热传导问题的有限元法

合集下载

有限元法的原理_求解域_概述及解释说明

有限元法的原理_求解域_概述及解释说明

有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。

它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。

有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。

1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。

1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。

通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。

此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。

2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。

它将求解域划分为许多小单元,每个小单元称为有限元。

在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。

2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。

这是通过将原始方程乘以一个测试函数并进行积分得到的。

这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。

2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。

有限元法应用举例

有限元法应用举例

核反应堆运行过程中涉及高温、 高压、高辐射等极端条件,热工 水力学分析是确保安全性的重要
环节。
有限元法可以对核反应堆的热工 水力学进行模拟,评估冷却剂流 动、热能传递、压力容器应力分
布等关键参数。
通过模拟分析,可以优化反应堆 设计,提高运行效率,降低事故
风险。
建筑物的能耗模拟与优化
建筑物的能耗是节能减排的重要领域,能耗模拟与优化有助于降低能源消耗和碳排 放。
况,为设备的电磁兼容性设计和优化提供依据。
通过有限元分析,可以评估设备的电磁辐射是否符合相关标准
03
和规定,以及优化设备的天线布局和结构设计等。
高压输电线路的电场分析
高压输电线路在运行过程中会 产生电场和磁场,其强度和分 布情况对环境和人类健康具有 一定影响。
有限元法可以用来分析高压输 电线路的电场分布情况,包括 电场强度的计算和分布规律的 分析等。
通过有限元分析,可以评估高 压输电线路对环境和人类健康 的影响,为线路的规划、设计 和优化提供依据。
07
有限元法应用举例:声学分析
消声室的声学设计
消声室是用于测试和测量声音的特殊 实验室,其内部环境需要极低的噪音 水平。
通过模拟和分析,可以确定最佳的吸 音材料和布局,以及最佳的隔音结构, 以达到最佳的消声效果。
有限元法应用举例
• 有限元法简介 • 有限元法应用领域 • 有限元法应用举例:结构分析 • 有限元法应用举例:流体动力学分析 • 有限元法应用举例:热传导分析 • 有限元法应用举例:电磁场分析 • 有限元法应用举例:声学分析
01
有限元法简介
定义与原理
定义
有限元法是一种数值分析方法,通过将复杂的物理系统离散 化为有限数量的简单单元(或称为元素),并建立数学模型 ,对每个单元进行单独分析,再综合所有单元的信息,得到 整个系统的行为。

传热问题有限元分析

传热问题有限元分析

【问题描述】本例对覆铜板模型进行稳态传热以及热应力分析,图I所示的是铜带以及基板的俯视图,铜带和基板之间由很薄的胶层连接,可以认为二者之间为刚性连接,这样的模型不包含胶层,只有长10mm的铜带(横截面2mm×0.1mm)和同样长10mm的基板(横截面2mm×0.2mm)。

材料性能参数如表1所示,有限元分析模型为实体——实体单元,单元大小0.05mm,边界条件为基板下表面温度为100℃,铜带上表面温度为20℃,通过二者进行传热。

图I 铜带与基板的俯视图表1 材料性能参数名称弹性模量泊松比各向同性导热系数基板 3.5GPa 0.4 300W/(m·℃)铜带110GPa 0.34 401W/(m·℃)【要求】在ANSYS Workbench软件平台上,对该铜板及基板模型进行传热分析以及热应力分析。

1.分析系统选择(1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。

在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,m,s,℃,A,N,V)命令。

(2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“稳态热分析”【Steady-State Thermal】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。

相关界面如图1所示。

图1 Workbench中设置稳态热分析系统(3)拖动左侧工具箱中“分析系统”【Analysis Systems】中的“静力分析”【Static Structural】系统进到稳态热分析系统的【Solution】单元格中,为之后热应力分析做准备。

