高考数学试题目分类整理汇编11——不等式
专题11 不等式、推理与证明、复数、算法初步-三年(2022–2024)高考数学真题分类汇编(解析)

专题11不等式、推理与证明、复数、算法初步考点三年考情(2022-2024)命题趋势考点1:线性规划问题2024年高考全国甲卷数学(理)真题2022年新高考浙江数学高考真题2023年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(理)真题2022年高考全国乙卷数学(文)真题高考对本节的考查相对稳定,每年必考题型,考查内容、频率、题型、难度均变化不大.复数的运算与不等式是常考点,难度较低,预测高考在此处仍以简单题为主.考点2:不等式大小判断问题2024年北京高考数学真题考点3:利用基本不等式求最值2022年新高考全国II卷数学真题考点4:解不等式2024年上海高考数学真题考点5:程序框图2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题考点6:复数加减乘除运算2022年新高考天津数学高考真题2023年天津高考数学真题2024年天津高考数学真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年北京高考数学真题2024年新课标全国Ⅰ卷数学真题2023年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2022年新高考全国I卷数学真题2022年新高考全国II卷数学真题2022年高考全国甲卷数学(理)真题考点7:模运算2024年新课标全国Ⅱ卷数学真题2022年新高考北京数学高考真题2022年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(文)真题考点8:复数相等2024年上海高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考浙江数学高考真题2022年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题考点9:复数的几何意义2023年北京高考数学真题2023年新课标全国Ⅱ卷数学真题考点1:线性规划问题1.(2024年高考全国甲卷数学(理)真题)若,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.12B.0C.52-D.72-【答案】D【解析】实数,x y满足4330220 2690 x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.2.(2022年新高考浙江数学高考真题)若实数x,y满足约束条件20,270,20,xx yx y-≥⎧⎪+-≤⎨⎪--≤⎩则34z x y=+的最大值是()A.20B.18C.13D.6【答案】B【解析】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =⎧⎨+-=⎩可得23x y =⎧⎨=⎩,故()2,3A ,故max 324318z =⨯+⨯=,故选:B.3.(2023年高考全国甲卷数学(理)真题)若x ,y 满足约束条件3232331x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,设32z x y =+的最大值为.【答案】15【解析】作出可行域,如图,由图可知,当目标函数322z y x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:154.(2023年高考全国乙卷数学(理)真题)若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为.【答案】8【解析】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.5.(2022年高考全国乙卷数学(文)真题)若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是()A .2-B .4C .8D .12【答案】C【解析】由题意作出可行域,如图阴影部分所示,转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.考点2:不等式大小判断问题6.(2024年北京高考数学真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+【答案】B【解析】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得1212122222·222x x x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故A 正确,B 错误;对于选项C :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故C 错误;对于选项D :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故D 错误,故选:B.考点3:利用基本不等式求最值7.(多选题)(2022年新高考全国II 卷数学真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x θθ-==,所以cos ,sin 33x y θθθ=+=,因此2222511cos sin sin cos 1sin 2cos 233333x y θθθθ=θ-θ+=++++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当3333x y ==221x y +≥不成立,所以D 错误.故选:BC .考点4:解不等式8.(2024年上海高考数学真题)已知,x ∈R 则不等式2230x x --<的解集为.【答案】{}|13x x -<<【解析】方程2230x x --=的解为=1x -或3x =,故不等式2230x x --<的解集为{}|13x x -<<,故答案为:{}|13x x -<<.考点5:程序框图9.(2023年高考全国甲卷数学(理)真题)执行下面的程序框图,输出的B =()A .21B .34C .55D .89【答案】B【解析】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.10.(2022年高考全国乙卷数学(理)真题)执行下边的程序框图,输出的n =()A .3B .4C .5D .6【答案】B【解析】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>;执行第二次循环,2347b b a =+=+=,725,13a b a n n =-=-==+=,222271220.01525b a -=-=>;执行第三次循环,271017b b a =+=+=,17512,14a b a n n =-=-==+=,2222171220.0112144b a -=-=<,此时输出4n =.