七年级数学暑假作业:有理数
人教版初一数学有理数计算题

人教版初一数学有理数计算题一、有理数加法计算1. 计算:(+3)+(+5)这就很简单啦,同号相加嘛,取相同的符号,然后把绝对值相加。
那就是3 + 5 = 8,所以结果就是+8咯。
(3分)2. (-2)+(-4)同样是同号相加,符号不变,绝对值相加,2 + 4 = 6,结果就是 - 6。
(3分)3. (+7)+(-3)这个是异号相加哦,取绝对值较大的符号,也就是正号,然后用大的绝对值减去小的绝对值,7 - 3 = 4,结果就是+4。
(3分)二、有理数减法计算1. 计算:(+5)-(+3)减法可以转化为加法来做呀,就是加上这个数的相反数,那就是(+5)+(-3),就变成了异号相加,结果是+2。
(3分)2. (-4)-(-2)转化后就是(-4)+(+2),异号相加取负号,4 - 2 = 2,结果是- 2。
(3分)3. (+6)-(-3)转化为(+6)+(+3),同号相加得+9。
(3分)三、有理数乘法计算1. 计算:(+2)×(+3)同号相乘得正,2×3 = 6,结果就是+6。
(3分)2. (-2)×(-3)同号相乘,结果是正的,2×3 = 6,也就是+6。
(3分)3. (+2)×(-3)异号相乘得负,2×3 = 6,结果就是 - 6。
(3分)四、有理数除法计算1. 计算:(+6)÷(+2)同号相除得正,6÷2 = 3,结果是+3。
(3分)2. (-6)÷(-2)同号相除,结果为正,6÷2 = 3,也就是+3。
(3分)3. (+6)÷(-2)异号相除得负,6÷2 = 3,结果是 - 3。
(3分)五、有理数混合运算1. 计算:2×( - 3)+4÷( - 2)先算乘除,2×( - 3)= - 6,4÷( - 2)= - 2,然后算加法,- 6+( - 2)= - 8。
初一数学暑假作业 共计22页

2.1数怎么又不够用了学习目标:1、感受无理数产生的实际背景和引入的必要性。
2、认识数学与人类生活的密切联系,体验数学充满着探索与创造。
一、课前自主学习1、 和 统称有理数。
2、在直角三角形ABC 中,∠C=090(1)若a=3,b=4,则c= 。
(2)若a=5,c=13,则b= 。
(3)若a=2,b=3,则2c = 。
C 可能是整数吗? 可能是分数吗?3、 叫无理数。
二、课堂合作探究 1、数怎么不够用了。
(1)面积是2、3、5的正方形的边长是整数吗?是分数吗?(2)边长是1、2、3的正方形的对角线的长是整数吗?是分数吗?既不是整数也不是分数,那它就不是有理数! 2、有理数和无理数的区别。
有理数:1、所有的整数都是有理数。
如:3、234 2、有限小数是有理数。
如:3.123、1.9083、无限循环小数是有理数。
如65.3 无理数:无限不循环小数是无理数,像圆周率π,自然对数e有理数和无理数的本质区别是:有理数可以化为分数,无理数不能化为分数。
3、典例剖析例1、下列个数中,哪些是有理数?哪些是无理数?2.132,43-,7.818188…,3.14159,1.2323323332…(相邻两个2之间一次多一个3)π,24.3-,2π,0解:三、定时巩固检测一、选择题1.下列数中是无理数的是( )A.0.12∙∙32 B.2π C.0 D.722 2.下列说法中正确的是( )A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数 3.下列语句正确的是( )A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4.在直角△ABC 中,∠C =90°,AC =23,BC =2,则AB 为( )A.整数B.分数C.无理数D.不能确定 5.面积为6的长方形,长是宽的2倍,则宽为( ) A.小数 B.分数 C.无理数 D.不能确定 二、填空题6.在0.351,-32,4.969696…,6.751755175551…,0,-5.2333,5.411010010001…中,无理数的个数有______.7.______小数或______小数是有理数,______小数是无理数.8.x 2=8,则x ______分数,______整数,______有理数.(填“是”或“不是”)9.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)10.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01). 三、解答题11.已知:在数-43,-∙∙24.1,π,3.1416,32, 0, 42, (-1)2n,-1.424224222…中,(1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.15.设面积为5π的圆的半径为y ,请回答下列问题: (1)y 是有理数吗?请说明你的理由; (2)估计y 的值(结果精确到十分位),并用计算器验证你的估计.四、课堂小结:我的收获 。
(新人教版数学七年级暑期衔接课)有理数综合复习

