x)+ f(y)-1,当x>0时,f x >1,f1 =2,则()A.f0 =1B.f x 在-4,4上的最大值是4C.f x 图像关于-1,0中心对称D.不等式f3x2-2f x <f3x-2的解集为0,5 3【例51】(多选题)(2024·江西赣州·高一统考期中)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数y=x ,x 表示不超过x的最大整数,例如1,1=1,-1,1=-2.已知函数f x =x-x ,则()A.f x 在R上是增函数B.f-3 2=12C.f x 为奇函数D.f x 的值域为0,1【例52】(多选题)(2024·全国·高一专题练习)已知定义域为R的函数f x 满足:∀x,y∈R,f x+y+f x-y=f x f y ,且f1 =1,则下列结论成立的是()A.f0 =2B.f x 为偶函数C.f x 为奇函数D.f2 =-1【例53】(多选题)(2024·全国·高一专题练习)设函数f x 是定义在0,+∞上的函数,并且满足下面三个条件:①对正数x,y都有f xy=f x +f y ;②当x>1时,f x >0;③f8 =3.则下列说法不正确的是()A.f1 =1B.f14=-2C.不等式f x +f x-3<2的解集为x|-1<x<4D.若关于x的不等式f kx+f3-x≤2恒成立,则k的取值范围是0,16 9【例54】(多选题)(2024·重庆长寿·高一统考期末)若函数f x 在定义域内D内的某区间M是增函数,且f xx在M上是减函数,则称f x 在M上是“弱增函数”,则下列说法正确的是()A.若f x =x4则不存在区间M使f x 为“弱增函数”B.若f x =x+x-1则存在区间M使f x 为“弱增函数”C.若f x =x5+x3+x则f x 为R上的“弱增函数”D.若f x =x2+4-ax+a在区间0,2上是“弱增函数”,则a=4【例55】(2024·福建漳州·高一校考期中)已知定义在区间0,+∞上的函数f x =t x+4 x-5(t>0).(1)若函数f x 分别在区间0,2,2,+∞上单调,试求t的取值范围;(直接写出答案)(2)当t=1时,在区间1,4上是否存在实数a,b,使得函数f x 在区间a,b上单调,且f x 的取值范围为ma,mb,若存在,求出m的取值范围;若不存在,说明理由.【例56】(2024·全国·高一期中)已知函数f x =ax2-x+2a-1a>0(1)设f x 在区间1,2的最小值为g a ,求g a 的表达式;(2)设h x =f xx,若函数h x 在区间1,2上是增函数,求实数a的取值范围.【例57】(2024·高一单元测试)已知偶函数f(x)的定义域是{x|x≠0}的一切实数,对定义域内的任意x1,x2都有f(x1⋅x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)证明:f(x)在(0,+∞)上是单调递增函数;(2)解不等式f(2x-1)<2.题型七:幂函数【例58】(2024·全国·高一专题练习)已知幂函数f x =x-m2-2m+3-2<m<2,m∈Z满足:①f x 在0,+∞上为增函数,②对∀x∈R,都有f-x-f x =0,求同时满足①②的幂函数f x 的解析式,并求出x∈1,4时,f x 的值域.【例59】(2024·浙江金华·高一校考期中)已知点2,2在幂函数f(x)的图像上.(1)求f(x)的解析式;(2)若函数g(x)=f(x)+ax+3,x∈1,+∞是否存在实数a,使得g(x)最小值为5?若存在,求出a的值;若不存在,说明理由【例60】(2024·全国·高一假期作业)已知幂函数f x =m2-6m+10x-n2+4n n>1,n∈Z,m∈R的图象关于y轴对称,且在0,+∞上单调递增.(1)求m和n的值;(2)求满足不等式2a+3-m3<a-1-n2的a的取值范围.【例61】(2024·江苏南通·高一海安高级中学校考期中)已知幂函数f x =m 2-5m +7 x m -1为奇函数.(1)求实数m 的值;(2)求函数g x =14f x +1+12-f x -14<x <2 的最小值.【例62】(2024·黑龙江七台河·高一勃利县高级中学校考期中)已知幂函数y =x m 2-2m -3(m ∈N ∗)关于y 轴对称,且在0,+∞ 上单调减函数.(1)求m 的值;(2)解关于a 的不等式a +1 2m3<3-2a 2m3.【例63】(2024·广西柳州·高一柳铁一中校联考阶段练习)已知幂函数f x =k 2+k -1 x 2-k 1+k ,且f 2 <f 3 .(1)求函数f x 的解析式;(2)试判断是否存在正数m ,使得函数g x =1-f x +2mx 在区间0,1 上的最大值为5,若存在,求出m 的值,若不存在,请说明理由.【例64】(2024·广东佛山·高一佛山市顺德区乐从中学校考期中)已知幂函数f x =m 2-2m -2 x m 在0,+∞ 上单调递增.(1)求f x 的解析式;(2)若f x >3x 2+k -1 x 在1,3 上恒成立,求实数k 的取值范围.【例65】(2024·浙江杭州·高一校联考期中)已知幂函数f (x )=x -3n 2+9(n ∈N )为偶函数,且在区间(0,+∞)上单调递增(1)求函数y =f (x )的解析式;(2)设函数g (x )=3f (x )+2tx +3,求函数y =g (x )在区间[2,6]上的最小值G (t ).【例66】(2024·福建漳州·高一福建省华安县第一中学校考阶段练习)已知幂函数f x =2m2-5m+3x m是定义在R上的偶函数.(1)求f x 的解析式;(2)在区间-1,1上,f x 的图象总在函数y=kx-2图象的上方,求实数k的取值范围.【例67】(2024·重庆沙坪坝·高一重庆八中校考期中)已知幂函数f x =m2-5m+7x m-1,且f x =f-x.(1)求函数f x 的解析式;(2)若g x =f xf x +1,a,b均为正数且g a +g b =1,求f a +f b 的最小值.题型八:函数的实际应用【例68】(2024·全国·高一专题练习)党的十九大报告明确要求继续深化国有企业改革,培育具有全球竞争力的世界一流企业.