故选:B考点6:复数加减乘除运算11.(2022年新高考天津数学高考真题)已知i 是虚数单位,化简113i1+2i-的结果为.【答案】15i -/51i -+【解析】()()()()113i 12i 113i 11625i15i 1+2i 1+2i 12i 5-----==--.故答案为:15i -.12.(2023年天津高考数学真题)已知i 是虚数单位,化简514i23i++的结果为.【答案】4i +/4i +【解析】由题意可得()()()()514i 23i 514i 5213i4i 23i 23i 23i 13+-++===+++-.故答案为:4i +.13.(2024年天津高考数学真题)已知i 是虚数单位,复数)()5i 52i ⋅=.【答案】75i 【解析】))5i 52i 55i 25i 275i ⋅-=-+=.故答案为:75i .14.(2023年新课标全国Ⅰ卷数学真题)已知1i22iz -=+,则z z -=()A .i -B .i C .0D .1【答案】A 【解析】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----===-++-,所以1i 2z =,即i z z -=-.故选:A .15.(2024年高考全国甲卷数学(文)真题)设2i z =,则z z ⋅=()A .2-B 2C .2-D .2【答案】D【解析】依题意得,2i z =-,故22i 2zz =-=.故选:D16.(2024年高考全国甲卷数学(理)真题)若5i z =+,则()i z z +=()A .10iB .2iC .10D .2【答案】A【解析】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A17.(2024年北京高考数学真题)已知1i iz=--,则z =().A .1i --B .1i-+C .1i-D .1i+【答案】C【解析】由题意得()i 1i i 1z =--=-.故选:C.18.(2024年新课标全国Ⅰ卷数学真题)若1i 1zz =+-,则z =()A .1i --B .1i -+C .1i-D .1i+【答案】C 【解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.19.(2023年高考全国乙卷数学(理)真题)设252i1i i z +=++,则z =()A .12i -B .12i +C .2i -D .2i+【答案】B【解析】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.20.(2023年高考全国甲卷数学(文)真题)()()()351i 2i 2i +=+-()A .1-B .1C .1i-D .1i+【答案】C 【解析】()()351i 51i 1i (2i)(2i)5+-==-+-故选:C.21.(2022年新高考全国I 卷数学真题)若i(1)1z -=,则z z +=()A .2-B .1-C .1D .2【答案】D【解析】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D22.(2022年新高考全国II 卷数学真题)(22i)(12i)+-=()A .24i -+B .24i --C .62i+D .62i-【答案】D【解析】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.23.(2022年高考全国甲卷数学(理)真题)若13i z =-,则1zzz =-()A .13i -B .13i-C .133-+D .133--【答案】C【解析】13i,(13i)(13i)13 4.z zz =-=--=+=13i 131333z zz -==--故选:C考点7:模运算24.(2024年新课标全国Ⅱ卷数学真题)已知1i z =--,则z =()A .0B .1C 2D .2【答案】C【解析】若1i z =--,则()()22112z -+-=故选:C.25.(2022年新高考北京数学高考真题)若复数z 满足i 34i z ⋅=-,则z =()A .1B .5C .7D .25【答案】B【解析】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故()()223|54|z -+-==.故选:B .26.(2022年高考全国甲卷数学(文)真题)若1i z =+.则|i 3|z z +=()A .45B .42C .25D .22【答案】D【解析】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 34422z z +=+=故选:D.27.(2023年高考全国乙卷数学(文)真题)232i 2i ++=()A .1B .2C 5D .5【答案】C【解析】由题意可得232i 2i 212i 12i ++=--=-,则()22322i 2i 12i 125++=-+-=故选:C.考点8:复数相等28.(2024年上海高考数学真题)已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为.【答案】2【解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+-+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m ∈R ,22323101b mb b b b ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,解得2m =,故答案为:2.29.(2023年高考全国甲卷数学(理)真题)设()()R,i 1i 2,a a a ∈+-=,则=a ()A .-1B .0·C .1D .2【答案】C【解析】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =.故选:C.30.(2022年新高考浙江数学高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则()A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【答案】B【解析】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.31.(2022年高考全国乙卷数学(文)真题)设(12i)2i a b ++=,其中,a b 为实数,则()A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-【答案】A【解析】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-.故选:A.32.(2022年高考全国乙卷数学(理)真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-【答案】A【解析】12z i=-12i (12i)(1)(22)iz az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩故选:A考点9:复数的几何意义33.(2023年北京高考数学真题)在复平面内,复数z 对应的点的坐标是(3)-,则z 的共轭复数z =()A .13i +B .13i-C .13i -D .13i-【答案】D【解析】z 在复平面对应的点是(3)-,根据复数的几何意义,13i z =-,由共轭复数的定义可知,13i z =-.故选:D34.(2023年新课标全国Ⅱ卷数学真题)在复平面内,()()13i 3i +-对应的点位于().A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.。