题型一:绝对值的意义 例1:b b a +a (ab ≠0)的所有可能的值有( ) A 、1个 B 、2个 C 、3个 D 、4个变式1:已知+=0,则的值为 .变式2:已知a,b,c 为有理数,则 a b c ab c ++=_________ 例2:若,>且0a ,5,7a b b +==那么a-b 的值是( )A 、2或12B 、2或-12C 、-2或12D 、-2或-12变式1:若,b a ,2,3a >且==b 则a+b 的值可能是________________变式2:若,0mn ,2,3m >且==n 则m+n 的值可能是________________例3、已知y x ,均为整数,且13=-+-x y x ,求y x +的值.(写清解题过程)精讲精练有理数综合复习题型二:利用非负性 例1:若()的值为则1a 2,021a 2-+=-++b b ( ) A 、1 B 、-1 C 、3 D 、-3变式1:()22019a 210,a b b ++-=+那么代数式()的值是( ) A 、2019 B 、-2019 C 、1 D 、-1变式2:若1a -与(b+2)2互为相反数,试求a b +的值。
题型三:与相反数、绝对值、倒数相关例1:已知a 和b 互为相反数,c 和d 互为倒数,e 为绝对值最小的数,求式子2020×(a+b)+cd+e 的值。
变式1:已知a 和b 互为相反数,(a ≠0),c 和d 互为倒数,m 的绝对值为2,则=-+m cd b32a ____________.变式2: 已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn )×a 的值.题型四:数轴与绝对值例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图,则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . B 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号题型五:数轴与距离之间的关系例1:(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例2:已知:数轴上A.B 两点表示的有理数为a 、b ,且(a -1)2 +|b+2|=0.(1)A 、B 各表示哪一个有理数?(2)点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为11,求式子a(bc+3)-|c 2-3(a - 91c 2)的值 (3)小蚂蚁甲以1个单位长度/秒的速度从点B 出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A 的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D 点相遇,则点D 表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?例3:(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为_____ . (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 _______.变式:如图1,已知数轴上的点A对应的数是a,点B对应的数是b,且满足(a+5)2+|b-1|=0.(1)求数轴上到点A、点B距离相等的点C对应的数;(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)如图2在数轴上的点M和点N处各竖立一个挡板(点M在原点左侧,点N在原点右侧),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向左运动,乙弹珠以1个单位/秒的速度沿数轴向右运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M和点N的距离相等.试探究点M对应的数与点N对应的数是否满足某种数量关系,请写出它们的关系式,并说明理由.题型六:找规律计算例1.已知|a b -2|与|a -1|互为相互数,试求下式的值:()()()()()()1111112220192019ab a b a b a b ++++++++++。
七年级数学暑假作业:有理数