完成后的相关界面如图2所示。

图2 热应力分析流程图2.输入材料属性(1)在右侧窗口的分析系统A中双击工程材料【Engineering Data】单元格,进入工程数据窗口。

第7章 稳态热传导问题的有限元法

第7章 稳态热传导问题的有限元法

)dΒιβλιοθήκη 0(8-18)14
采度用分布Ga函ler数ki和n方换法热,边选界择条权件函代数入为(8,-w181 )式N,i 单将元单的元加内权的积温
分公式为
e
[ Ni x
(x
[N ]) Ni x y
( y
[N ])]{T}e d y
e
e
NiQ d 2 Ni qs d
(8-19)
e 3
Ni h[N ]{T}e d
一点上都满足边界条件(8-11)。对于复杂的工程问
题,这样的精确解往往很难找到,需要设法寻找近似
解。所选取的近似解是一族带有待定参数的已知函数
,一般表示为:
n
u u Ni ai Na
(8-12)
i 1
其中 ai为待定系数,为 Ni已知函数,称为试探函数。试探
函数要取完全的函数序列,是线性独立的。由于试探函数
T
0
t
5
这类问题称为稳态(Steady state)热传导问题。 稳态热传导问题并不是温度场不随时间变化,而是指 温度分布稳定后的状态。
若我们不关心物体内部的温度场如何从初始状态 过渡到最后的稳定温度场,那么随时间变化的瞬态( Transient)热传导方程就退化为稳态热传导方程,三 维问题的稳态热传导方程为
,取: W j N j W j N j
下面用求解二阶常微分方程为例,说明Galerkin 法(参见,王勖成编著“有限元法基本原理和数值 方法”的1.2.3节)。
12
以二维问题为例,说明用Galerkin法建立稳态温度场 的一般有限元格式的过程。二维问题的稳态热传导方程:
x
x
T x
y
y
1 x j

各向异性热传导问题杂交Trefftz有限元法及数值实现

各向异性热传导问题杂交Trefftz有限元法及数值实现

各向异性热传导问题杂交Trefftz有限元法及数值实现摘要:当前各向异性热传导问题,在热学领域得到了广泛的关注,许多学者开展了深入的研究。

Trefftz有限元法是一种新兴的解决此类问题的数值计算方法,该方法通过采取基于边界积分方程的Trefftz函数,避免了网格依赖性的问题。

本文介绍了Trefftz有限元法对各向异性热传导问题的显式方法,同时还对其相关的数值实现做出了详细的介绍。

经过验证,该方法不仅具有高精度和准确性,而且大大提高了计算效率,有很好的应用前景。

关键词:各向异性热传导、Trefftz有限元法、边界积分方程、数值实现、计算效率一、引言各向异性热传导问题一直是研究热学领域的重要问题。

各向异性材料的热传导特性的复杂性,使得该问题的数学模型的建立和数值计算变得十分困难。

近年来,解决这一问题的方法也得到了迅速发展。

Trefftz有限元法是最近新兴的解决各向异性热传导问题的数值计算方法之一。

该方法的特点是采用基于边界积分方程的Trefftz函数,克服了传统有限元方法中的网格依赖性问题,同时为计算提供了更好的精度和准确性。

本文将详细介绍Trefftz有限元法在各向异性热传导问题中的显式方法,并对其给出的数值实现做出详尽的分析和说明。

最后,通过数值实验的结果,验证了该方法的高精度和较高的计算效率。

二、热传导问题的数学模型本文所考虑的是各向异性介质内的热传导问题。

根据热传导学中的基本假设,我们基于傅里叶定律、热对流定律和热辐射定律等假设,建立如下的热传导方程:(1)∇·k∇T+f=ρC(T)其中,k是热传导系数,T是温度,f是热源项,ρ是密度,C是比热容。

在各向异性材料中,k是一个矩阵,可以写为:(2)k=[k11 k12 k13][k21 k22 k23][k31 k32 k33]其中,各个元素反映了各向异性材料的传热特性。

下一步,我们需要将上述方程变形为适合于数值计算的形式。

这里采用Trefftz有限元法进行求解。

二维热传导有限元

二维热传导有限元

7(m)
6(n)

3
0.933 0.233 0.466 0.233
K (2) 0.233
0.933
0.233

0.466



4 7
0.466 0.233 0.933 0.233
0.233
0.466
0.233
0.933


6


2(i)

5(j)

4(k)
0.7 0 0.7
K (4) 0
0.7 0.7
0.7 0.7 1.4

5(i)
9(j)