不等式高考真题

高考数学真题分类汇编不等式一、单选题1.(2021·全国(文))下列函数中最小值为4的是( ) A .224y x x =++B .4sin sin y x x=+C .222x x y -=+D .4ln ln y x x=+4.(2021·浙江)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0B .1C .2D .35.(2020·浙江)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( ) A .a <0B .a >0C .b <0D .b >07.(2020·全国(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}9.(2019·浙江)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a => B .当101,104b a =>C .当102,10b a =-> D .当104,10b a =-> 12.(2018·全国(理))设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+16.(2017·山东(理))若a>b>0,且ab=1,则下列不等式成立的是 A .21log ()2a ba ab b +<<+ B .21log ()2a b a b a b<+<+ C . 21log ()2a b a a b b +<+< D . 21log ()2aba b a b +<+< 二、多选题18.(2020·海南)已知a >0,b >0,且a +b =1,则( )A .2212a b +≥ B .122a b ->C .22log log 2a b +≥- D三、填空题19.(2020·天津)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 20.(2020·江苏)已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______..23.(2019·天津(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为________.24.(2019·天津(文)) 设x ∈R ,使不等式2320x x +-<成立的x 的取值范围为_________. 25.(2019·天津(理))设0,0,25x y x y >>+=,______.26.(2018·江苏)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 28.(2018·天津(理))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 29.(2018·天津(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 30.(2017·山东(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为_____. 31.(2017·天津(文))若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.32.(2017·北京(文))能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.33.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 34.(2017·山东(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______.近五年(2017-2021)高考数学真题分类汇编四、不等式(答案解析)1.C 【解析】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242xxx xy -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意;对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .4.C【解析】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2,故选:C. 5.C 【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C 7.D 【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.9.A 【分析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确. 【解析】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+=选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<,故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>,故选项A 正确;选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =,即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误;选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >,则选项D 错误.故选:A.12.B 【解析】.0.30.3log0.2,2a b log ==0.2211log0.3,0.3log a b∴==0.3110.4log a b ∴+= 1101a b ∴<+<,即01a b ab+<< 又a 0,b 0>< ab 0∴<即ab a b 0<+< 故选B.16.B 【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴+= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. 