某企业抓住机遇推进生产改革,从单一产品转为生产A、B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:所示图中的横坐标表示投资金额,单位为万元).(1)分别求出A、B两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?【例69】(2024·全国·高一专题练习)某企业为进一步增加市场竞争力,计划在2024年利用新技术生产某款新手机,通过市场调研发现,生产该产品全年需要投入研发成本250万元,每生产x(千部)手机,需另外投入成本R x 万元,其中R x =10x2+100x+800,0<x<50504x+10000x-2-6450,x≥50,已知每部手机的售价为5000元,且生产的手机当年全部销售完.(1)求2024年该款手机的利润y关于年产量x的函数关系式;(2)当年产量x为多少时,企业所获得的利润最大?最大利润是多少?【例70】(2024·全国·高一专题练习)党的二十大报告提出“积极稳妥推进碳达峰碳中和”,降低能源消耗,建设资源节约型社会.日常生活中我们使用的LED灯具就具有节能环保的作用,它环保不含汞,可回收再利用,功率小,高光效,长寿命,有效降低资源消耗.经过市场调查,可知生产某种LED灯需投入的年固定成本为3万元,每生产x万件该产品,需另投入变动成本W(x)万元,在年产量不足6万件时,W x =12x2+x,在年产量不小于6万件时,W x =7x+81x-37.每件产品售价为6元.假设该产品每年的销量等于当年的产量.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式.(注:年利润=年销售收入-固定成本-变动成本)(2)年产量为多少万件时,年利润最大?最大年利润是多少?【例71】(2024·全国·高一专题练习)某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x (单位:m ),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式;(2)求S 的最大值,并求出此时x 的值.【例72】(2024·江苏镇江·高一扬中市第二高级中学校考开学考试)党中央、国务院对节能减排高度重视,各地区、各部门认真贯彻党中央、国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,经济提质增效,建设生态文明的重要抓手,取得重要进展.新能源汽车环保、节能、以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2020年常州某企业计划引进新能源汽车生产设备,通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本C x 万元,且C x =10x 2+500x ,0<x <40901x +10000x-4300,x ≥40.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2020年的利润L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售-成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润.【例73】(2024·浙江衢州·高一校考阶段练习)2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=12x2+20x(万元).当年产量不小于80千件时,C(x)=51x+10000x-600(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?【例74】(2024·高一课时练习)新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x0≤x≤10(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅6-12 x+4(万件),其中k为工厂工人的复工率(0.5≤k≤1).A公司生产t万件防护服还需投入成本20+9x+50t(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)对任意的x∈0,10(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01).【例75】(2024·山西晋城·高一晋城市第一中学校校考阶段练习)新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x(x∈[0,10])(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅ (万件),其中k为工厂工人的复工率(k∈[0.5,1]).A公司生产t万件防护服还需投入成本6-12x+4(20+9x+50t)(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)在复工率为k时,政府补贴多少万元才能使A公司的防护服利润达到最大?III 数学思想方法①分类讨论思想【例76】设函数f (x )=x +2,g (x )=x 2-x -1.用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )},则M (x )的最小值是()A.1B.3C.0D.-54【例77】已知幂函数f (x )=(m 2-2m -2)x 2-m 满足f (2)<f (3),则函数g (x )=2x +m -x -m 的值域为()A.-258,+∞ B.[-3,+∞)C.[-1,+∞)D.[1,+∞)【例78】若定义在R 的奇函数f (x )在0,+∞ 单调递增,且f (-3)=0,则满足xf (x +1)≤0的x 的取值范围是()A.[-2,0]∪[1,4]B.[-4,-1)∪[0,2]C.[-4,-1]∪[0,2]D.[-4,-1]∪[3,+∞)【例79】已知函数f x =x 2-2ax +2,x ≤1x +9x-3a ,x >1的最小值为f 1 ,则a 的取值范围是()A.[1,3]B.3,+∞C.0,3D.