整式乘法公式
整式的运算法则

整式的运算法则整式的加减法:〔1〕去括号;〔2〕合并同类项。
整式的乘法:),(都是正整数n m aa a nm nm+=•),(都是正整数)(n m aa mnn m =)()(都是正整数n b a ab nn n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm n m 都是正整数【注意】〔1〕单项式乘单项式的结果仍然是单项式。
〔2〕单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
〔3〕计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
〔4〕多项式与多项式相乘的展开式中,有同类项的要合并同类项。
〔5〕公式中的字母可以表示数,也可以表示单项式或多项式。
〔6〕),0(1);0(10为正整数p a a a a a p p ≠=≠=-〔7〕多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得 的商相加,单项式除以多项式是不能这么计算的。
一、选择〔每题2分,共24分〕1.以下计算正确的选项是〔〕.A.2x2·3x3=6x3B.2x2+3x3=5x5C.〔-3x2〕·〔-3x2〕=9x5D.54x n·25x m=12x m+n2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为〔〕.A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.以下运算正确的选项是〔〕.A.a2·a3=a5B.〔a2〕3=a5C.a6÷a2=a3D.a6-a2=a44.以下运算中正确的选项是〔〕.A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空〔每题2分,共28分〕6.-xy2的系数是______,次数是_______.8.x_______=x n+1;〔m+n〕〔______〕=n2-m2;〔a2〕3·〔a3〕2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 假设坐飞机飞行这么远的距离需_________.10.a2+b2+________=〔a+b〕2a2+b2+_______=〔a-b〕2〔a-b〕2+______=〔a+b〕211.假设x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算〔每题3分,共24分〕13.〔2x2y-3xy2〕-〔6x2y-3xy2〕14.〔-32ax4y3〕÷〔-65ax2y2〕·8a2y17.〔x-2〕〔x+2〕-〔x+1〕〔x-3〕18.〔1-3y〕〔1+3y〕〔1+9y2〕19.〔ab+1〕2-〔ab-1〕2四、运用乘法公式简便计算〔每题2分,共4分〕20.〔998〕221.197×203五、先化简,再求值〔每题4分,共8分〕22.〔x+4〕〔x-2〕〔x-4〕,其中x=-1.23.[〔xy+2〕〔xy-2〕-2x2y2+4],其中x=10,y=-1 25.六、解答题〔每题4分,共12分〕24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法〔重点〕1.运算法则:同底数幂相乘,底数不变,指数相加。
整式的乘除的法则及公式

……………………………………………………………最新资料推荐…………………………………………………
整式的乘除的法则及公式
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
(、为正整数)
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
(为正整数)
3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,在把所得的幂相乘。
(、为正整数)
4、单项式与单项式相乘的法则;单项式与单项式相乘,把它们的系数、同底数幂分别
相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每
一项,再把所得的积相加。
a(b-2a)=ab-2am
6、多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另
一个多项式的每一项,再把所得的积相加,如果有同类项
要合并同类项。
(a+n)(b+m)=ab+an+nb+nm
7、平方差公式:两数和与这两数差的积等于这两数的平方差。
8、两数和(差)完全平方公式:两数和(差)的平方,等于这两数的平方和(差),
加上(减去)这两数积的2倍。
9、整式化简:应遵循先乘方,再乘除,最后算加减的顺序,能运用乘法公式的则运
用乘法公式。
1 / 11 / 11 / 1。
整式的乘法知识点