18.ABD 【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 19.4【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=+22a b =+=.故答案为:420.45【解析】∈22451x y y += ∈0y ≠且42215y x y -=∈42222221144+5555y y x y y y y -+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号.∈22x y +的最小值为45.故答案为:45.23.92.【解析】由24x y +=,得24x y +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92.24.2(1,)3-【解析】2320x x +-<,即(1)(32)0x x +-<,即213x -<<,故x 的取值范围是2(1,)3-.25.(1)(2xxy +=0,0,25,0,x y x y xy >>+=>≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为26.9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+=当且仅当23c a ==时取等号,则4a c +的最小值为9. 28.14【解析】由360a b -+=可知36a b -=-,且312228aa bb -+=+,因为对于任意x ,20x >恒成立,结合均值不等式的结论可得:3122224a b-+≥==.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14.29.1,28⎡⎤⎢⎥⎣⎦【解析】∈当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ∈当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合∈∈可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.30.8【解析】因为直线1(00)x y a b a b+=>,>过点(1,2),所以121a b +=,因为00a b >,>,所以()124222248a b a b a b a b b a ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4a bb a=,即2,4a b ==时取等号,所以2a b +的最小值为831.4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号).32.1,2,3---【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题. 33.30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.34.8【解析】1212412(2)()448b a a b a b a b a b a b +=∴+=++=++≥+= ,当且仅当2b a = 时取等号.。
高考数学压轴专题最新备战高考《不等式》真题汇编及答案

【最新】数学《不等式》期末复习知识要点一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z的最小值为min314z=--=-,则1 222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.设变量,x y满足约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y=+的最大值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】根据约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z=5x+y可化为y=-5x+z,即表示斜率为-5,截距为z的动直线,由图可知,当直线5z x y=+过点()1,0A时,纵截距最大,即z最大,由211x yx y+=⎧⎨+=⎩得A(1,0)∴目标函数z=5x+y的最小值为z=5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.设实数满足条件则的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.7.若,,则()A.B.C.D.【答案】C【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都、两种设备上加工,生产一件甲产品需用A设备2小时,B设备6小时;生产一需要在A B件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.设x,y满足102024xx yx y-≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x=r,()1,b m y=-r,则满足a b⊥r r的实数m 的最小值为()A.125B.125-C.32D.32-【答案】B【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.13.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.14.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.16.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.17.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C.D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
2010高考数学试题分类汇编----不等式(有答案)