-∞,1 ∪3,+∞【例80】已知函数f (x )=|x 2+bx |(b ∈R ),当x ∈[0,1]时,f (x )的最大值为M b ,则M b 的取值范围是()A.[1,+∞)B.[3-22,+∞)C.[4-23,+∞)D.[5-25,+∞)②转化与化归思想【例81】定义在R 上的奇函数f (x )在[0,+∞)上单调递减,且f (-2)=1,则满足-1≤f (x -1)≤1的x 的取值范围是()A.[-2,2]B.[-2,1]C.[-1,3]D.[0,2]【例82】已知函数f x =3x+1,x≤1x2-1,x>1,若n>m,且f(n)=f(m),设t=n-m,则t的最大值为()A. 1B.5-1C.1712 D.43【例83】若定义在R的奇函数f(x)在-∞,0单调递减,且f2 =0,则满足xf(x-1)≥0的x的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]【例84】设a=0.40.6,b=0.60.8,c=0.80.4,则()A.a>b>cB.c>b>aC.c>a>bD.b>a>c【例85】已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是()A.[160,+∞)B.(-∞,40]C.(-∞,40]∪[160,+∞)D.(-∞,20]∪[80,+∞)【例86】函数f(x)=3+2x-x2的单调递增区间是()A.(-∞,1]B.[1,+∞)C.[1,3]D.[-1,1]③数形结合思想【例87】已知函数f(x)为奇函数,x>0时为增函数且f2 =0,则{x|f(x-2)>0}=.()A.{x|0<x<2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}【例88】已知定义在R上的偶函数f(x)满足:①对任意的x 1,x2∈0,+∞,且x1≠x2,都有f(x1)-f(x2)x1-x2>0成立;②f(-2)=0.则不等式f(x)x>0的解集为()A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∞,-2)∪(2,+∞)21数学是打开科学大门的钥匙//邦达数学高一讲义宝剑锋从磨砺出【例89】已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是()A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【例90】奇函数f (x )在-∞,0 上单调递减,且f 2 =0,则不等式f (x )>0的解集是.()A.(-∞,-2)∪(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)【例91】如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转到(转到角不超过90{^°})时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是()A.B.C.D.【例92】已知函数y =f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的图像如图所示,则不等式xf (x )>0的解集为()22越努力越幸运//邦达数学高一讲义梅花香自苦寒来A.(-2,-1)∪(1,2)B.(-2,-1)∪(0,1)∪(2,+∞)C.(-∞,-2)∪(-1,0)∪(1,2)D.(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)。
上海七年级数学上册复习寒假班讲义数学1-实数的概念--学生

(1) (2) (3) (4) (5)
立方根
新课引入
一个正方体纸盒,如果这个正方体的体积为216 ,那么它每条棱长是多少?
观察由以上问题,有 ,即要求一个数,使它的立方等于216,通过分析,有 ,那么6就是这个正方体的棱长
归纳如果一个数的立方等于 ,这个数叫做 的立方根(也叫做三次方根),即如果 ,那么 叫做 的立方根
例求下列各数的算术平方根
⑴100 ⑵ ⑶0.0001 ⑷0 ⑸
点拨:由一个数的算术平方根的定义出发来解决问题
思考:-4有算术平方根吗?
例 求值
(1) (2)
点拔:开平方和平方是互为逆运算
备选例题:要使代数式 有意义,则 的取值范围是( )
A. B. C. D.
拓展:已知 的算术平方根是3, 的算术平方根是4, 是 的整数部分,求 的算术平方根
结论有理数和无理数统称为实数
实数分类
像有理数一样,无理数也有正负之分。例如 , , 是正无理数, , , 是负无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
探究如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?
总结1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数
当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数
1、与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大