整式的乘法知识点1、幂的运算性质:(a ≠0,m 、n 都是正整数)(1)a m ·a n =a m +n 同底数幂相乘,底数不变,指数相加.(2)()n m a = a mn 幂的乘方,底数不变,指数相乘.(3)()n n n b a ab = 积的乘方等于各因式乘方的积. (4)n m a a ÷= a m -n 同底数幂相除,底数不变,指数相减.例(1).在下列运算中,计算正确的是( )(A )326a a a ⋅=(B )235()a a = (C )824a a a ÷=(D )2224()ab a b = (2)()()4352a a -⋅-=____ ___=2.零指数幂的概念:a 0=1(a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:()022017π-=3.负指数幂的概念: a - p =p a 1(a ≠0,p 是正整数) 任何一个不等于零的数的负指数幂,等于这个数的正指数幂的倒数. 例:223-⎛⎫ ⎪⎝⎭= 312-⎛⎫- ⎪⎝⎭=4.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-5.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2))32()5(-22n m n n m -+⋅6.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1)1(4)x x --() (2)(2)(1)x y x y +-+7.乘法公式: ①完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2口诀:首平方、尾平方,乘积的二倍放中央.例:① (2x +5y )2=( )2 + 2×( )×( ) + ( )2=__________________;② 2)2131(-m =( )2 - 2×( )×( ) + ( )2=________________; ③ (-x +y )2 = ( )2 =__________;④ (-m -n )2 = [ ]2 = ( )2_______________;⑤x 2+__ _ +4y 2 = (x +2y )2 ⑥214m ⎛⎫- ⎪⎝⎭ +2n = ( )2 ②平方差公式:(a +b )(a -b )=a 2-b 2口诀:两个数和乘以这两个数的差,等于这两个数的平方差.注意:相同项的平方减相反项的平方例:① (x -4)(x +4) = ( )2 - ( )2 =________;② (3a+2b )(3a -2b ) = ( )2 - ( )2 =_________________;③ (-m +n )( m +n ) = ( )2-( )2 =___________________;④ 11(2)(2)44x y x y ---=( )2-( )2=___________; ⑤(2a +b +3)(2a +b -3) =( )2-( )2=________________ ___= ;⑥(2a —b +3)(2a +b -3)=[ ][ ]=( )2-( )2另一种方法:(2a —b +3)(2a +b -3)==⑦ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______;⑧(x +3y )( ) = 9y 2-x 2③十字相乘:2()()x a x b x ++=+ ( ) x +一次项的系数是a 与b 的 ,常数项是a 与b 的例:()()12x x ++= , ()()23x x --= ,()()57x x +-= , ()()34x x -+=1、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。
整式的乘法公式教案

整式的乘法公式教案一、教学目标:1. 知识与技能:(1)理解并掌握整式的乘法公式,包括平方差公式和完全平方公式;(2)能够运用整式的乘法公式进行简便计算。
2. 过程与方法:(1)通过实例演示和练习,引导学生发现整式乘法公式;(2)培养学生运用公式进行计算的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动探究问题的习惯。
二、教学重点与难点:1. 教学重点:(1)掌握整式的乘法公式;(2)能够运用整式的乘法公式进行计算。
2. 教学难点:(1)整式乘法公式的推导过程;(2)灵活运用整式乘法公式解决实际问题。
三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)练习题。
2. 学生准备:(1)预习整式乘法公式;(2)准备笔记本,记录重点知识。
四、教学过程:1. 导入:(1)复习相关知识,如整式的加减法;(2)提问:能否将整式的加减法推广到乘法?2. 知识讲解:(1)通过实例演示,引导学生发现整式乘法公式;(2)讲解平方差公式和完全平方公式的推导过程;(3)强调公式中的各项系数和指数的变化规律。
3. 练习与讲解:(1)让学生分组讨论,互相解答疑问;(2)选取典型题目进行讲解,分析解题思路;(3)引导学生运用整式乘法公式进行计算。
4. 课堂小结:(1)回顾本节课所学内容,总结整式乘法公式的特点;(2)强调学生在练习中需要注意的问题。
五、课后作业:1. 请学生完成课后练习题,巩固整式乘法公式的运用;2. 鼓励学生自主探究,发现整式乘法公式的拓展应用。
六、教学拓展:1. 平方差公式的拓展:(1)引导学生发现平方差公式的推广形式;(2)举例说明平方差公式在实际问题中的应用。
2. 完全平方公式的拓展:(1)引导学生发现完全平方公式的推广形式;(2)举例说明完全平方公式在实际问题中的应用。
七、课堂练习:1. 请学生独立完成练习题,检验对整式乘法公式的掌握程度;2. 教师选取部分学生的作业进行点评,指出优点和不足。
整式的乘法公式

