ao工艺设计计算
ao工艺的设计计算

ao工艺的设计计算
AO工艺的设计计算是指在工程设计中,根据具体要求和条件,
对AO工艺进行计算和设计的过程。
AO工艺是一种常见的水处理工艺,用于去除水中的氨氮和有机物质,常用于污水处理、饮用水处
理等领域。
在进行AO工艺的设计计算时,需要考虑以下几个方面:
1. 水质参数分析,首先需要对水质进行分析,包括氨氮浓度、
有机物浓度、pH值、温度等参数的测定。
这些参数将直接影响到AO
工艺的设计和计算。
2. 反应器容积计算,根据水质参数和处理要求,需要计算出
AO反应器的容积。
反应器容积的大小与处理效果和处理能力密切相关,需要根据实际情况进行合理的估算和计算。
3. 氧化池和缺氧池设计,AO工艺通常包括氧化池和缺氧池两
个单元,需要根据处理要求和水质参数计算出各个池的尺寸和容积。
氧化池用于氨氮的氧化和有机物的降解,缺氧池用于硝化和反硝化
过程。
4. 曝气系统设计,曝气系统是AO工艺中重要的组成部分,用于提供氧气供给微生物进行降解和氧化反应。
曝气系统的设计需要考虑氧气传质效率、曝气池的尺寸和曝气量等因素。
5. 污泥产生和处理计算,AO工艺会产生污泥,需要计算污泥的产生量和处理方式。
污泥产生量的计算需要考虑水质参数、反应器容积和污泥浓度等因素。
除了上述几个方面,还需要考虑AO工艺的运行参数调整、控制策略和监测方法等内容。
在设计计算过程中,需要充分考虑工程实际情况和经济性,确保设计的合理性和可行性。
总之,AO工艺的设计计算是一个综合性的工程设计过程,需要考虑多个因素并进行合理的计算和估算。
这样才能设计出满足要求的AO工艺系统。
AO工艺设计计算公式

A/O工艺设计参数①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3②污泥回流比:50~100%③混合液回流比:300~400%④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)⑧溶解氧:A段DO<0.2~0.5mg/LO段DO>2~4mg/L⑨pH值:A段pH=6.5~7.5O段pH=7.0~8.0⑩水温:硝化20~30℃反硝化20~30℃⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nra’─平均转化1Kg的BOD的需氧量KgO2/KgBODb’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
上式也可变换为:Ro/VX=a’·QSr/VX+b’或Ro/QSr=a’+b’·VX/QSrSr─所去除BOD的量(Kg)Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·dRo/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD 由此可用以上两方程运用图解法求得a’b’Nr—被硝化的氨量kd/d 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2)几种类型污水的a’b’值⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。
AO工艺设计计算(全)

二 沉砂池计算1. 基 本 数据1.1 流 量日平 均 流 量Qav = m3 / d =0.46 日最 小 流 量Qmin = m3 / d =0.46 日变 化 系 数Kz =#NAME?日最 大 流 量Qmax =Kz * Qav =#NAME? m3/d ==#NAME? m3 /s 2 进 水 井及 堰2.1 进 水井 尺 寸最 大流 量 Qmax=#NAME? m3 /s最 小流 量 Qmin=0.46 m3 /s进水井格数 n =格进水井堰板方向宽L =m进水井长 W =m进水井高 H =m进水最大上升流速V =Qmax/(n*w*L) =#NAME?m/s 进水最小上升流速V =Qmin/(n*w*L) =0.26m/s 2.2 矩形堰2.2.1 薄壁平顶堰 (不淹没,无侧面收缩,流速忽略)使用公式: 通过堰口的流量为Q = m * b* (2 *g)1/2* H3/2流量系数为m = 0.405+ 0.0027 /H公式 取值 :堰数n1 =单堰宽b =m单堰流量Qma =Qmax/n1 = m3 /s重力加速度g =9.81 m / s2使用试算方法得到以下结果:堰上水深H =#NAME?m流量系数为m =#NAME?