沪教版 七年级数学 寒假班讲义 实数的概念及数的开方(学生版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 填空:1、若一个数不是有理数,那这个数一定是数;2、3-正数,整数,无理数;(填“是”或“不是”)3、圆的周长与直径的比值常数,有理数,无理数.(填“是”或“不是”)【例2】 已知四个命题,正确的有( ) (1)有理数与无理数之和是无理数; (2)有理数与无理数之积是无理数; (3)无理数与无理数之和是无理数;(4)无理数与无理数之积是无理数.A .1个B .2个C .3个D .4个【例3】 判断正误,在后面的括号里对的用 “√”,错的记“×”表示.(1)实数不是有理数就是无理数. ( ) (2)无理数都是无限不循环小数. ( ) (3)带根号的数都是无理数.()例题解析(4)无理数都是无限小数. ( ) (5)无理数一定都带根号.( ) (6)两个无理数之和一定是无理数.()(7)两个无理数之积不一定是无理数. ()【例4】 把下列各数分别填到相应的数集里边.327,2, 3.1415-,2π,103,34-,72-,0.201010010001-,1.732,7-有理数{ }; 无理数{ }; 正数{ }; 负数{}.一、开平方:1、定义:求一个数a 的平方根的运算叫做开平方.2、如果一个数的平方等于a ,那么这个数叫做a 的平方根.这个数a 叫做被开方数.模块二:数的开方知识精讲如21x =,1x =±,1的平方根是1±. 说明:1)只有非负数才有平方根,负数没有平方根; 2)平方和开平方互为逆运算. 3、算术平方根:正数a 的两个平方根可以用“a ±”表示,其中a 表示a 的正平方根(又叫算术平方根),读 作“根号a ”;a -表示a 的负平方根,读作“负根号a ”. ★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2)2a a =,2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0. 二、开立方:1、定义:求一个数a 的立方根的运算叫做开立方.2、如果一个数的立方等于a ,那么这个数叫做a 的立方根,用“3a ”表示,读作“三次根号a ”,3a 中的a 叫做被开方数,“3”叫做根指数. ★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根; 2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1. 三、开n 次方:1、求一个数a 的n 次方根的运算叫做开n 次方.a 叫做被开方数,n 叫做根指数.2、如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数叫做a 的n 次方根.3、当n 为奇数时,这个数为a 的奇次方根;当n 为偶数时,这个数为a 的偶次方根. ★注意:1)实数a 的奇次方根有且只有一个,用“n a ”表示.其中被开方数a 是任意一个数,根指数n 是大于1的奇数;2)正数a 的偶次方根有两个,它们互为相反数,正次方根用“n a ”表示,负n 次方根用“n a -”表示.其中被开方数0a >,根指数n 是正偶数(当2n =时,在n a ±中省略n ); 3)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.例题解析【例5】 填空:1、一个正方形的面积为15,则它的边长是___________;2___________;3、如果a 的平方根是a ,则a =______;如果a 的算术平方根是a ,则a =______.【例6】 下列说法中正确的是()A .4是8的算术平方根B .16的平方根是4C 是6的平方根D .a -没有平方根【例7】 下列各式中错误的是()A .0.6=±B 0.6=C . 1.2=-D 1.2±【例8】 若()220.7x =-,则x =() A .-0.7 B .±0.7C .0.7D .0.49【例9】 若实数a 1=,则a =( )A .0B .1C .-1D .1±【例10】)A .正数B .负数C .非正数D .非负数【例11】 (1)若24x =,29y =,则x y +=_________;(2_____________,算术平方根是___________;(3)若160x -+=,则x 的平方根是 .【例12】 计算: (I )求下列各数的平方根:(1)0;(2)2415⎛⎫- ⎪⎝⎭; (3)964-;(4)()20.25--.(II )求下列各数的立方根:(1)0.216; (2)338-;(3)125±;(4)()0.064--.【例13】 (1)若0a <a -=__________________;(2)已知a 是小于1.【例14】 简答:(1)已知某数的平方根是31a+,求这个数;a-与5(2)已知31a+是同一个数的平方根,求这个数.a-与5【例15】下列说法:①16的4次方根是22±;③当n为大于1④当n为大于10a≥时有意义.其中正确的是()A.①②③B.②③④C.②③D.③④【例16】求下列各式的值:(1)(2)(3)(4;(5.【例17】比较大小:1.732-(填“>”“<”“=”).\【例18】 填空:(1)72的整数部分是______,小数部分是_______; (2)5-的整数部分是______,小数部分是_______. (3)适合于不等式727x <<的整数x 有.【例19】 填空:(1)已知12311.09=, 1.109a =,1109b =,则a =,b =; (2)已知 6.213 2.493≈,62.137.882≈,则621.3≈______,0.6213≈;(3)已知30.230.6127≈,32.3 1.320≈,323 2.844≈,则3230≈ ,323000-≈ .【例20】 已知416a =,且a a =-,求94a +的平方根.【例21】 若01a <<,且16a a +=,求1a a-的值.数的方根运算:方根的混合运算,根据方根性质判断取值范围;知识精讲模块三:数的方根运算和应用应用:与整式、分式的综合应用.【例22】 当x 为什么数时,下列各式有意义.(1)3x ;(2)5x -; (3)44x +; (4)()24x -;(5)24n x -;(6)632x -.【例23】 (1)若11m m -++有意义,则m 的取值范围是 ;(2)x 为何值时,3423142x x x --++-有意义?(3)使得622xx --有意义的条件是 .【例24】 填空:(1)8-的立方根与16的平方根之和为;(2)若()225x -与4y +互为相反数,则2x y +的平方根为.【例25】【例26】 已知221a A a b -=-+是21a b -+的算术平方根,12b B a b +=+是2a b +的立方根,求A B +的值.【例27】 已知22167(2)04m n m m -++=+,求n m 的值.例题解析【例28】若2244162x xyx-+-=+-,求2x y+的立方根.【例29】已知a b,分别是484,784的算术平方根,而c是-343的立方根,试求代数式222222a b c ab bc ac++-+-的值.