整式的乘法公式一、整式乘法的基本概念。
1. 单项式乘单项式。
- 法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:3x^2y· 4xy^2=(3×4)(x^2· x)(y· y^2)=12x^2 + 1y^1+2=12x^3y^3。
2. 单项式乘多项式。
- 法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
- 例如:a(b + c)=ab+ac,具体计算如2x(x^2 - 3x+1)=2x· x^2-2x·3x + 2x·1 = 2x^3-6x^2 + 2x。
3. 多项式乘多项式。
- 法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
- 例如:(a + b)(c + d)=ac+ad+bc+bd。
计算(x + 2)(x - 3)=x· x+x·(-3)+2· x+2×(-3)=x^2-3x + 2x-6=x^2 - x - 6。
二、乘法公式。
1. 平方差公式。
- 公式:(a + b)(a - b)=a^2 - b^2。
- 推导:(a + b)(a - b)=a· a - a· b+b· a - b· b=a^2 - b^2。
- 应用示例:计算(3x+2y)(3x - 2y)=(3x)^2-(2y)^2 = 9x^2 - 4y^2。
2. 完全平方公式。
- 完全平方和公式:(a + b)^2=a^2+2ab + b^2。
- 推导:(a + b)^2=(a + b)(a + b)=a· a+a· b+b· a + b· b=a^2+2ab + b^2。
- 应用示例:(x + 3)^2=x^2+2× x×3+3^2=x^2 + 6x+9。
整式乘法公式

整式乘法公式
1 什么是整式乘法
整式乘法是由欧拉在19世纪早期提出来的一种常见的数学运算方式,是数学分支学科中基本算法之一。
它是用来解决复合乘积问题,即把一个大问题分解为若干个小问题,并利用乘法运算把它们连接起来而解决整个问题,在数学加法、减法、乘法、除法四则运算中被称为第三则运算。
2 整式乘法公式
整式乘法把复杂的乘积运算简化为四个熟调的模式,其中的形式公式为: `(a+b)*(a-b)=a*a - b*b`,其中a,b分别表示算式中的平方数。
它简化了乘积运算,因此,当参与运算的数值变成更大时,整式乘法是十分有效的。
3 应用范围
整式乘法在众多数学问题中得到了很好的应用,例如:如果要求算术组合的乘积,整式乘法可以让我们简化乘积运算,降低难度。
它还可以应用于三角形的计算,例如:根据勾股定理,任意一个直角三角形的斜边的平方等于它的两个直角边的平方总和,这其中就涉及到整式乘法的应用,而且可以方便我们求出它们的相关参数。
4 总结
整式乘法是一种基本的数学运算,它把一个大问题分解为若干个
小问题,并利用乘法运算把它们连接起来,以便快速解决整个问题。
它可以极大的简化乘积的运算,在众多的数学问题中有着重要的应用。
整式及乘法公式

第一讲 整式及乘法公式第一部分 知识梳理一、基本概念1.同底数幂乘法法则同底数幂相乘,底数不变,指数相加。
即n m n m a a a +=⋅(m 、n 都是正整数) 2.幂的乘方法则幂的乘方,底数不变,指数相乘。
即()mn nm a a =(m 、n 都是正整数)3.积的乘方积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘,即()nn nb a ab = (n为整数)二、平方差公式及完全平方公式(1)平方差公式:(a+b )(a-b )=a 2-b 2;(2)完全平方公式:(a+b )2=a 2+2ab+b 2;(a-b )2=a 2-2ab+b 2,其中a 、b 可以是正数,也可以是负数,既可以是单项式,也可以是多项式。
三、整式的乘法1.单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则________.2.单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. 3.多项式与多项式相乘,先用________乘以________,再把所得的积________.第二部分 例题与解题思路方法归纳【例题1】 阅读下列材料:一般地,n 个相同的因数a 相乘个n a a a ⋯⋅记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b=n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.〖选题意图〗本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.〖解题思路〗首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1,log a N=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.〖参考答案〗解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1,log a N=b2,则=M,=N,∴MN=,∴b1+b2=log a(MN)即log a M+log a N=log a(MN).【课堂训练题】1.已知2a•5b=2c•5d=10,求证:(a﹣1)(d﹣1)=(b﹣1)(c﹣1).〖参考答案〗证明:∵2a•5b=10=2×5,∴2a﹣1•5b﹣1=1,∴(2a﹣1•5b﹣1)d﹣1=1d﹣1,①同理可证:(2c﹣1•5d﹣1)b﹣1=1b﹣1,②由①②两式得2(a﹣1)(d﹣1)•5(b﹣1)(d﹣1)=2(c﹣1)(b﹣1)•5(d﹣1)(b﹣1),即2(a﹣1)(d﹣1)=2(c﹣1)(b﹣1),∴(a﹣1)(d﹣1)=(b﹣1)(c﹣1).2.若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.〖参考答案〗解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22,解得,x=3(2)∵(27﹣x)2=3﹣6x=38,∴﹣6x=8,解得x=﹣【例题2】设m=2100,n=375,为了比较m与n的大小。
整式的乘除知识点整理