堰负荷q =#NAME?l / (m * s) 按单堰过流平均流量校核堰数n2 =单堰宽b =m单堰流量Q' =Qav/(n1-1)= m3 /s重力加速度g =9.81 m / s2 使用试算方法得到以下结果:堰上水深H =#NAME?m流量系数为m =#NAME?堰负荷q =308.6l / (m * s) 2.3 渠道尺寸流量 q =#NAME?cu m / s水深 h=0.500m渠宽 w=0.900m流速 v =q/h/w#NAME?m/s2. 机械格栅选用回转式格栅,拟用宜昌市第二冷作机械厂的产品.每套由两台HF1000并联而成.格栅台数量n =格栅间隙b =格栅安装角度a =单套设备宽Wo =设备总高H2 =单套设备总宽W2 =渠道数n1 =每条渠道宽W =每条渠道深H =导流槽长度 L1= H *ctg(a) =m排渣高度(距渠底) H1=m栅前水深h1 =m栅前流速V1 =m/s过栅流速V =m/s单套格栅过流量Qs =m3/d过栅水头损失dh =m栅后水深h2 =m栅后流速V2 =m/s栅渣产率f =m3/103m3污水 栅渣产量 Wf =Qav * f = 2.000m3按单渠过流平均流量校核栅前水深h1 =m栅前流速V1 =0.51m/s过栅流速V =#NAME?m/s单套格栅过流量Qs = Qav=40000.0m3/d过栅水头损失dh =#NAME?m栅后水深h2 =#NAME?m栅后流速V2 =#NAME?m/s 3 沉砂池 :D=3.5 m4. 沉砂池出水堰计算使用公式: 通过堰口的流量为Q = m * b* (2 *g)1/2* H3/2流量系数为m = 0.405+ 0.0027 /H公式 取值 :堰数n1 =单堰宽b =m单堰流量Qma =Qmax/n1 = m3 /s 重力加速度g =9.81 m / s2 使用试算方法得到以下结果:堰上水深H =#NAME?m流量系数为m =#NAME?堰负荷q =#NAME?l / (m * s)三 配水井计算使用公式: 通过堰口的流量为Q = m * b* (2 *g)1/2* H3/2流量系数为m = 0.405+ 0.0027 /H公式 取值 :堰数n1 =单堰宽b =m单堰流量Qma =Qmax/n1 = m3 /s重力加速度g =9.81 m / s2 使用试算方法得到以下结果:堰上水深H =#NAME?m流量系数为m =#NAME?堰负荷q =#NAME?l / (m * s)m3 /sm3 /s#NAME? m3 / h。
AO工艺设计计算公式

AO工艺设计计算公式
A/O 工艺设计参数
①水力停留时间:硝化不小于5〜6h;反硝化不大于2h, A段:0段=1:3
②污泥回流比:50〜100%
③混合液回流比:300〜400%
④反硝化段碳/氮比:BOD/TN>4,理论BOD肖耗量为
1.72gBOD/gNOx--N
⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS d
⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBODgMLSS d
⑦混合液浓度x=3000〜4000mg/L (MLSS)
⑧溶解氧:A段DOv0.A 0.5mg/L
O 段DO>〜4mg/L
⑨pH值:A段pH =6.5 〜7.5
O 段pH =7.0 〜8.0
⑩水温:硝化20〜30 r
反硝化20〜30 r
(11)碱度:硝化反应氧化1gNH+-N需氧4.57g,消耗碱度7.1g (以CaCO 计)。
反硝化反应还原1gNO3--N 将放出 2.6g 氧, 生成3.75g碱度(以CaCO计)