8(k)
0.7 0 0.7
K (5) 0
0.7 0.7
0.7 0.7 1.4
如前所述,对流边界条件对传导矩阵和荷载

Tn

T

Ti

Y

y

Tj

n

Tm

m

i

j
矩形单元

x

X
对热扩散方程应用伽辽金方法,在局部坐 标系x, y下,得到余差方程:
R(e) i

A Si (kx
2T x2

ky
2T y 2

q)dA
R(e) j

A S j (kx
2T x2

ky
2T y 2
稳态的二维热传导问题,在直角坐标系
下,对系统应用能量守恒定律,得到热扩散
方程:
2T
2T
kX X 2 kY Y 2 q 0

基于有限元法的热处理数值模拟研究

基于有限元法的热处理数值模拟研究

基于有限元法的热处理数值模拟研究热处理是一种常见的工艺,可以通过控制金属材料的加热和冷却过程,改变其微观组织和性能。

这种技术在金属材料的制造和加工中起着关键的作用。

为了更好地了解和优化热处理过程中材料的热传导和变形行为,有限元法的热处理数值模拟研究成为了一种重要的手段。

数值模拟技术是通过建立数学模型,运用计算机算法对材料的加工和性能进行预测和优化的方法。

有限元法是数值模拟中最常用的方法之一,它通过将复杂的问题离散化成许多小的单元来进行计算。

在热处理过程中,有限元法可以帮助我们计算材料的温度分布、相变行为、应力和应变等重要参数。

首先,热处理过程中的温度分布是一个关键的问题。

通过有限元法,我们可以建立材料与周围环境的热传导方程,考虑材料的导热系数、热容和边界条件等因素,精确地计算出材料的温度分布。

这对于确定加热和冷却的控制参数非常重要,可以帮助我们实现所需的材料性能。

其次,相变行为在热处理中也非常重要。

相变是指材料在温度变化过程中从一个相态转变为另一个相态的现象。

在热处理过程中,材料的相变行为会直接影响其组织和性能。

有限元法可以模拟材料的相变过程,如固相变液相,通过考虑材料的热力学参数和相变动力学,可以帮助我们预测相变的位置、速率和形态,从而优化热处理过程。

除了温度和相变的影响,热处理也会对材料的应力和应变产生影响。

通过有限元法,我们可以计算材料在加热和冷却过程中的应力和应变分布。

这对于材料的强度和变形行为的研究非常重要。

通过调整热处理参数和工艺,我们可以改变材料的应力和应变分布,从而优化其性能。

此外,有限元法还可以帮助我们预测材料在热处理过程中的变形行为。

通过建立材料的力学模型,考虑材料在加热和冷却过程中的热膨胀和相变等因素,我们可以计算材料的变形情况。

这对于预测材料在加工和使用中的变形行为非常重要,可以帮助我们改进材料的设计和工艺。

综上所述,有限元法的热处理数值模拟研究在材料科学和工程领域具有重要的意义。

第8章有限元法基础——二维热传导问题分析

第8章有限元法基础——二维热传导问题分析

x
k S T T cos d

x
h S T T T cos d f



h S T cos d h S
T
T
T f cos d


h S
T
T cos d
(e)
在x方向的传导矩阵为
0 2 1 0 0 1 2 0 0 0 0 0
总 结
(1)双线性单元的传导矩阵为
2 2 1 1 k x w 2 2 1 1 k y l (e) K 6l 1 1 2 2 6w 1 1 2 2
2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2
x方向的传导分量,y方向的传导分量;
如果边界单元通过热对流有热量损失,传导 矩阵有如下附加项: 2 0 0 1 0 0 0 0 hl jm 0 2 1 0 hlni 0 0 0 0 (e) (e) K K 6 0 0 0 0 6 0 1 2 0 1 0 0 2 0 0 0 0
K
0 hl jm 0 6 0 0
K
(e)
2 hlni 0 6 0 1
0 0 0 0
0 0 0 0
1 0 0 2
h S T sin d 在y方向的传导矩阵为
T

K
(e)
2 hlij 1 6 0 0
0 hlmn 0 6 0 0
1 2 0 0
0 0 0 0
2
T
2
令 C1 k x, C2 ky , C3 q 。上式变为如下形式:
S
A
T
T T d T (C1 2 )dA S (C2 2 )dA S C3 dA 0 A A y dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dz
f x0 x
0
0
泛函I=I[y(x)]在y=y 0 (x)处取极值的必要条件是 δI=0,即
I
Iy0 x
y
0
0
上式的含义是:异于y0 (x)的y都使I偏离最大值
点或最小值点,此时,I处于“左也不是,右也
不是”的状态。
可见,函数取极值的必要条件和泛函取极值的必
要条件是类似的。只不过函数的自变量在极值
这些话的意思是:y是连续区间[x1, x2]中一段曲 线。该曲线的变分,就是说它可以变化。这种 变化可以是:值的变化,一阶导数的变化,高 阶导数的变化等。
下面证明:一维泛函(只与一个函数有关)取极 值的条件。
设有泛函
I
yx
x2 x1
F
x,
yx,
y'
xdx
其中:泛函中的自变函数y(x)(平面上的曲线) 在积分区间[x1, x2]的端点x1, x2处的值是已知的, 即
二 泛函的极值
函数z = f (x)有极值问题。如果 dz 0 dx
表明,z相对于x的变化具有局部稳定性,z向 左也不是,向右也不是,此时,z取极值。
泛函I也有极值。使泛函取极值的自变函数y称为
泛函的极值点,它使泛函在该处的值具有稳定 性。
当然,使泛函取得极值的自变函数y的变化要复
杂的多。
三 变分法 函数取极值的条件:dz 0 ,d 称为微分。
dx
泛函取极值的条件: I
四 变分
x
0