一、填空题:【习题1】数3.14,2,π,0.323232,17,9,21+中,无理数的个数为()A.2个B.3个C.4个D.5个【难度】★【答案】【解析】【习题2】填空:(1)81的平方是_________,81的平方根是_________;(2)()23-的平方根是_________,36的平方根是_________;(3)38的立方根是_________,23(3)-的立方是_________;(4)_________的四次方根为4±.随堂检测【习题3】 判断正误,在后面的括号里对的用 “√”,错的记“×”表示,并说明理由. (1)无限小数都是无理数( ) (2)若a 表示一个实数,则-a 表示一个负数 ( )(3)数轴上的点与有理数一一对应 ( )(4)任何实数的偶次幂是正实数() (5)在实数范围内,若x y =,则x y =()【习题4】 写出两个在3和4之间的无理数________.【习题5】 18=2=-2=4±,⑥2-,正确的有( )个 A .4 B .3C .2D .1【习题6】 一个数的平方根是它本身,则这个数的立方根是()A .1B .0C .-1D .1,-1或0【习题7】 下列各组数中互为相反数的是()A .2-B .2-C .22(与D .【习题8】 把 1.6-、2π-、、0从小到大排列()A . 1.602π-<-<<<B . 1.602π-<-<<C . 1.602π-<-<<<D . 1.602π-<-<<【习题9】【习题10】 如果a 是实数,那么下列说法正确的是()A .3a 是奇数B .23a a <C .2a a =D .2a a >【习题11】 求下列各数的值:(1)254; (2)30.001;(3)()24-;(4)()328-⋅-; (5)5132;(6)71;(7)634;(8)63(2)-.【习题12】 已知370x y ++-=,求2x y +的四次方根.【习题13】 因为211121=,所以12111=,同样,因为211112321=,所以12321111=由此猜想12345678987654321=___________________.【习题14】 已知13的整数部分为a ,小数部分为b ,求()1134ba +的值.【作业1】 下列各根式无意义的是() A . ()5--B .25-C .25-D .()25-【作业2】 下列结论正确的是()A .一个正分数的正的平方根比原数大B aC .若b 是a 的立方根,则b -也是a -的立方根D .任何实数都有两个平方根【作业3】 一个数的立方根是它本身,则这个数的平方根是() A .1或-1B .0或-1C .-1或1D .1,-1或0【作业4】 若264x ==() A .4B .4±C .2±D .2【作业5】 把下列各数分别填入相应的集合里:2273.1410.3030030001.7320.010*******π----,,,,,,,正数集合{ }; 分数集合{ }; 有理数集合{ }; 无理数集合{}.【作业6】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)0是最小的实数( ) (2)0是绝对值最小的实数( ) (3)不存在绝对值最小的无理数 ( ) (4)不存在绝对值最小的实数( ) (5)不存在与本身的算术平方根相等的数 ( ) (6)比正实数小的数都是负实数()(7)非负实数中最小的数是0 ( )【作业7】 2)A .是正数B .是负数C .是零D .以上都可能【作业8】 填空:(1)1236-=,=;(2)81625的四次方根是,的六次方根是 ;(3)奇次方根是本身的实数有.【作业9】 若实数a 满足1a a=-,则( ) A .0a >B .0a <C .0a ≥D .0a ≤【作业10】 计算:(1(2;(3)(4;(5) (6 (7)(8【作业11】 已知:224410260x y x y +-++=,求12x y +的5次方根.【作业12】 x 、y 分别是3-的整数部分和小数部分,求24xy y -的值.【作业13】 若2(1)||0z x y -++。
《实数》 讲义
《实数》讲义一、实数的定义实数,是数学中的一个基本概念。
简单来说,实数就是有理数和无理数的总称。
有理数,大家应该比较熟悉,像整数(正整数、零、负整数)以及分数(正分数、负分数),都属于有理数。
例如3、-5、0、1/2 等等。
而无理数呢,则是无限不循环小数。
比如大家熟知的圆周率π,约等于 31415926,还有像根号 2 ,约等于 141421356 这些数都是无理数。
二、实数的分类实数可以按照不同的标准进行分类。
如果按照符号来分,可以分为正实数、零、负实数。
正实数,就是大于 0 的实数,包括正有理数和正无理数。
负实数,是小于 0 的实数,包括负有理数和负无理数。
零,既不是正实数,也不是负实数。
从另一个角度,如果按照是否为有理数来分,实数就分为有理数和无理数。
有理数又可以进一步细分为整数和分数。
整数包括正整数、零和负整数;分数包括正分数和负分数。
三、实数的性质1、实数的有序性对于任意两个实数 a 和 b,在三种关系中,有且仅有一种成立:a < b,a = b,a > b。
2、实数的稠密性实数在数轴上的分布是稠密的,也就是说,在任意两个不同的实数之间,总是存在着无穷多个其他的实数。
3、实数的四则运算实数的加法、减法、乘法和除法运算(除数不为 0),其结果仍然是实数。
加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:a ×(b + c) = a × b + a × c4、实数的绝对值实数 a 的绝对值记作|a|,其定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a 。
绝对值具有非负性,即|a| ≥ 0 。
四、实数与数轴数轴是一条规定了原点、正方向和单位长度的直线。
人教版七年级数学下册期末复习第四讲 实数单元复习(PPT课件)
C. 7个 D. 5个
(二)填空题 1.若一个负数的立方根就是它本身,则这个负数是__-_1__. 2.16的平方根是_±__4__.
3.写出一个小于﹣1无理数,这个无理数可以是__﹣__π____.