(12)需氧量Ro单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需肖耗溶解氧,而微生物自身代谢也需肖耗溶解氧,所以Ro应包括这三部分。
Ro=a'QSr+b'VX+4.6Nr
a'—平均转化
1Kg 的BOM需氧量KgQ/KgBOD
上一页下一页。
AO工艺

A/O工艺(1)A池(缺氧池)容积,可按以下公式计算:V n={0.001Q(N k-N te)-0.12△X v}/(K de×X)(△X v=y×Y t×Q(S0-S e)/1000)式中:V n-缺氧池容积Q-生物反映池的设计流量(m3 /d)Q=80X-混合液悬浮固体平均浓度(gMLSS/L)X=12 N k-进水总凯氏氮浓度(mg/L)N k=1000N te- 出水总氮浓度(mg/L)N te=30△X v-排出生物反应池出水微生物量(kgMLVSS/d) K de-脱氮速率,取0.03kgNO3-N/(kgMLSS×d)Y t-污泥总产率系数(kgMLSS/kgBOD5) Y t=0.5y-MLSS中MLVSS所占比例y=0.6S0-进水BOD5 S0=6000S e-出水BOD5 S e=300将上面数值代入公式可得V n=170 m3有效水深取4 m,则面积A=170/4=42.5 m2(2)碳氧化池容积,可按下式计算:V= Q(S0-S e)/(1000×N S×X)式中:V-碳氧化池容积Q-进水流量N S-污泥有机负荷(kgBOD5/kgMLSS d),取N S=0.1X-悬浮固体浓度(gMLSS/L)代入上式有:V=380 m3有效水深度取4 m,则面积A=380/4=95 m2(3)强化消化池面积V=Q(S0(NH3-N)-S e(NH3-N))/(1000×N S(NH3-N)×X)Q-进水流量(m3 /d)S0(NH3-N)-NH3-N进水浓度S e(NH3-N)- NH3-N出水浓度N S(NH3-N)-污泥氨氮负荷(kgNH3-N/kgMLSS d),(取0.05)X-悬浮固体浓度(gMLSS/L),(取12)代入上式有:V=130 m3有效水深度取4.0 m,则该池面积A=130/4=32.5 m2(4)碳氧化-消化反应的需气量按下列公式计算:O2= 0.001aQ(S0-S e)-c△X v+b[0.001Q(N k-N ke)-0.12△X v]-0.626[0.001Q(N t-N ke-N oe)-0.12△X v]式中: Q-进水流量(m3 /d)O2-废水需氧量(m3 /d)N K-进水总凯氏氮浓度(mg/L)N ke-出水总凯氏氮浓度(mg/L)N oe-出水硝态氮浓度(mg/L)a-碳的氧当量,取1.47b- 氨氮的氧当量,取4.57c- 常数,细菌细胞的氧当量,取1.42代入上式有: O 2=813.97kg O 2/d查表可知:水中的溶解氧饱和度为:C S(20)=9.17(mg/L ); C S(30)=7.63(mg/L ).本项目采用微孔曝气头曝气,淹没水深为4m,计算温度定为30℃, 曝气头出口处的绝对压力(P b )为: P b =1.013×105+9.8×103×4=1.405×105 P a 空气离开曝气池池面时,氧的百分比为:O t =21(1-E A )×60%/[79+21(1-E A )]=17.54% (氧转化效率E A 20%) 最不利温度条件下(取30℃) 曝气池混合液中平均饱和度: C sb(30)=C s(30)( P b /202600+O t /42)=8.474 mg/L换算为20℃条件下,脱氧清水的充氧量:R 0= RC s(20)/{C βρα[sb(T)-]C 1.024T-20}取,0.1,0.2,9.0,8.0====ρβαC 代入得R 0=1309.7kgO 2/d曝气池的平均供气量为:G S =R 0×100/(0.3×E A )=21828.3 m 3空气 /d=909.5 m 3空气/h =15.16 m 3空气/min若微孔曝气头单盘气量2 m 3 /h ,面积0.25 m 2/个,氧转移效率E A 为20%,则所需曝气头的个数为909.5/2=455个。