2019七年级数学暑假作业:有理数初一数学测试有理数综合一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题3分,共30分)1、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D 零是自然数,但不是正整数2、下列各对数中,数值相等的是()A-27与(-2)7B-32与(-3)2C-3×23与-32×2D―(―3)2与―(―2)33、在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是()A-12B-101C-0.01D-54、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数中,正数的个数是()A1B2或4C5D1和35、绝对值大于或等于1,而小于4的所有的正整数的和是()A8B7C6D6、计算:(-2)100+(-2)101的是()A2100B-1C-2D-21007、比-7.1大,而比1小的整数的个数是()A6B7C8D98、如果一个数的平方与这个数的差等于0,那么这个数只能是()A0B-1C1D0或19、我国最长的河流长江全长约为6300千米,用科学记数法表示为()A63×102千米B6.3×102千米C6.3×104千米D6.3×103千米10、已知8.62=73.96,若x2=0.7396,则x的值等于()A6.8B±0.68C±0.86D±86二、填空题(本题共有8个小题,每小题3分,共27分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
12、互为相反数的两数(非零)的和是,商是;互为倒数的两数的积是。
13、某数的绝对值是5,那么这个数是。
(暑假一日一练)七年级数学上册第1章有理数1.4.2有理数的除法习题(含解析)

(暑假一日一练)七年级数学上册第1章有理数1.4.2有理数的除法习题学校:___________姓名:___________班级:___________一.选择题(共15小题)1.﹣3的倒数是()A.3 B .C .﹣ D.﹣32.若a与﹣3互为倒数,则a等于()A .B .C.3 D.﹣33.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的()A.10% B.15% C.20% D.25%4.(﹣6)÷的结果等于()A.1 B.﹣1 C.36 D.﹣365.下列各数中,互为倒数的是()A.﹣3与3 B.﹣3与C.﹣3与D.﹣3与|﹣3|6.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和07.与﹣3的积为1的数是()A.3 B .C .﹣ D.﹣38.下列几种说法中,正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.互为倒数的两个数的积为1D.两个互为相反的数(0除外)的商是09.如果a+b>0,且ab<0,那么()A.a>0,b>0B.a<0,b<0C.a、b异号且正数的绝对值较大D.a,b异号且正数的绝对值较小10.计算(﹣)÷(﹣7)的结果为()A.1 B.﹣1 C .D .﹣11.若两个数的商为﹣1,则这两个数()A.都是1 B.都是﹣1C.一个是正数,一个是负数D.是一对非零相反数12.在下列各题中,结论正确的是()A.若a>0,b<0,则>0 B.若a>b,则a﹣b>0 C.若 a<0,b<0,则ab<0 D.若a>b,a<0,则<0 13.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个14.以下说法中错误的结论有()个.(1)若两个数的商为﹣1,则这两个数互为相反数;(2)若这两个数互为相反数,则这两个数的商为﹣1;(3)若一个数的绝对值是它的相反数,则这个数是负数;(4)若一个数是负数,则它的绝对值是它的相反数.A.1 B.2 C.3 D.415.下列说法错误的是()A.如a,b同号,则ab>0,>0 B.如a,b异号,则ab<0,<0 C . D .二.填空题(共2小题)16.若a≠b,且a、b 互为相反数,则= .17.计算:.三.解答题(共5小题)18.计算:(﹣3)×6÷(﹣2)×.19.(﹣)×(﹣)÷(﹣2).20.计算:3×(﹣)÷(﹣1).21.计算:﹣×22.观察下列解题过程.计算:(﹣)÷(1﹣﹣).解:原式=(﹣)÷1﹣(﹣)÷﹣(﹣)÷=(﹣)×﹣(﹣)×﹣(﹣)×=﹣+1+=2你认为以上解题是否正确,若不正确,请写出正确的解题过程.答案与试题解析一.选择题(共15小题)1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:﹣与﹣3互为倒数,∴a=﹣.故选:B.3.解:根据题意得:8÷40=20%.故选:C.4.解:原式=﹣6×6=﹣36故选:D.5.解:A、﹣3与3互为相反数,不是互为倒数关系,故本选项错误;B、﹣3与﹣互为相反数,故本选项错误;C、﹣3与﹣互为相反数,故本选项正确;D、|﹣3|=3,﹣3与3互为相反数,故本选项错误;故选:C.6.解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选:C.7.解:﹣3×(﹣)=1.故选:C.8.解:A.有理数的绝对值不一定比0大,也可能等于0,错误;B.有理数的相反数不一定比0小,0的相反数还是0,错误;C.互为倒数的两个数的积为1,正确;D.两个互为相反的数(0除外)的商应该是﹣1,错误;故选:C.9.解:根据题意,ab<0,则a、b异号,a+b>0可得,正数的绝对值较大,但无法确定a、b哪个为正,哪个为负,故选:C.10.解:(﹣)÷(﹣7)=(﹣)×(﹣)=,故选:C.11.