4.点A在数轴上和表示1的点相距 6 个单位长度,则点A表示的
数为 1 6或1- 6
.
5.已知a,b满足 a 1 b 1 0 ,ab2018 则的值是___1____.
A. 0 B. 3
C. 2 D. -1
2.-27的立方根与的 81 平方根的和是(C )
A. 0
B. 6
C. 0或-6 D. -6
3.已知数a、b在数轴上对应的点如图所示,则下列式子正确的
是( D)
A. ab>0
B. a+b<0
C. a b
D. a-b>0
4.大于 2 5 且小于3 2 的整数有( A) A. 9个 B. 8个
方根.
解:因为 x 3 y 1 z 22 0 ,
所以 x 3 0, y 1 0, z 2 0,即x 3, y 1, z 2,
则x+y+z=3-1+2=4,4的平方根 2 ,算术平方根 2 故答案:平方根 2,算术平方根 2.
识
(一)选择题
1.在实数0, 3, 2 ,-1 中,最小的数是(B)
解析:81 =9,9的平方根是±3; 3 64 =4,4的平方根是±2; -343的立方根是-7; 256 16 ,16的算术平方根是-4.
故答案为:±3,±2,-7, -4.
例5 计算:
(1) 9 62 3 27
=3-6+3
=0;
(2)原式=-( 2- 3)+2+2 3-2 =- 2 3 2 2 3-2 =3 3- 2
实数复习公开课课件
实数复习公开课课件一、引言实数是数学中一个重要概念,它包括有理数和无理数。
有理数是可以表示为有限小数或无限循环小数的数,而无理数则是无限不循环小数,如π(圆周率)等。
复习实数的概念和性质,对于提高学生对于数学的理解和运用能力具有重要意义。
二、实数的定义与分类1、实数的定义:实数是唯一具有确定大小和位置关系的数,它包括有理数和无理数。
2、实数的分类:实数可以分为正数、负数和零。
正数包括正整数、正小数和正分数;负数包括负整数、负小数和负分数;零是正负数的分界点。
三、实数的性质1、实数的加法:两个实数相加,其结果仍然是一个实数。
2、实数的减法:两个实数相减,其结果仍然是一个实数。
3、实数的乘法:两个实数相乘,其结果仍然是一个实数。
4、实数的除法:两个实数相除,其结果仍然是一个实数。
5、实数的序关系:实数具有大小关系,即对于任意两个实数a和b,a<b,a=b或a>b。
6、实数的绝对值:一个实数的绝对值等于它的大小与原点的距离。
7、无理数:无理数是无限不循环小数,如π、√2等。
无理数在运算时需要特别注意。
四、实数的应用1、长度测量:在物理和工程中,我们经常需要测量长度,而实数可以精确地表示出任何长度的值。
2、质量测量:在科学实验和工业生产中,我们也需要测量质量,同样地,实数可以精确地表示出任何质量的大小。
3、温度测量:在气象学和物理学中,温度是重要的物理量之一。
虽然温度的测量通常用摄氏度或华氏度等单位来表示,但其实质仍然是实数。
4、其他应用:除了上述应用外,实数还在金融、统计学等其他领域得到广泛应用。
五、复习小结本节课我们复习了实数的概念、分类、性质及其应用。
重点把握以下几点:1、掌握实数的定义与分类;2、熟悉实数的性质;3、理解并掌握无理数的概念及运算方法;4、熟悉实数在长度、质量、温度等方面的应用。
六、复习思考题1、请简述实数的定义及分类?2、请列举几个无理数的例子,并说明无理数的特点?3、如何进行实数的加减乘除运算?请举例说明?4、实数在我们的生活中有哪些应用场景?请举例说明?实数是数学中的一个重要概念,它包括有理数和无理数。
上海七年级数学上册复习寒假班讲义数学4-实数的运算3--学生
主题课 实数数是随着客观实际与社会实践的需要而不断扩充的。
从有理数到无理数,经历过漫长曲折的过程,是一个巨大的飞跃,由于引入无理数后,数域就由有理数域扩充到实数域,这样,实数与数轴上的点就建立了一一对应的关系。
由于引入开方运算,完善了代数的运算。
平方根、立方根的概念和性质,是学习二次根式、一元二次方程等知识的基础。
平方根、立方根是最简单的方根,建立概念的方法,以及它们的性质是进一步学习偶次方根、奇次方根的基础。
有理数和无理数统称为实数,实数有下列重要性质:1、有理数都可以写成有限小数或循环小数的形式,都可以表示成分数pq的形式;无理数是无限不循环小数,不能写成分数pq的形式,这里p 、q 是互质的整数,且0 p 。
2、有理数对加、减、乘、除是封闭的,即任何两个有理数的和、差、积、商还是有理数;无理数对四则运算不具有封闭性,即两个无理数的和、差、积、商不一定是无理数。
类型一、有关概念的识别例1.下面几个数:30.1237 1.010010001-0.064, , , 3π, 2257, ,其中,无理数的个数有( ) A 、1 B 、2 C 、3 D 、4 举一反三:【变式1】下列说法中正确的是( )A 、81的平方根是±3B 、1的立方根是±1C 、1=±1D 、-5是5的平方根的相反数 .【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A、112B、1.4C、2D、3【变式3】【类型二、计算类型题例2.设,则下列结论正确的是()A. B. C. D.举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三、数形结合例3.点A在数轴上表示的数为35,点B在数轴上表示的数为-5,则A,B两点的距离为______ 解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,2的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2[变式2]已知实数、、在数轴上的位置如图所示:化简类型四、实数绝对值的应用例4.化简下列各式:(1) |-1.4|(2) |π-3.142| (3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10| 举一反三:【变式1】化简:类型五、实数非负性的应用例5.