AO工艺设计计算

AO工艺设计计算一、AO工艺设计计算的基本概念和原理1.AO工艺的基本原理和流程:AO工艺是一种常见的废水处理工艺,其基本原理是通过氧化和吸附的过程,将废水中的有机物质和颜色等污染物去除或转化为可沉淀和可分离的物质,从而实现废水的处理和净化。
2.AO工艺设计计算的目标:AO工艺设计计算的目标是确定最优的工艺参数组合,以实现废水处理的高效和可控。
最优的工艺参数组合应该能够在保证废水处理效果的前提下,尽量减少能耗和操作成本。
3.AO工艺设计计算的基本方法:AO工艺设计计算的基本方法包括实验室试验、数学模型和仿真模拟。
可以通过实验室试验来确定不同工艺参数对处理效果的影响,然后利用数学模型和仿真模拟的方法来进行工艺参数优化和设计。
二、AO工艺设计计算的具体内容和步骤1.废水特性分析:首先需要进行废水特性分析,包括废水的COD(化学需氧量)、颜色、PH值等方面的分析。
通过废水特性分析,可以了解废水的污染物组成和浓度,为后续的工艺设计计算提供数据基础。
2.工艺参数选择:根据废水特性分析的结果,选择适合的AO工艺参数,包括曝气时间、曝气周期、MBR滤料料号和比例、曝气方式等。
不同的废水特性需要采取不同的工艺参数组合,以实现最佳的处理效果。
3.AO工艺计算公式:根据AO工艺的基本原理和流程,可以建立一些计算公式,用于计算AO工艺中的各种参数,如MLSS(混合液悬浮固体浓度)、F/M比(污泥产生速率与废水中COD的比值)等。
这些计算公式可以作为工艺参数设计的依据。
4.实验室试验:设计并进行相应的实验室试验,通过改变不同工艺参数值,观察和分析废水处理效果,以确定最优的工艺参数组合。
实验室试验还可以验证计算公式的准确性和可靠性。
5.数学模型和仿真模拟:利用数学模型和仿真模拟的方法,可以对AO工艺进行建模和优化设计。
数学模型可以描述废水处理过程中的各种物理化学反应和传质过程,从而帮助理解和预测工艺效果。
仿真模拟可以模拟不同工艺参数组合下的废水处理效果,并进行优化设计。
AO工艺设计计算公式

AO工艺设计计算公式A/O工艺设计参数在A/O工艺的设计中,需要考虑以下参数:1.水力停留时间:硝化不少于5-6小时,反硝化不超过2小时,A段:O段=1:3.2.污泥回流比:50-100%。
3.混合液回流比:300-400%。
4.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N。
5.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d。
6.硝化段污泥负荷率:BOD5/MLSS<0.18KgBOD5/KgMLSS·d。
7.混合液浓度x=3000-4000mg/L(MLSS)。
8.溶解氧:A段DO2-4mg/L。
9.pH值:A段pH=6.5-7.5,O段pH=7.0-8.0.10.水温:硝化20-30℃,反硝化20-30℃。
11.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g 氧,生成3.75g碱度(以CaCO3计)。
12.需氧量Ro:单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nr。
其中,a’为平均转化1Kg的BOD的需氧量KgO2/KgBOD,b’为微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
13.Nr为被硝化的氨量,kd/d4.6为1kgNH3-N转化成NO3-所需的氧量(KgO2)。
对于不同类型的污水,其a’和b’值也有所不同。
最后,还需要考虑供氧量的问题。
由于充氧与水温、气压、水深等因素有关,因此氧转移系数应作修正。
ρ表示所在地区实际压力(Pa)与标准大气压下Cs值的比值。
公式为ρ=实际Cs值/(Pa)=所在地区实际压力(Pa)/(Pa)。
ao工艺的设计计算

ao工艺的设计计算AO工艺的设计计算是指在制造过程中,针对特定的工艺要求和产品设计要求,进行工艺参数的计算和设计。
