浅谈反证法

浅谈反证法
浅谈反证法

浅谈反证法

聂震 1310300235 摘要:反证法是数学中一种应用广泛的证明方法,在许多方面都有着不可替代的作用。从最基本的性质定理,到某些难度很大的世界难题都是用反证法来证明的。反证法不仅可以单独使用,也可以结合其他方法一同使用,还可以在论证同一命题时多次使用。本文主要从什么是反证法、反证法的依据、为什么使用反证法、反证法解题步骤、适用题型及举例、如何做出正确反设六个方面浅谈反证法。

关键词:反证法归谬法矛盾假设

引言:有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。

反证法是一种应用广泛的数学证明方法,它的应用与发展历史悠久,早在古希腊,数学家就应用它证明了许多重要的数学命题,欧几里德的《几何原本》已经开始运用反证法。牛顿曾说过,反证法是“数学家最精当的武器之一”,它在许多方面都有着不可替代的作用。在现代数学中,反证法已经成为最常用最有效的解决问题的方法之一。

一.定义:

反证法(又称背理法)是一种论证方式,他首先假设某命题不成立(即在原命题的题设下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。

二.反证法的依据:

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是

逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。

反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

三.为什么用反证法

一般若能正方向证出我们所需,我们就没必要反向考虑。所以,反证法的应用一般在于我们正向难以得出我们想要的结论。

用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。反证法证明前都假设“若……成立,则……”,无形中给我们加了一个条件,我们只需导出矛盾所在即可。所以反证法最大的优点在于:减轻了题目难度,并且有可能将逆向思维转为顺向。

四.反证法的解题步骤:

通常模式为:“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。

实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设;

第二步,穷举:列举出在反设下可能出现的各种情况;

第三步,归谬:把第二步所列举的各种可能情况一一引向矛盾(包括与公理、定义、定理、题设或临时的假设矛盾);

第四步,结论:说明反设不成立,从而肯定原命题成立。

五.适用题型:

(1)唯一性命题

例已知:点p直线a。求证:过点p和直线a平行的直线b有且只有一条。

证明:∵点p a ,∴点p 和直线a 确定一个平面α,在平面α内过点p 能作出一条直线与直线a 平行(由平面几何知识知),故直线b 存在。假设过点p 还有一条直线c 与a 平行。∵a ∥b ,b ∥c ,∴a ∥c ,这与直线b 、c 共点p 矛盾,故假设不成立,因此直线b 唯一。故过直线外一点有且只有一条直线和这条直线平行。

(2)否定性命题:

即结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入手,而反证法有希望成功。

例 求证:在一个三角形中,不能有两个角是钝角。已知:∠A ,∠B ,∠C 是三角形ABC 的三个内角。求证:∠A ,∠B ,∠C 中不能有两个钝角。

证明:假如∠A ,∠B ,∠C 中有两个钝角,不妨设∠A >900,且∠B >900,则∠A+∠B+∠C >1800。这与“三角形内角和为1800”这一定理相矛盾。 故 ∠A ,∠B 均大于900不成立。所以,一个三角形不可能有两个钝角。

(3)限定型命题

即结论中含有“至多”、“至少”、“不多于”或“最多”等词语的命题。 例 已知a , b , c 都是正数,求证:111,,a b c b c a

+++中至少有一个不小于2。 证明:不妨设111,,a b c b c a

+++全部小于2, 12a b +< ,12b c +<,12c a +<, 由于,,a b c 是任意的正数,可以令a b c ===10,

则我们有:11110.1a b c b c a

+=+=+= 显然矛盾。 所以,假设错误,原命题成立。111,,a b c b c a

+++中至少有一个不小于2

(4)必然性命题:

即结论以“……总是……”、“……都……”、“……全……”等出现的 例 求证:无论n 是什么自然数,214143

n n ++总是既约份数。

1 k),且a b

为整数,1

k

为分数,

即涉及各种“无限”结论的命题。例求证:素数有无穷多个。

证明:假设素数只有n个: P

1、P

2

……Pn,取整数N=P

1

·P

2

……Pn+1,显然

N不能被这几个数中的任何一个整除。因此,或者N本身就是素数(显然N不等于“P1、P2、……Pn中任何一个),或者N含有除这n个素数以外的素数r,这些都与素数只有n个的假定相矛盾,故素数个数不可能是有限的,即为无限的。

(6)不等式证明

不等式,反证法是证明它的一种重要方法,但当结论反面有无穷多种情况时,一般不宜用反证法。

例在△ABC中,∠C>∠B,求证:AB>AC.

证明:假设AB不大于AC,即AB≤AC,下面就AB<AC或AB=AC两种情况加以证明,若说明这两种情况都不成立,则假设错误,即原命题成立.

1)若AB=AC,则△ABC为等腰三角形

∴∠B=∠C,与已知∠C>∠B矛盾.

2)若AB<AC,在AB延长线上取一点D,使得AD=AC,连接DC.

∵AD=AC

∴△ADC为等腰三角形

∴∠ADC=∠ACD

又∵∠ABC为△ABD的一个外角

∴∠ABC>∠BDC=∠ACD 而∠ACD>∠ACB=∠C

∴∠ABC>∠C 即∠B>∠C,与已知矛盾.

∴假设不成立,原命题成立.

(7)起始性命题

例在同一平面设有四条直线a,b,c,d。若a与b相交,c⊥a,d⊥b,则c与d 也相交。

证明:假设c∥d。因为a⊥c,所以a⊥d;又因为b⊥d,所以a∥b。这与已知条件a与b相交矛盾。故c与d也相交。

六.如何正确的作出反设:

运用反证法证明命题的第一步是:假设命题的结论不成立,即假设结论的反面成立。在这一步骤中,必须注意正确的反设,这是正确运用反证法的基础、前提,正确作出反设,是使用反证法的一大关键否则,如果错误地“否定结论”,即使推理、论证再好也都会前功尽弃。要想正确的做出反设,必须注意以下几点:(1)分清命题的条件与结论,结论与反设间的逻辑关系。

(2)结论的反面常常不止一种情形,则需反设后,分别就各种情况归谬,做到无一遗漏。

总之,在否定命题的结论之前,首先要弄清命题的结论是什么,当命题的结论的反面非常明显并且只有一种情形时是比较容易做出否定的,但命题的结论的反面是多种情形或者比较隐晦时,就不太容易做出否定。这时必须认真分析、仔细推敲,在提出“假设”后,再回过头来看看“假设”的对立面是否恰是命题的结论。

例如:1)结论:至少有一个S是P。

错误假设:至少有两个或两个以上S是P,

正确假设:没有一个S是P。

例如;2)结论:最多有一个S是P。

错误假设:最少有一个S是P。

正确假设:至少有两个S是P。

例如:3)结论:全部S都是P。

错误假设:全部的S都不是P。

正确假设:存在一个S不是P。

一些常用词的否定形式如下:

七.总结:

法国数学家阿达玛说过,“这种证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾。”这是对反证法精辟的概括。

反证法就是从否定命题的结论入手,并把结论的否定作为已知条件进行正确的推理论证,证明出矛盾的原因是假设不成立,从而证明出了原命题成立。在应用反证法证明问题时,必须按照“反设——穷举——归谬——结论”的思路进行,正难则反,直接的思路较抽象较困难时,其反面就会较具体较容易,它不仅能体现出证明者的智慧,还能体现出数学的概括性和美丽!只要我们正确熟练运用,就能做到精巧、直接、巧解难题、说理清楚、论证严谨,提高数学解题能力和逻辑思维能力,做一名数学高手!