(2010福建)(7分)(3)选修4—5:不等式选讲已知函数f(x)=|x-a|.①若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;②在①的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.答案:法一:①由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以31,35,aa=⎧⎨+=⎩--解得a=2.②当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|=21,3, 5,32, 21, 2.x xxx x<⎧⎪≤≤⎨⎪+>⎩----所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].法二:①同解法一.②当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立)得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(2010湖北)15.(理)设a>0,b>0,称2aba b+为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D.连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段______的长度是a,b的几何平均数,线段______的长度是a,b的调和平均数.答案:CD DE解析:∵△ACD∽△DCB,∴ACCD=CDCB,CD∵Rt△ECD∽Rt△COD,∴DE=2CDOD=2aba b+=2aba b+.(2010江西)3.(理)不等式|2x x->2x x -的解集是( ) A .(0,2) B .(-∞,0)C .(2,+∞)D .(-∞,0)∪(0,+∞)答案:A 2x x->2x x -,∴2x x -<0.∴0<x <2. (2010全国卷新课标)24.(10分)选修4-5:不等式选讲设函数f(x)=|2x -4|+1.(1)画出函数y =f(x)的图像;(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.答案: (1)由于f (x )=⎧⎨≥⎩-2x+5,x<2,2x -3,x 2,则函数y =f (x )的图像如图所示.(2)由函数y =f (x )与函数y =ax 的图像可知,当且仅当a ≥12或a <-2时,函数y =f (x )与函数y =ax 的图像有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞). (2010山东)14.(理)若对任意x >0,231x x x ++≤a 恒成立,则a 的取值范围是________. 答案: [15,+∞) 解析:法一:当x >0时,211313x x x x x=++++ ∵x +1x≥2(当且仅当x =1时取等号)∴x+1x+3≥5∴113xx++≤15∴a≥1 5 .法二:原式 ax2+(3a-1)x+a≥0对任意x>0恒成立.显然a≤0时不恒成立.当a>0时,Δ≤0或312aaa⎧<⎪⎨⎪>⎩--,得a≥15.(2010陕西)15.A.(不等式选做题)不等式|x+3|-|x-2|≥3的解集为__________.答案:{x|x≥1}B.169C.(-1,1),(1,1)解析:A.x≥2时,|x+3|-|x-2|=5,-3≤x<2时,|x+3|-|x-2|=2x+1≥3 x≥1,x<-3时,|x+3|-|x-2|=-5,因此综上有|x+3|-|x-2|≥3的解集为{x|x≥1}.(210四川)12.(理)设a>b>c>0,则2a2+1ab+1()a a b--10ac+25c2的最小值是( )A.2 B.4C..5答案:B 因为a>b>c>0,2a2+1ab+1()a a b--10ac+25c2=a2+()a b bab a b-+-+(a-5c)2=a2+1()b a b-+(a-5c)2≥a2+212b a b+-⎛⎫⎪⎝⎭+(a-5c)2=a2+24a+(a-5c)2≥4+(a-5c)2≥4.当且仅当a2b=5c时取等号.(2010浙江)23.(10分) (1)设正实数a,b,c,满足abc≥1.求222222 a b ca b b c c a+++++的最小值;(2)已知m∈R,解关于x的不等式:1-x≤|x-m|≤1+x.答案:解:(1)因为(222222a b ca b b c c a+++++)[(a+2b)+(b+2c)+(c+2a)]≥(a+b。
2023年高考数学分类汇编不等式选讲

2012高考数学分类汇编-不等式选讲1000字不等式是高中数学中的一个重要知识点,也是高考难度较大的部分。
在不等式的学习中,我们需要掌握基本的不等式类型、不等式的解法、不等式的应用等知识点。
一、基本不等式类型1. 一元一次不等式:形如ax+b≤0或ax+b≥0的不等式,其中a、b为实数,x为未知数。
解法:将不等式分两种情况讨论,化简得出不等式的解集。
2. 一元二次不等式:形如ax²+bx+c≤0或ax²+bx+c≥0的不等式,其中a、b、c为实数,x为未知数。
解法:求出二次函数的零点,根据函数的变化性和不等式的符号,求出解集。
3. 绝对值不等式:形如|ax+b|≤c或|ax+b|≥c的不等式,其中a、b、c为实数,x为未知数。
解法:将绝对值符号去掉,分两种情况讨论,得到两个一元一次不等式,求解并合并。
4. 分式不等式:形如f(x)≤ 0或f(x)≥ 0的不等式,其中f(x)为一个分式函数。
解法:根据分式的零点和不等式的符号,分别求解不等式。
二、不等式的解法1. 图像解法:根据函数图像的性质,判断不等式的解集。
2. 化简法:将不等式转化为易于求解的形式。
3. 移项法:将未知数移至同一侧,化为一元不等式求解。
4. 差分法:构造一个新的不等式,使原不等式变为差分形式,进而求解。
5. 变形法:根据一些数学恒等式,将不等式进行变形,使得问题更易于解决。
三、不等式的应用1. 实际应用问题中的不等式:如周长不等式、面积不等式、三角形不等式、均值不等式等。
2. 理论应用问题中的不等式:如证明某个不等式成立或不成立,或者在定理证明中使用不等式来简化分析。
总之,掌握不等式的基本类型、解法和应用,对于高考数学的学习和考试都有很大的帮助。
高考数学试题分类汇编-不等式(含文科理科及详细解析)

8 ,因此 a+b≤2.
3
3 a+b 2
4
6(2017 新课标Ⅱ理) [选修 4—5 :不等式选讲 ]( 10 分)
已知 a 0,b 0,a3 b3 2 .证明:
( 1) (a b)(a5 b5) 4 ; ( 2) a b 2.
f ( x) x 1 (x 2)
2x 1 当 1 x 2时
2x 1 1
∴1 x 2
x1
f ( x) x 1 ( x 2) 3
当 x 2时 3 1
综上所述 f ( x) 1的解集为 [1, ) .
x2
(2)原式等价于存在 x R ,使 f (x) x2 x m 成立,即 [ f ( x) =| x+1| ﹣| x﹣2| =
, f( x)≥ 1,
∴当﹣ 1≤x≤2 时, 2x﹣1≥1,解得 1≤x≤2; 当 x>2 时, 3≥1 恒成立,故 x>2; 综上,不等式 f (x)≥ 1 的解集为 { x| x≥1} . ( 2)原式等价于存在 x∈R 使得 f( x)﹣ x2+x≥m 成立, 即 m≤[ f( x)﹣ x2+x] max,设 g(x)=f(x)﹣ x2+x.