已知:=0,求实数a, b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.实数的分类⎧⎧⎧⎫⎪⎪⎪⎬⎪⎨⎪⎭⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎪⎨⎬⎪⎪⎪⎭⎩⎪⎩⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数自然数整数零负整数有理数实数正分数分数可化为有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数 2.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数实数的运算数的开方 运算性质分数指数幂 有理数指数幂 有理数 用数轴上的点表示实数无理数实数的分类运算法则及运算性质近似数及近似计算实数的复习 知识结构模块一 实数的分类与表示知识精讲- 2 - ★数轴三要素:______________________________; 3.相反数:a ,b 互为相反数 a+b=0;4.绝对值:|a |=___________; 5.倒数:a ,b 互为倒数 即:ab =0;6.近似数、有效数字:常见的近似数一般是按某种要求采用四舍五入法所得的数.有效数字是指从左边第一个不是零的数字起到精确到的数为止的所有数字; 7.科学计数法:N =________×__________.【例1】 填空:这些数中:5431610240.3313 1.53253325333295---。
、、、、、、有限小数有_________________________________________________; 无限小数有_________________________________________________; 有理数有________________________________________________; 无理数有_______________________________________________; 实数有_______________________________________________; 小数有______________________________________________. 【例2】 请你辨别:如图1是面积分别为1,2,3,4,5,6,7,8,9的正方形图1边长是有理数的正方形有________个,边长是无理数的正方形有________个. 【例3】 下列语句正确的是()A .3.78788788878888是无理数B .无理数分正无理数、零、负无理数C .无限小数不能化成分数D .无限不循环小数是无理数【例4】 填空:(1)在实数中绝对值最小的数是________,在负整数中绝对值最小的数是________; (2)已知一个数的相反数小于它本身,那么这个数是________;(3)设实数a ≠0,则a 与它的倒数、相反数三个数的和等于____________,例题解析三个数的积等于______.【例5】 填空:实数a ,b 在数轴上所对应的点的位置如图所示,则2a ___________0,a +b _______0, b a --________0,化简2a a b -+=________.【例6】 比较下列各式的大小:(1)3-2与-2; (2)2与1.4.【例7】 指出下列近似数分别精确到哪一位,并回答有几个有效数字?(1)98.765;(2)98.765万; (3)12.30亿; (4)21.230010⨯.【例8】 当人造地球卫星的运行速度大于第一宇宙速度而小于第二宇宙速度时,它能环绕地球运行,已知第一宇宙速度的公式是v 1=gR (米/秒),第二宇宙速度的公式是v 2=2gR (米/秒),其中g =9.8米/秒,R =6.4×106米.试求第一、第二宇宙速度(结果保留两个有效数字).【例9】 a b c 、、三个数在数轴上的点如图所示,化简:a b a c c b ----+.a 0 b【例10】点A、B在数轴上所对应的实数分别为23C也在数轴上,且CA为AB的三分之一.求:B、C之间的距离?【例11】比较下列各式的大小:(1)(2(3.【例12】已知a,5的小数部分为b,求:(1)a+b的值;(2)a b-的值.【例13】当a=.- 4 -【例14】 化简下列各式: (1)2535a -++; (2)34x x -+-.1.平方根,2x a x a x ==若,则数叫做数的平方根记作_________; 2.立方根:若33x a x a x a ==,则数叫做数的立方根记作;3.N 次方根: 实数a 的奇数方根有且只有一个,用n a 表示; ★实数a 的偶数方根有两个,为n a 、-n a ,其中a >0; 负数的偶次方根不存在; 零的n 次方根等于零,00n =;4.nmn ma a =(a ≥0),1mnnmaa-=(a >0),其中m 、n 为正整数,n >1.模块二:数的平方根、立方根及分数指数幂知识精讲- 6 -【例15】 判断题:(1)-0.01是0.1的平方根.( )(2)-52的平方根为-5.()(3)0和负数没有平方根.( )(4)因为116的平方根是±14,所以116=±14.() (5)正数的平方根有两个,它们是互为相反数.()【例16】 判断题:(1)如果b 是a 的三次幂,那么b 的立方根是a ;( ) (2)任何正数都有两个立方根,它们互为相反数;( )(3)负数没有立方根;()(4)如果a 是b 的立方根,那么ab ≥0.()【例17】 若22(5)a =-,33(5)b =-,则a +b 的值为() A .0B .±10C .0或10D .0或-10【例18】 下列说法中,正确的是( )A .一个有理数的平方根有两个,它们互为相反数B .