反证法_议论文的论证方法

反证法_议论文的论证方法 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 顾名思义,反证不是从正面直接来证明论点,而是从反面间接地证明论点。这是运用演绎推理形式进行论证的一种方法。先看下面一例: 假如当初诸葛亮不留人情,而是派其他可靠的将领去拦守华容道,那么,可能曹操会被擒拿;又假如从那次吸取教训,这一次秉公办事,不管马谡怎样拍胸脯,下保证,不合适就不用,那么就有可能避免失街亭的悲剧。而事实恰恰相反,诸葛亮并未从第一次失策中吸取经验教训,而是在重蹈覆辙后,才“深恨自己之不明”,流涕斩了马谡。 这段文字中“如果”之后用的便是反证法:不是从正面讲,而是从反而讲。“如果”是分析文章的好形式。袁隆平的事迹也许经常会写入你的作文中。一般的同学都只是正面来写,往往写他是个科学家,他的名字叫袁隆平,获得了什么奖。这样写不形象,不深入,不细致。学一学“如果”吧: 如果袁隆平仅仅是为了个人的生活美好,他不会穿着水鞋,戴着草帽,农民着,科学着;如果他仅仅是

为了钱而生存,他就不会拿着500万的科技大奖还生活得那么朴素而又纯净;如果他也像普通人一样不善于思考,杂交水稻也不会靠近他。 反证法,论证更有力量。例如: 如果梭罗没有挣脱嘈杂城市的束缚,瓦尔登湖的涟漪也不会在他的心中荡漾;如果梭罗没有漫步湖畔清爽的阳光里,那么恬静的清明也不会属于他;如果梭罗倾向于那些为金钱而束缚的人们,他也不会拥有属于他的那些冷雨。 如果梭罗没有走进大自然他就不会有清新自然的文字;如果梭罗沉醉于纸醉金迷的城市生活,就不会感受到置身田园的欣慰;如果梭罗没有在烈日当空晒下辛勤地劳作,猛烈的暴风雨将不会是最好的伴侣,使他充实,他的耳朵就听不到美好的音乐。 如果贝利没有在生活中时时刻刻保持着清醒,他不会成为备受世人注目的球王;如果没有在球场上时刻保持着清醒,他也不会多次捧起“大力神”杯;如果在人们的赞美声中贝利不是每分钟都时刻保持着清醒,那么他的后代就会真的忘记了如何在困难中奋起,在贫困中胜利。 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

反证法证明题简单

反证法证明题简单 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

反证法证明题 例1.已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2.已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a = . 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3.已知332,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以33(2)a b >-即3238126a b b b >-+-,

所以323281266(1)2a b b b b >-+-=-+. 因为26(1)22b -+≥ 所以332a b +>,与已知332a b +=矛盾. 所以假设不成立,所求证结论成立. 例4.设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2213S S S =?, 即222111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以22(1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5.是无理数. 是有理数,则存在互为质数的整数m ,n m n =. 所以m =即222m n =, 所以2m 为偶数,所以m 为偶数. 所以设*2()m k k N =∈, 从而有2242k n =即222n k =. 所以2n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 是无理数成立. 例6.已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。

浅谈反证法

浅谈反证法 聂震 1310300235 摘要:反证法是数学中一种应用广泛的证明方法,在许多方面都有着不可替代的作用。从最基本的性质定理,到某些难度很大的世界难题都是用反证法来证明的。反证法不仅可以单独使用,也可以结合其他方法一同使用,还可以在论证同一命题时多次使用。本文主要从什么是反证法、反证法的依据、为什么使用反证法、反证法解题步骤、适用题型及举例、如何做出正确反设六个方面浅谈反证法。 关键词:反证法归谬法矛盾假设 引言:有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 反证法是一种应用广泛的数学证明方法,它的应用与发展历史悠久,早在古希腊,数学家就应用它证明了许多重要的数学命题,欧几里德的《几何原本》已经开始运用反证法。牛顿曾说过,反证法是“数学家最精当的武器之一”,它在许多方面都有着不可替代的作用。在现代数学中,反证法已经成为最常用最有效的解决问题的方法之一。 一.定义: 反证法(又称背理法)是一种论证方式,他首先假设某命题不成立(即在原命题的题设下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。 二.反证法的依据: 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。 在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