称为变分。
函数微分
dz f x x f 'xdx,为任意小的正数
0
可以用来研究函数z在x处的变化。
类似,泛函在某点y的变化,可以通过对泛函的 变分
I Iyx y
来观察。I—泛函,ε—任意小的正数。
五 泛函取极值的条件 函数在x0处取极值的条件:
(5)根据变分基本定理,在δy满足一般性条件 时,即可得出: δI = 0 或I取极值的条件 ()=0
对于一个场的描述有两种方法:1)积分法;
2)微分法。
两种方法的求解基本思路:
(1)积分法 假设场变量的变化模式。这种变化 方式可以用多项式或三角函数多项式表达,它 含有若干待定系数,即每一项前的系数。
y
y '
y'
F
x,
y
y,
y'
y'
y'
y'dx
x2 x1
y
y
F
x,
y
y,
y'
y'
y
y
y'
y'
F
x,
y
y,
y'
y'
y '
y'dx
x2 x1
y
F
x,
y
y,
y'
y'
y
y'
F
x,
y
y,
y'
y'
y'dx
令ε = 0,则(y成为使I取极值的点)
I Iyx y
0
x2 x1
6 热传导问题的有限元法
本章应用变分原理,将求解域的微分方程,转化 为泛函,然后通过求泛函的极值,找到原问 题的解。
6-1 问题的提出
前面对于力学问题,采用直接法或者虚功原理, 建立了有限元的求解格式。
但是对于非结构问题,必须借助数学工具:变分 原理分析,求泛函的极值。
比如,热传导中稳定温度场的求解是工程中经常 遇到的问题。
点附近的变化方式,比泛函中的自变函数的变
化方式要简单一些而已。
六 变分法预备定理
设函数F(x)在[x1, x2]连续,对于δy(x),如果有
x2 Fxydx 0 x1
则 Fx 0,x1, x2 。 δy(x)是y的变分。
δy(x)的条件:一阶或若干阶可微,在x1, x2处为 零;
| δy |< ε 或 | δy |及| δy’ |< ε,等。
七 变分原理
变分原理:即泛函极值与求解特定微分方程及其 边界条件等价的原理。
即:满足微分方程及其边界条件的函数,一定使 泛函取极值;使泛函取极值的必要条件就是对 应的微分方程及其边界条件。
0
上面的过程可以总结为
(1)写出泛函表达式 I Fdx ;
(2)设使泛函取得极值的自变函数为y,那么,
异于y的自变函数可写成y+ε δy,它的高阶项为 y’+ε δy’;
(3)使泛函取极值的条件
I 0 0
(4)展开上式,将其中的δy设法从变分中分离 出来。这个过程要用到分步积分。最后形成
I 0 ydx
对于均质物体内温度不随时间变化的情况,温度
分布函数T=T(x,y,z)应满足拉普拉斯方程:
2T x 2
2T y 2
2T z 2
0
再加上用得最多(一般)的边界条件
T n
T
T0
— 热传导系数(与温度梯度有关);
— 对流换热系数(与温度有关);
T0 — 外界介质温度; — 物体边界。
F y
y
F y'
y'dx
上式右端中,因为
x2 F y' dx x2 F d y
x1 y'
x1 y'
F y'
y
x2 x1
x2 x1
yd
F y'
x2 x1
d dx
F y'
ydx
带入前式
I
x2 x1
F
y
d dx
F y'
ydx
0
由变分基本定理知,一维泛函取极值的条件
F y
d dx
F y'
下面首先简要介绍变分、泛函,然后推导有限元 格式。
6-2 泛函与变分的基本概念
函数:z = f (x),x变,z变。
泛函:平面上两点A、B之间的距离I
xB
I
1 dy 2 dx
xA
dx
y变,I变。I是y的泛函—函数的函数。
y
y yx
BxB , yB
O
AxA ,函数值因另外一个或几个函数确定,这个 函数称为泛函。
上式称为定解问题。
除非几何形状特别简单,如无限大平面,半无限 大平面,圆平面,一般无法得到解析解。为此 要采用数值方法。有限元法即是其中的一种可 选的方法。
有限元法求解偏微分方程的思路:1)利用变分 原理将偏微分方程转化为等价的泛函;2)假 设单元上的场变量变化形式,即插值函数或试 探函数;3)寻找试探函数的系数—节点场变 量,以使泛函取极值。
将这一多项式带入泛函积分表达式中。根据系统 达到的最终状态,就是能量最小状态(泛函极 值的条件),可以求出多项式前的各系数,这 样即可求出对原问题的近似解。
(2)微分法 假设场变量的值y,写出空间某点y 的变化率,y的解与边界条件有关。
积分法和微分法的联系
微分方程是泛函取极值的必要条件,但它对函数 性态的要求稍高。
yx1 y1, yx2 y2
认为函数 Fx, yx, y'x 三阶可微。
根据变分的定义,要使泛函取极值,则
I Iyx y 0
0
其中,y使I取极值,y+ε δy是一个微小的变化。
I
I yx
y
x2 x1
F x,
y
y,
y'
y'dx
x2 x1
y
y
F
x,
y
y,
y'
y'
y
相关文档
最新文档