下面我将从多个角度对AO工艺的设计计算进行全面回答。
首先,AO工艺是指通过自动光学系统对产品进行光学检测和自动校正的工艺。
在设计计算中,需要考虑以下几个方面:1. 光学系统参数计算,包括光源的选择、光源的亮度和颜色温度等参数的计算,以及光学元件的选择和布局。
这些参数的计算需要考虑产品的特性和要求,以及光学系统的灵敏度和精度要求。
2. 自动校正算法设计,AO工艺的核心是自动校正,需要设计合适的算法来实现自动校正功能。
这涉及到图像处理、特征提取和反馈控制等方面的计算。
算法的设计需要考虑到系统的实时性和稳定性。
3. 传感器选择和布局,在AO工艺中,传感器用于采集产品的图像信息,因此需要选择合适的传感器,并设计合理的传感器布局。
传感器的选择需要考虑分辨率、灵敏度和响应速度等因素,布局需要考虑到产品的几何形状和检测要求。
4. 控制系统设计,AO工艺需要一个稳定可靠的控制系统来实现自动校正和调整。
在设计计算中,需要考虑控制系统的控制算法、控制器的选择和参数调整等方面。
控制系统的设计需要综合考虑产品的特性、工艺要求和系统的响应速度。
此外,还需要考虑到工艺参数的计算和优化。
工艺参数包括光学系统的焦距、光源的亮度和颜色温度、传感器的曝光时间和增益等。
这些参数的计算需要结合产品的特性和要求,通过实验和仿真等手段进行优化。
总之,AO工艺的设计计算涉及到光学系统参数的计算、自动校正算法的设计、传感器选择和布局、控制系统设计以及工艺参数的计算和优化等方面。
通过综合考虑产品的特性和要求,可以设计出满足工艺要求的AO工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 2
/O 工艺生化池设计
一、 设计最大流量
Q max=73500m 3/d=3062.5 m 3/h=0.850 m 3/s
二、 进出水水质要求
表1 进出水水质指标及处理程度
三、 设计参数计算
①. BOD 5污泥负荷
N=0.14kgBOD 5/(kgMLSS ·d)
②. 回流污泥浓度
X R =10 000mg/L
③. 污泥回流比
R=50%
④. 混合液悬浮固体浓度(污泥浓度) ⑤. TN 去除率 ⑥. 内回流倍数 四、 A 2/O 曝气池计算 ①. 反应池容积 ②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4
厌氧池停留时间h t 33.21461=⨯= ,池容37.70874252661
m V
=⨯=; 缺氧池停留时间h t 33.21461=⨯= ,池容37.7087425266
1
m V
=⨯=;
好氧池停留时间h t 34.91464=⨯= ,池容36.28350425266
4
m V =⨯=。
④. 校核氮磷负荷
好氧段TN 负荷为:
()d kgMLSS kgTN N ⋅=⨯⨯=∙∙/024.06.8350233339
.3073500V X T Q 30
厌氧段TP 负荷为:
()d kgMLSS kgTN P ⋅=⨯⨯=∙∙/017.07
.708733334
.573500V X T Q 10
① 剩余污泥量:X ∆,(kg/d) 式中:
取污泥增值系数Y=0.5,污泥自身氧化率05.0=d K ,代入公式得: =5395kg/d 则:
湿污泥量:设污泥含水率P=99.2% 则剩余污泥量为: ⑤. 反应池主要尺寸
反应池总容积:V=425263m
设反应池2组,单组池容积:V =
3212632
m V
= 有效水深5m ,则:
S=V/5=4252.62m
取超高为1.0m ,则反应池总高m H 0.60.10.5=+= 生化池廊道设置:
设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。
廊道宽10m 。
则每条廊道长度为
m bn S L 88.706
106
.4252=⨯==
,取71m 尺寸校核
1.71071==b L ,25
10
==h b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求