论文浅谈反证法

. 华中师范大学高等教育自学考试 本科毕业生论文评审表 论文题目:浅谈反证法 准考证号: 姓名:*** 专业:数学教育 学生类型:独立本科段(助学班/独立本科段) 2011年12 月20日 华中师范大学高等教育自学考试办公室印制 . kszl

论文容摘要

目录 1引言 (3) 2反证法的定义及步骤 (4) 2.1反证法的定义 (4) 2.2反证法的步骤 (4) 3反证法的逻辑依据及分类 (5) 3.1反证法的逻辑依据 (5) 3.2反证法的分类 (5) 4反证法如何正确的作出反设 (6) 5反证法如何正确的导出矛盾 (8) 6何时宜用反证法 (9) 6.1基本命题,即学科中的起始性命题 (10) 6.2命题结构采取否定形式,结论反面却是肯定判断 (11) 6.3有关唯一性的问题 (11) 6.4命题结论是“至多”“至少”形式 (12) 6.5命题结论涉及无限集或数目不确定的对象 (12) 6.6某些起始命题 (13) 6.7难证的逆命题 (13) 6.8命题结论的反面较结论本身具体、简单、直接证明难以下手时 (13) 7在中学数学中常用的反证法思想的题型分析 (14) 7.1结论本身以否定形式出现的一类命题例 (14) 7.2有关结论是以“至多...”或“至少...”的形式出现的一类命题例. (14) 7.3关于存在性、唯一性的命题例 (14) 7.4结论的反面比原结论更具体更容易研究和掌握的命题例 (15) 7.5无穷性命题 (15) 8结论 (16) 参考文献 (17)

1引言 南方某风水先生到北方看风水,恰逢天降大雪。乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。[1]” 实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的荒唐结论。风水先生当然不会承认这个事实了。那么,显然,他说的就是谬论了。 这就是反证法的威力,一个原本复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。

反证法证明题(简单)(可编辑修改word版)

反证法证明题 例1. 已知∠A ,∠B ,∠C 为?ABC 内角. 求证:∠A ,∠B ,∠C 中至少有一个不小于60o. 证明:假设?ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o, 所以∠A +∠B +∠C < 180O, 与三角形内角和等于180o矛盾, 所以假设不成立,所求证结论成立. 例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根. 证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b . a 假设方程ax = b 至少存在两个根, 不妨设两根分别为x1 , x2 且x1 ≠x2 , 则ax1=b, ax2=b , 所以ax1=ax2, 所以a(x1-x2 ) = 0 . 因为x1 ≠x2 ,所以x1 -x2 ≠ 0 , 所以a = 0 ,与已知a ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例3. 已知a3+b3= 2, 求证a +b ≤ 2 . 证明:假设a +b > 2 ,则有a > 2 -b , 所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3, 所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 . 因为6(b -1)2+ 2 ≥ 2 所以a3+b3> 2 ,与已知a3+b3= 2 矛盾. 所以假设不成立,所求证结论成立. 例4. 设{a n}是公比为的等比数列,S n为它的前n 项和. 求证:{S n}不是等比数列. 证明:假设是{S }等比数列,则S 2=S ?S , n 2 1 3