解:两个数的商为﹣1,则这两个数,符号相反,且绝对值相同,∴是一对非零相反数.故选:D.12.解:A、两数相除,异号得负,故选项错误;B、大数减小数,一定大于0,故选项正确;C、两数相乘,同号得正,故选项错误;D、若a>b,a<0,则>0,故选项错误.故选:B.13.解:①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则=﹣1,正确;③若a2=b2,则a=b或a=﹣b,错误;④若a<0,b<0,所以ab﹣a>0,则|ab﹣a|=ab﹣a,正确;故选:B.14.解:若两个数的商为﹣1,则这两个数互为相反数,故(1)正确,若这两个数互为相反数,则这两个数的商为不一定为1,如0和0是相反数,但是它们不能做商,故(2)错误,若一个数的绝对值是它的相反数,则这个数是负数或0,故(3)错误,若一个数是负数,则它的绝对值是它的相反数,故(4)正确,故选:B.15.解:A、如a,b同号,则ab>0,>0,说法正确;B、如a,b异号,则ab<0,<0,说法正确;C 、==﹣,说法正确;D 、=﹣,故原题说法错误;故选:D.二.填空题(共2小题)16.解:∵a、b互为相反数,∴a=﹣b.∴.故答案为:﹣1.17.解:,故答案为:﹣9.三.解答题(共5小题)18.解:(﹣3)×6÷(﹣2)×,=3×6××,=.19.解:原式=(﹣)×(﹣)×(﹣)=﹣.20.解:原式==.21.解:原式=﹣××=﹣.22.解:解题过程是错误的,正确的解法是:原式=(﹣)÷=﹣×=﹣3.。
初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
七年级数学上册 暑假特训 有理数的运算(2) 浙教版

有理数的混合运算一有理数的混合运算——简便运算技巧(1)“算对与算巧”求10099321+++++ 的和,从左到右逐次相加似乎很安稳的事,其实这样算下来不仅工作量很大,而且运算的次数太多,出错的可能性也大,聪明的高斯没有这样做,他把这个算式头尾倒过来写成129899100+++++ 然后将两个式子的对应项相加得到100个101,101乘100再除以2便得到所求的和。
这样不但算得对,而且算得快,这是一个脍炙人口的故事,它告诉我们数学运算不仅要算对更要算巧。
二. 重点、难点:有理数运算是代数中最基本的运算,若能根据题目特点灵活掌握运用一些技巧,不仅可提高运算速度和准确率,还可培养学生善于思考的好习惯,有利于思维能力的培养,现介绍几种有理数运算中的解题技巧。
三. 基础回顾:(1)有理数的运算法则:① 加法法则:同号相加一边倒,异号相加大减小,符号跟着大的跑。
② 减法法则:减去一个数,等于加上这个数的相反数。
③ 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
0乘任何数都得0。
④ 除法法则:除以一个数等于乘上这个数的倒数。
0不能作除数。
⑤ 有理数的乘方运算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
(2)运算律:① 加法交换律:a +b =b +a 。
② 加法结合律:(a +b )+c =a +(b +c )。
③ 乘法交换律:ab =ba 。
④ 乘法结合律:(ab )c =a (bc )。
⑤ 乘法对加法的分配律:a (b +c )=ab +ac 。
(3)运算顺序及注意事项:① 有理数的加、减、乘、除四则混合运算,一定要先把减法改成加法,除法改成乘法。
这样可以防止出错。
② 对含有三级运算的情况,按先乘方、开方,再乘除,最后加减的运算顺序。
同级运算从左到右依次运算。
有括号时按小、中、大括号顺序进行,有时也可灵活去括号。
③ 应注意灵活运用运算律,使计算简便化,对互为相反数其和为零的要优先解决。
2020-2021学年人教版数学七年级暑假提高训练 专题02 有理数(解析版)

【解答】
解:由数
, , ,则
,故选项 错误;
如果
,
,
,则
,故选项 错误;
如果
, , ,则
,故选项 错误;
∵
,
,
,
∴
,,
,故选项 正确.
故选 . 【点评】根据数轴和 ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题. 6. 【答案】A 【解答】 (2)射线 是无限长的,原来的说法是错误的(1)(3)正有理数, ,负有理数统称为有理数,原来的
13.
【答案】①③ 【解答】 解:①两点确定一条直线;正确; ②一条直线有且只有一条垂线;错误; ③不相等的两个角一定不是对顶角;正确;
④若
,则 ;错误, 也存立;
⑤⑤若 , 互为相反数,那么 , 的商必定等于 ,其中 , 不为 ,故错误. 正确的有①③,
故答案为①③. 【点评】此题主要考查了命题与定理,正确掌握相关性质是解题关键. 14.
说法是错误的
= 时, = ,原来的说法是错误的.
故选: . 【点评】此题考查两点间的距离,关键是根据数学知识的应用解答. 7. 【答案】B 【解答】 解: 、错误,例如 时不成立;
、正确,符合绝对值的性质;
、错误, 时原式仍成立;
、错误,例如
.