一个有理数的立方根,不是正数就是负数C .负数没有立方根D .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1 【例19】 将下列式子化成分数指数幂的形式:(1)1000;(2)2525()4-; (3)23a b -;(4)2329[()]23--; (5)3128-.【例20】 (1)若21x +有意义,则x 范围是________;(2)如果a <0,那么2a =________,(a -)2=________.例题解析【例21】 用“<”、“>”或“=”号填空:(1)14 ____356;(2))3100 ____21; (3)-0.2 ____30.07-;(4)-26 ____3128-.【例22】 解答:(1)31250x y x y +++--=,求x 和y 的值; (2)已知222100a b b ++-=,求a +b 的值.【例23】 (1)已知2x +和x 分别是某整数的平方根,求这个整数;(2)已知364a ++|b 3-27|=0,求(a -b )b 的立方根.【例24】 解答:(1) 已知:10404=102,x =0.102,求x 的值;(2) 已知:318 2.621=,31.8 1.216=,30.180.565=,求318000000的值.实数的运算顺序:先乘方、开方,再乘除,最后加减;若有括号,先算括号内的值;同一级运算应从左至右,按顺序进行;若需改变运算顺序,必须依据运算律进行.模块三:混合运算知识精讲- 8 -【例25】 计算:(1)81832++; (2)271275-+; (3)123273+-.【例26】 计算:(1)212116-+(); (2)2142164236-+; (3)02483(43)3++-; (4)213(36)8++-+.【例27】 计算:(1)118|12|4-+-;(2)2313()|13|272------+.【例28】 计算:(1)113369271.5()27464-⋅--⋅;(2)31124492[()]()43--⋅.【例29】 计算:(1)3336936482736x x xy x y y ⋅⋅⋅; (2)32111x x x x---++(1x ≥).例题解析【例30】 先阅读下列的解答过程,然后再解答:形如2m n ±的化简,只要我们找到两个数a 、b ,使a b m +=,ab n =,使得 22()()a b m +=,a b n ⋅=,那么便有:22()m n a b a b ±=±=±()a b > 例如:化简743+解:首先把743+化为7212+,这里7m =,12n =,由于4+3=7,4312⨯= 即22(4)(3)7+=,4312⨯=∴743+=7212+=2(43)23+=+ (1)由上述例题的方法化简:13242-; (2)化简:①1146-; ②59246+.一、填空题: 【习题1】 判断正误:(1)有理数包括整数、分数和零;( ) (2)无理数都是开方开不尽的数;( )(3)不带根号的数都是有理数;( ) (4)带根号的数都是无理数;( )(5)无理数都是无限小数;( ) (6) 无限小数都是无理数.()【习题2】 m 是一个整数的平方数,那么和m 相邻且比它大的那个平方数是()A .m +2m +1B .m +1C .m 2+1D .以上都不对【习题3】 下列各式中,无意义的是() A .23-B .33(3)-C .2(3)-D .310-随堂检测【习题4】|x-)A.±8B.8C.与x的值无关D.无法确定【习题5】15三个数的大小关系是()A.BC.D【习题6】(1)若xy=1x y-=-,则(1)(1)x y+-=______;(2与2b+是互为相反数,则2()a b-=______.【习题7】计算:(1));(2-.【习题8】一个正方体的体积是28360厘米3,试估算正方体的棱长(保留3个有效数字);【习题9】计算:(1;(2)210(2)(1---.【习题10】(1)若x、y都是实数,且y+8,求x+3y的立方根;(2- 10 -【习题11】解答:(1)已知3x,求329627x x x+++的平方根;(2)已知221110a b-+-+=,求ab的算术平方根.【作业1】写出下列数字精确到哪一位,有效数字有几个?分别是什么?71.72310⨯48.3110-⨯20000210.000【作业2】填空:(1___________;(2_________ ;(3___________;(4)64的4次方根是_____________;(5)81的六次方根是____________;(6)50-的5次方根是_____________.【作业3】数轴中有3个点,其中点a的算术平方根是3,点b表示的是面积为10的正方形的边长,点c表示的是9.8的正平方根,将a、b、c从小到大排列.【作业4】按要求写出下列数字:(1)987654321 精确到百位;(2)0.0012345 保留四个有效数字.【作业5】将下列分数指数幂化成方根的形式:(1)1522;(2)231()2-;(3)22331()22-;(2)43521(())2.【作业6】计算:(1))1318+(2)22++.- 11 -- 12 -【作业7】 a b ,【作业8】 物体自由下落的高度h (米)和下落时间t (秒)的关系是:在地球上大约是h =4.9t 2,在月球上大约是h =0.8t 2,当h =20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?【作业9】已知4a ,求(6)a a -的值.【作业10】 (1)已知2(20a a b c +-+,求abc 的平方;(2x = 求2500x -的立方根.【作业11】 已知22a b c +=,且a b ==,求2c 的平方根.【作业12】 已知x y 、的绝对值相等,a b 、互为倒数,c 的绝对值等于2,4是z 的一个立方根根,求22x y ab --+。