2 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ? a (1+ q + q 2 ) . 因为等比数列 a 1 ≠ 0 , 所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例 5. 证明 是无理数. m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 = . n 所以 m = 2n 即 m 2 = 2n 2 , 所以 m 2 为偶数,所以m 为偶数. 所以设 m = 2k (k ∈ N *) , 从而有4k 2 = 2n 2 即 n 2 = 2k 2 . 所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾. 所以假设不成立,所求证 是无理数成立. 例 6. 已知直线 a , b 和平面,如果 a ? , b ?,且 a / /b ,求证a / /。 证明:因为 a / /b , 所以经过直线 a , b 确定一个平面。 因为 a ? ,而 a ? , 所以 与是两个不同的平面. 因为b ?,且b ? , 所以 = b . 下面用反证法证明直线 a 与平面没有公共点.假设 直线 a 与平面 有公共点 P ,则 P ∈ = b , 即点 P 是直线 a 与 b 的公共点, 这与 a / /b 矛盾.所以 a / /. 例 7.已知 0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a ,(2 - c )b 不可能同时大于 1 证明:假设(2 - a )c , (2 - b )a ,(2 - c )b 都大于 1, 即 (2 - a )c>1, (2 - b )a>1, (2 - c )b>1,

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

反证法证明题

反证法证明题 例1. 已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2. 已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a =. 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3. 已知3 3 2,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以3 3 (2)a b >-即323 8126a b b b >-+-, 所以3 2 3 2 81266(1)2a b b b b >-+-=-+. 因为2 6(1)22b -+≥ 所以332a b +>,与已知33 2a b +=矛盾. 所以假设不成立,所求证结论成立. 例4. 设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2 213S S S =?,

即222 111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以2 2 (1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5. 证明2是无理数. 证明:假设2是有理数,则存在互为质数的整数m ,n 使得2m n =. 所以2m n = 即222m n =, 所以2 m 为偶数,所以m 为偶数. 所以设* 2()m k k N =∈, 从而有2 2 42k n =即2 2 2n k =. 所以2 n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 所以假设不成立,所求证2是无理数成立. 例6. 已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。 证明:因为//a b , 所以经过直线a , b 确定一个平面β。 因为a α?,而a β?, 所以 α与β是两个不同的平面. 因为b α?,且b β?, 所以b αβ=I . 下面用反证法证明直线a 与平面α没有公共点.假 设直线a 与平面α有公共点P ,则P b αβ∈=I , 即点P 是直线 a 与b 的公共点, 这与//a b 矛盾.所以 //a α. 例7.已知0 < a , b , c < 2,求证:(2 a )c , (2 b )a ,(2 c )b 不可能同时大于1 证明:假设(2 a )c , (2 b )a ,(2 c )b 都大于1,

高数论文-反证法

高等数学结课论文之反证法 反证法又称归谬法、背理法,是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。 反证法的原理:反证法是“间接证明法”一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓"正难则反"。牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明正面证明有困难,情况多或复杂,而逆否命题则比较浅显的题目,问题可能解决得十分干脆。 反证法的逻辑原理:反证法的证题可以简要的概括为“否定→得出矛盾→否定”。即从否定结论开始,得出矛盾,达到新的

否定,可以认为反证法的基本思想就是辩证的“否定之否定”。应用反证法的是:欲证“若P则Q”为真命题,从相反结论出发,得出矛盾,从而原命题为真命题。 反证法的证明:反证法的证明主要用到“一个命题与其逆否命题同真假”的结论,为什么?这个结论可以用穷举法证明: 某命题:若A则B,则此命题有4种情况: 1.当A为真,B为真,则A→B为真,﹁B→﹁A为真; 2.当A为真,B为假,则A→B为假,﹁B→﹁A为假; 3.当A为假,B为真,则A→B为真,﹁B→﹁A为真; 4.当A为假,B为假,则A→B为真,﹁B→﹁A为真; ∴一个命题与其逆否命题同真假 即关于〉=〈的问题: 大于 -〉反义:小于或等于 都大于-〉反义:至少有一个不大于 小于 -〉反义:大于或等于 都小于-〉反义:至少有一个不小于 即反证法是正确的。 与若A则B先等价的是它的逆否命题若﹁B则﹁A 假设﹁B,推出﹁A,就说明逆否命题是真的,那么原命题也是真的. 但实际推证的过程中,推出﹁A是相当困难的,所以就转化为了推出与﹁A相同效果的内容即可,这个相同效果就是与A(已知条件)