五、 反应池进、出水系统计算
1) 进水管
单组反应池进水管设计流量s m Q Q /425.02
85
.023max 1=== 管道流速s m v /0.1=
管道过水断面面积21425.00.1/425.0/m v Q A === 管径m A
d 74.0425
.044=⨯=
=
π
π
取进水管管径DN800mm 2) 回流污泥管
单组反应池回流污泥管设计流量 设管道流速s m v /85.01= 管道过水断面积 管径
取出水管管径DN800mm 3) 出水管
单组反应池出水管设计流量 设管道流速s m v /8.01= 管道过水断面积 管径
取出水管管径DN1200mm
六、 曝气系统设计计算
1. 需氧量计算
碳化需氧量: 硝化需氧量: 反硝化需氧量: 总需氧量:
最大需氧量与平均需氧量之比为1.4,则:
去除1kg 5BOD 的需氧量为: 2. 标准需氧量
采用鼓风曝气,微孔曝气器。
曝气器敷设于池底,距池底0.2m ,淹没深度4.3m ,氧转移效率A E =20%,计算温度T=25℃,将实际需氧量AOR 换算成标准状态下的需氧量SOR 。
式中:ρ——气压调整系数,ρ=所在地区实际气压/1.013×510,取值为1 L C ——曝气池内平均溶解氧,取L C =2mg/L
取85.0=α,95.0=β
查表得20C 和25C 时,水中饱和溶解氧值为:
L mg C S /17.9)20(=;L mg C S /38.8)30(=
空气扩散器出口处的绝对压力 空气离开曝气池池面时,氧的百分比 曝气池混合液中平均氧饱和度 最大时需氧量为
好氧反应池最大时供气量为
3. 所需空气压力
式中 阻力之和—供风管到沿程与局部—m h h 2.021=+
m h 3.43 =——曝气器淹没水头
4. 曝气器数量计算
按供氧能力计算所需曝气器数量: 4.542114
.020
.1518max =⨯==
c q SOR h 个,为分布均匀,取5616个 采用MT215型薄膜盘式微孔空气曝气器,动力充氧效率7.0()h kw ⋅/kgO 2,工作水深 4.3m ,在供风量33-1m /(h ×个)时,曝气器氧利用率A E =20%,充氧能力
14.0=c q 2kgO /(h ×个),则:
5. 供风管道计算
供风干管采用树状布置 流量为
设流速s m v /10= 则管径
取干管管径DN800mm
单侧供气(向两侧廊道供气)支管
设流速s m v /10= 则管径为:
取支管管径为DN400mm
双侧供气(向单廊道供气)支管 设流速s m v /10= 则管径为:
取支管管径为DN600mm 七、 设备选择
1.厌氧池设备选择(以单组反应池计算)
厌氧池内设QJB/12-621/3-480推流式潜水搅拌机4台,功率5kW ,混合全部污水所需功率为:5×4=20kW 。
2.缺氧池设备选择(以单组反应池计算)
缺氧池内设QJB/12-621/3-480推流式潜水搅拌机4台,功率5kW ,混合全部污水所需功率为:5×4=20kW 。
3.混合液回流设备 (1).混合液回流泵
混合液回流比 %106=N R 混合液回流量
设混合液回流泵房2座,每座泵房内设3台潜污泵(2用一备) 则单泵流量为:
采用300QW900-8-30型潜水排污泵,扬程为8m ,功率为30kW ,转速为960r/min 。
(2).混合液回流管
回流混合液由出水井流至混合液回流泵房,经潜污泵提升后送至缺氧段首端。
混合液回流管设计流量
泵房进水管设计流速采用s
=
8.0
m
v/
管道过水断面积
则管径为:
取泵房进水管管径DN1200mm
同理,泵房出水管设计流量为
泵房进水管设计流速采用s
0.1
=
v/
m
管道过水断面积
则管径为:
取泵房进水管管径DN1200mm
4.鼓风机选择
好氧反应池最大时供气量为
因此,鼓风机选择L83WD-980二叶罗茨鼓风机2用1备,该鼓风机进口流量为216min
m,转速980r/min,升压9.8kpa,轴功率40.5kW,配套电机型号为Y280S-6,/3
电机功率45kW,主机重量为5530kg。