一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。
⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。
⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。
⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式专项过关训练
一计算
(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) (1) (x+6)2 (3) (y-5)2
(4) (-2x+5)2 (5) (
34x-23y)2 (6) (y+3x)(3x-y) (7) (-2+ab)(2+ab)
(8) (2x-3)2 (9) (-2x+3y)(-2x-3y) (10) (12m-3)(12
m+3)
(11) (13
x+6y)2 (12)(y+2)(y-2)-(y-1)(y+5)
(13) (x+1)(x-3)-(x+2)2+(x+2)(x-2) (14) (a+2b-1)2
(15) (2x+y+z)(2x-y-z) (16)22)2()2()2)(12(+---+-x x x x
(17)1241221232⨯- (18)(2x +3)(2x -3)-(2x-1)2
(19)、(2x +y +1)(2x +y -1) (20))3)(12(--x x
二、判断正误:对的画“√”,错的画“×”.
(1)(a-b)(a+b)=a 2-b 2; ( ) (2)(b+a)(a-b)=a 2-b 2; ( )
(3)(b+a)(-b+a)=a 2-b 2; ( ) (4)(b-a)(a+b)=a 2-b 2; ( )
(5)(a-b)(a-b)=a 2-b 2. ( ) (6)(a+b)2=a 2+b 2; ( )
(7)(a-b)2=a 2-b 2; ( ) (8)(a+b)2=(-a-b)2; ( )
(9)(a-b)2=(b-a)2. ( )
三、填空题
6、______________)3)(32(=-+y x y x ;
7、_______________)52(2=+y x ;
8、______________)23)(32(=--y x y x ;
9、______________)32)(64(=-+y x y x ;
10、________________)22
1(2=-y x 11、____________)9)(3)(3(2=++-x x x ;
12、___________1)12)(12(=+-+x x ;
13、4))(________2(2-=+x x ;
14、_____________)3)(3()2)(1(=+---+x x x x ;
15、____________)2()12(22=+--x x ;
16、224)__________)(__2(y x y x -=-+;
17、______________))(1)(1)(1(42=++-+x a x x x
18、 如果多项式92+-mx x 是一个完全平方式,则m 的值是 。
19、如果多项式k x x ++82是一个完全平方式,则k 的值是 。
20、()()_________22=--+b a b a ()__________2
22-+=+b a b a 四、1、已知12,3-==+ab b a ,求下列各式的值.(1)22b ab a +- (2) 2)(b a -.
2、.已知________,60,172=+==+y x xy y x 2则
五、计算 1、______________12()12)(12)(12(242=++++)n
K
______________12979899100222222=-+⋯⋯+-+-
2、若13a a +
=,则221a a
+的值是 。
六、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。
图a
图b
(1)你认为图b 中的阴影部分的正方形的边长等于 。
(2)请用两种不同的方法求图b 中阴影部分的面积。
方法1:
方法2:
(3)观察图b 你能写出下列三个代数式之间的等量关系吗?
代数式: ()(). , ,2
2mn n m n m -+
(4)根据(3)题中的等量关系,解决如下问题:
若5,7==+ab b a ,求2)(b a -的值。
七、阅读填空。
(1). ①(x-1)(x+1)=x 2-1 ②(x-1)(12++x x )=x 3-1
③(x-1)(x 3+12++x x )=x 4-1
④(x-1)(x 4+x 3+12++x x )=x 5-1
(2).根据上述规律,并用你发现的规律直接写出下列各题的结果。
①(x-1)(x 6+x 5+x 4+x 3+12++x x )= ②若(x-1)•Φ=12008-x ,求Φ , Φ=。