用反证法证明几何问题

65yttrgoi 用反证法证明几何专题 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 一、反证法的概念: (又称归谬法、背理法)是一种论证方式,不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 二、反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个 矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 三、反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 四、适用范围 “反证法”宜用于证明否定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反证法。 五、反证法在平面几何中的应用 例1.已知:AB 、CD 是⊙O 内非直径的两弦(如图1),求证AB 与CD 不能互相平分。 (1) 证明:假设AB 与CD 互相平分于点M 、则由已知条件AB 、CD 均非⊙O 直径, 可判定M 不是圆心O ,连结OA 、OB 、OM 。 ∵OA =OB ,M 是AB 中点 ∴OM ⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得:OM ⊥CD ,从而过点M 有两条直线AB 、CD 都垂直于OM 这与已知的定理相矛盾。故AB 与CD 不能互相平分。 归缪法 穷举法

浅谈中学数学中的反证法

浅谈中学数学中的反证法 摘要:反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。反证法不仅是一种论证方法,还是一种思维方式,对培养和提高学生的逻辑思维能力和创造性思维能力也有极其重要的作用,还能拓展学生的解题思路,从而使学生形成良好的数学思维。反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍反证法在中学数学中的应用并举例分析以及说明应用反证法要注意的问题。 关键词:反证法;中学数学;应用; On the Proof by Contradiction in Middle School Mathematics Abstract:Proof by contradiction is a very important indirect proof method in mathematics, it is called "one of the most sophisticated weapons of mathematicians", also known as reduction to absurdity, unreasonable method. Proof by contradiction is not only an argumentation method, but also a way of thinking. It plays an extremely important role in cultivating and improving students' logical thinking ability and creative thinking ability. It can also expand students' thinking of solving problems, so that students can form good mathematical thinking. Anyway, the method has been widely used in middle school mathematics. Nowadays, when students solve problems with the method of proof by contradiction, the students with general foundation are limited by their thinking ability. If the method of proof by contradiction can be used properly, they may be able to solve some difficult problems. Therefore, this paper will first describe the source of proof by contradiction, specifically elaborate the definition of proof by contradiction, that is, the concept, classification and logical basis of proof by contradiction, introduce the application of proof by contradiction in middle school mathematics and explain the problems to be noticed in the application of proof by contradiction. Keywords:proof by contradiction; Middle school mathematics; Application;

浅谈中学数学中的反证法

浅谈中学数学中的反证法 数学与计算机科学学院数学与应用数学 105012011138 黄义瑜 【摘要】反证法一种间接的数学证明方法,也是一种重要的数学思想.他首先假设某命题不成立,然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证.证明的一般步骤为反设、归谬、结论.虽然在中学数学的课本中所占篇目较少,但应用广泛,能锻炼学生的逆向思维.论文中将阐述反证法的概念、证明步骤、思维方式以及适用题型.深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力. 【关键词】反证法命题中学数学高考高等数学 有个著名的“道旁苦李”的故事:传说,王戎从小就非常聪明.有一天,他和小伙伴们出去游玩,发现路边有几株李树,树上结满了李子,而且看上去一个个都熟透了.小伙伴们一哄而上,摘了尝了之后才发现李子是苦的.只有王戎没动,王戎说:“如果李子不苦的话,早就被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这个故事中王戎从反面论述了李子为什么不甜,不好吃.这种间接的证法就是我们下面所要讨论的反证法. 1 反证法的由来 反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种.法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”.反证法作为一种最重要的数学证明方法,在数学命题的证明中被广泛应用.欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法. 2 反证法的概念 反证法是一种反面的角度思考问题的证明方法,是数学中常用的间接证明方法之一,属于“间接证明”的一类.即肯定题设而否定结论,从而导出矛盾,推理而得. 法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”.具体来说就是,假设命题的结论不成立,在已知条件和“否定命题结论”的新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论矛盾或自相矛盾,从而断定命题结论的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法.