故选 . 【点评】本题考查的是绝对的性质,根据已知条件判断出 的取值范围是解答此题的关键. 8. 【答案】A 【解答】 解:①当 时, 表示正有理数,故错误; ② 表示非负数,故错误; ③当 时. 和 都不表示负有理数,故错误. 综上可知没有一个说法正确. 故选 . 【点评】本题考查有理数的知识,属于基础题,要求同学们掌握特殊值法的运用,这种方法会使问题变的 简单.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 七年级数学暑假作业:有理数初一数学测试有理数综合
一、选择题(本题共有10 个小题,每小题都有A、B、C、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题3 分,共30 分)
1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数
2、下列各对数中,数值相等的是()A—27与(—2)7B - 32
与(—3)2C —3X23 与—32X2D—(—3)2 与一(一2)3 3、在—5,—101,—3.5 ,—0.01 ,—2,—212 各数中,最大的数是()A—12B—101C—0.01D —5
4、若其中至少有一个正数的 5 个有理数的积是负数,那么
这五个因数中,正数的个数是()A1B2或4C5D1和35、绝对值大于或等于1,而小于4 的所有的正整数的和是()
A8B7C6D
6、计算:(—2)100+(—2)101 的是()A2100B—
1C—2D—2100
7、比—7.1 大,而比1 小的整数的个数是()A6B7C8D9
8、如果一个数的平方与这个数的差等于0,那么这个数只能
是()AOA 1C1D0 或1
9、我国最长的河流长江全长约为6300 千米,用科学记数法表示为()A63X 102 千米B6.3X 102 千米C6.3X 104 千米
D6.3X 103 千米
10、已知8.62 = 73.96,若x2 = 0.7396,贝U x 的值等于()A6.8B±0.68C±0.86D±86 二、填空题(本题共有8 个小题,每小题3 分,共27 分)
11、一幢大楼地面上有12 层,还有地下室2 层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将 2 楼记为;地下第一层记作;数-2 的实际意义为,数+9 的实际意义为。
12、互为相反数的两数(非零)的和是,商是;互为倒数的两数的积是。
13、某数的绝对值是5,那么这个数是。
134756〜(保留四个有效数字)
14、()2 = 16, (-32)3 =。
15、数轴上和原点的距离等于321 的点表示的有理数是。
16、计算:一0.85 X 178+ 14X 72-(14 X 73- 179X 0.85)=。
17、使用计算器进行计算时,按键程序为—8X 5+4=,则结果为。
18、+5.7 的相反数与- 7.1 的绝对值的和是。
三、解答题(本题共有7 个小题,满分63 分)
20、计算:(本题共有7 个小题,每小题4 分,共28 分)
(1)8 + (—41) —5—(—0.25)
(2)—82+72- 36
(3)721 X 143+ ( - 9+ 19)
(4)25X 43—(—25) X 21 + 25X ( - 41)
(5)( - 81) + 241 + 94- ( - 16)
(6)( - 1)3 - (1 - 21) + X [2 —(—3)2]
( 7) 3232)2(361)3()2
21 、一天小明和冬冬利用温差来测量山峰的高度。
冬冬在山
脚测得的温度是4C,小明此时在山顶测得的温度是2C, 已知该地区高度每升高100米,气温下降0.8 C,问这个山峰有多高?5%22、有一种“二十四点”的游戏,其游戏规则是这样的:任
取四个1 至13 之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。
例如对1, 2, 3, 4,可作如下运算:(1+2+3) X4= 24 (上述运算与
4X (1 + 2+ 3) 视为相同方法的运算)现有四个有理数3,4,- 6, 10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。
运算式如下:
(1),
(2),
( 3) 。
另有四个有理数3,- 5, 7,- 13,可通过运算式
( 4)使其结果等于24。
( 8%)
23、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数) 。
现在的北京时间是上
午8 : 00
(1)求现在纽约时间是多少?
(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?5%城市时差/ 时纽约-13 巴黎-7 东京+1 芝加哥-1424、画一条数轴,并在数轴上表示:3.5 和它的相反数,-21 和它的倒数,绝对值等于3 的数,最大的负整数和它的平方,并把这些数由小到大用“”号连接起来。
6%
25、甲、乙、丙三位同学合乘一辆出租车同往一个方向,事先约定三人分摊车资。
甲在全程的31 处下车,乙在全程的
32 处下车,丙坐完全程下车,车费共54 元。
问甲、乙、丙三位同学各付多少车费比较合理?请你设计一个方案。
6%26、某数学俱乐部有一种“秘密”的记帐方式。
当他们收入300 元时,记为-240;当他们用去300 元时,记为+360。
猜一猜,当他们用去100 元时,可能记为多少?当他们收入100 元时,可能记为多少?说说你的理由。
5%
四、提高题(本题有2 个小题,每小题10 分,共20 分)
1、右面是一个正方体纸盒的展,请把-10,7,10,-2,
-7,2 分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
2、若a、b、c均为整数,且la
—b l 3+l c —a l 2= 1,求l a—c l + l c —b l + l b—a l
的值。