浅谈数学分析中反例的作用

单位代码: 005 分类号:O1 延安大学西安创新学院 本科毕业论文(设计) 题目:浅谈数学分析中反例的作用 专业:数学与应用数学 姓名:谢恒艳 学号: 1143031047 指导教师:张璐 职称:讲师 毕业时间:二〇一五年六月

浅谈数学分析中反例的作用 摘要:数学分析中,反例常被用于证明之中.有许多数学猜想或命题的叙述时全称命题,声称所有的一类事物都有某种性质,或者是只要满足某个条件,就会得出某种结果.当证明这样的数学猜想遇到困难时,人们会趋向于寻找一个反例,以说明这个猜想是错误的.证明在数学分析中有着重要的作用. 本文主要总结了反例在数学分析中起到的作用.首先对反例进行了认识,主要是对反例和反证法在概念和运用上的一个区别;其次是总结反例加强对概念的认识,主要是从无界函数、函数在一点的连续、二元函数的偏导和可微这几个方面来说明;再其次是对定理的理解,主要介绍了罗尔中值定理和拉格朗日中值定理这两个定理;再是说明反例对概念之间关系的把握,主要是分别对可导与连续、无穷大与无界量等概念之间进行了区别联系;最后简单总结了反例能有培养逆向思维的能力. 关键词:数学分析;反例;作用;归纳总结

The Effect of Counter Example in Mathematical Analysis Abstract:In mathematical analysis,a counterexample is often used in proofs.There are many mathematical conjectureor proposition describes universal proposition,that kind of thing all have certain properties,or as long as acondition is met,will come tosome sort of conclusion.When that mathematical conjecture this difficulty,a mathematician would tend to look for a a counter example,to show that this conjecture is false.That plays an important role in mathematical analysis. This paper mainly summarizes the counterexample to play in mathematical analysis. The first is the exceptions to the recognition, mainly to the counterexample and reduction to absurdity in concept and use them to prove a difference step on; This is followed by a summary of the counterexample to enhance understanding of the concept, mainly from the unbounded function, function and Er Yuan functionfor a partial derivative and differentiability of several aspects of this example; then to understand theorem, mainly introduced the Rollemean value theorem and Lagrange mean value theorem and the two theorem; then explains the concept ofthe relationship between the example grasp, mainly on between the concept of derivative and thecontinuous, infinite with an unbounded amount of difference; summarizes the counterexample can have theability of reverse thinking. Key words:Mathematical analysis ;The counterexample ;Effect;For example

反证法在初中物理力学中的巧用

反证法在初中物理力学中的巧用 牛顿曾经说过:“反证法是数学家最精当的武器之一”。看到这,相信很多同学对于反证法一定会不明觉厉。那么,我们先来了解一下什么是反证法。反证法是一种论证方式,它首先假设某命题不成立,然后推理出明显矛盾的结果,从而下结论说假设不成立,原命题得证。简单来说,你可以理解为逆向思维或者排除法。 反证法的证明步骤分为三步:(1)反设:假设命题结论不成立,即假设结论的反面成立。(2)归谬:从这个命题出发,经过推理证明得出矛盾。(3)结论:由矛盾判断假设不成立,从而肯定命题的结论正确。 当然,除了数学,反证法还应用到了物理、化学、历史、哲学、生活等各方面领域,本文,我们通过三个案例来谈谈反证法在初中物理力学中的巧用。 案例1请证明图1中随水平传送带一起做匀速直线运动的大米不受摩擦力的作用。 图1 分析过程:对于随水平传送带一起匀速直线运动的大米受力分析,重力和支持力是比较容易判断的,此题的难点在大米与传送带之间是否有摩擦力,如果有摩擦力,方向应该向哪一边。因此,我们可以针对题干作出反设——随水平传送带一起做匀速直线运动的大米受到摩擦力的作用:①大米受到水平向右的摩擦力;②大米受到水平向左的摩擦力;③大米不受摩擦力。 证明过程: ①若大米受到水平向右的摩擦力,则它的受力情况为: 此时大米所受的合力大小不为零,根据牛顿第一定律,可知该大米不可能做匀速直线运动,与题意矛盾,因此该假设不成立。 ②若大米受到水平向左的摩擦力,则它的受力情况为:

此时大米所受的合力大小也不能为零,根据牛顿第一定律,可知该大米不可能做匀速直线运动,与题意矛盾,因此该假设也不成立。 因为我们已知结论肯定是三种假设中的其中一种,前两种已经通过反证法推翻,所以可以直接得出第三种假设的正确性。当然,如果你还不够自信,也可以对第三种假设进行再次证明。 ③若大米不受摩擦力,则它的受力情况为: 此时的大米只受到重力和支持力,处于二力平衡状态,根据牛顿第一定律可判断它可以做匀速直线运动,与题意相符。 案例2请分析图2中随水平传送带一起匀速向上运动的大米的受力情况。 图2 分析过程:案例2和案例1非常相像,它们的共同点是大米都和传送带一起做匀速直线运动,因此很多同学会认为案例2的大米与斜面间也没有摩擦力。现实真的是这样吗?我们同样可以通过反证法进行证明,我们假设三种情况:①大米不受摩擦力;②大米受到沿斜面向下的摩擦力;③大米受到沿斜面向上的摩擦力。 证明过程: ①若大米不受摩擦力,则它的受力情况为: 此时大米受到两个力的作用,而这两个力并不在同一条直线上,因此不能平衡,根据牛

用反证法证明是无理数

据说最初发现 p q ,这里p和q是无公约数的正整数 传说毕达哥拉斯太珍惜这个发现,不打算公开这个结果。他的学生之一为了好奇,悄悄走进老师的家里偷文件,这方法才被公开出来。 我们下面介绍五个用反证法证明这结果,大家可以学习这种证明。 p q =,p,q是无公约数的整数。 (1)毕达哥拉斯方法: p q =两边平方得22 2 p q =,所以2p是偶数,因此p也须是偶数(因为奇数2k +1的平方后是4k2+4k+1=2(2k2+2k)+1仍旧是奇数)。所以我们可以设p是2a的样子,代入上式得(2a)2=2q2,即4a2=2q2两边同时消掉2可得2a2=q2,即q也是偶数。 由于p,q都是偶数,它们有一个公约数2,这和我们最初假设p, q (2)利用整数的个位数性质:我们知道任何整数平方其最后一位数是等于原数最后一位数的平方后的最后一位数。例如(12)2=144,最后一位数4=(2)2。而(17)2=289,(7)2=49,最后一位数是一样。 最后一位数可能出现0,1,2,3,4,5,6,7,8,9。 因此任何数的平方最后一位数只可能是0,1,4,5,6,9。 因此2q2的最后一位数只可能是0,2或8。 由于p2的最后一位数可能是0,1,4,5,6,9。而且由P2=2q2,故必须有2q2最后一位数是0,因此推到q2的最后一位数是0或5。 可是如果P2的最后一位数是0,而q2的最后一位数是0或5的话,则P的最后一位数是0,q的最后一位数是0或5,这样5就能整除p和q,这和p,q无公约数的假定矛盾。 (3)利用素因子的性质: p q =得22 2 p q =,这里q要大于1,如果是等于1 =p,这是个整数,明显是不合理的。现在我们可以得到2 2 p q p ?? =? ? ?? ,我们知道: (一)任何整数不是素数就是合数。

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

相关文档
最新文档