5,则 a 的取
x
值范围是 ___________.
【考点】 3H:函数的最值及其几何意义.
【专题】11 :计算题; 35 :转化思想; 49 :综合法; 51 :函数的性质及应用.
【分析】通过转化可知 | x+ ﹣a|+ a≤5 且 a≤ 5,进而解绝对值不等式可知 2a﹣5
≤ x+ ≤5,进而计算可得结论.
【分析】(1)由于 f(x)=| x+1| ﹣| x﹣ 2| =
高考数学最新真题专题解析—等式与不等式

高考数学最新真题专题解析—等式与不等式考向一 基本不等式的应用【母题来源】2022年新高考全国II 卷【母题题文】若x ,y 满足221+-=x y xy ,则( )A. 1x y +≤B. 2x y +≥-C. 222x y +≤D. 221x y +≥ 【答案】BC【试题解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ=+=,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=+++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当3333x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .【命题意图】本题考查基本不等式及其应用,属于中高档题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度有易有难,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)利用不等式比较大小;(2)利用不等式求最值;(3)基本不等式成立的条件 【得分要点】(1)对原不等式进行化简、变形;(2)符合基本不等式的条件“一正、二定、三相等”,用基本不等式求解; (3)判断等号成立的条件; (4)利用“1”的合理变换是解题.考向二 线性规划【母题来源】2022年高考全国乙卷(文科)【母题题文】若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A. 2-B. 4C. 8D. 12【答案】C【试题解析】由题意作出可行域,如图阴影部分所示, 转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.【命题意图】本题考查线性规划及其应用,属于比较容易题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度较小,是历年高考的热点,考查学生的基本作图能力和运算能力. 常见的命题角度有:(1)线性规划求最值;(2)利用线性规划求参数的值;【得分要点】1.正确画出可行域;2.确定目标函数平移的方向决定取得最大值或最小值。
2019年高考数学试题分项版—不等式(解析版)

2019年高考数学试题分项版——不等式(解析版)一、选择题1.(2019·全国Ⅲ文,11)记不等式组+ , -表示的平面区域为D .命题p :∃(x ,y )∈D,2x+y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②(p ⌝)∨q ;③p ∧(q ⌝);④(p ⌝)∧(q ⌝). 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案 A解析 方法一 画出可行域如图中阴影部分(含边界)所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 在y 轴上的截距.显然,当直线过点A (2,4)时,z min =2×2+4=8, 即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.方法二 取x =4,y =5,满足不等式组 + , - ,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.2.(2019·天津文,2)设变量x ,y 满足约束条件+ - , - + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.3.(2019·天津文,3)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由|x-1|<1可得0<x<2,所以“|x-1|<1的解集”是“0<x<5的解集”的真子集.故“0<x<5”是“|x-1|<1”的必要不充分条件.4.(2019·浙江,3)若实数x,y满足约束条件-+,--,+,则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.5.(2019·浙江,5)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab ≤4时,取a =8,b =,满足ab ≤4,但a +b ≥4,所以必要性不成立,所以“a+b ≤4”是“ab ≤4”的充分不必要条件. 6.(2019·全国Ⅱ理,6)若a >b ,则( ) A .ln(a -b )>0 B .3a <3b C .a 3-b 3>0 D .|a |>|b |答案 C解析 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.7.(2019·北京理,5)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .7【思路分析】由约束条件作出可行域,令3z x y =+,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:由||11x y y -⎧⎨-⎩……作出可行域如图,联立110y x y =-⎧⎨+-=⎩,解得(2,1)A -,令3z x y =+,化为3y x z =-+,由图可知,当直线3y x z =-+过点A 时,z 有最大值为3215⨯-=. 故选:C .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 8.(2019·天津理,2)设变量x ,y 满足约束条件+ - ,- + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6答案 C解析画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.9.(2019·天津理,3)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由x2-5x<0可得0<x<5.由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要不充分条件.二、填空题1.(2019·全国Ⅱ文,13)若变量x,y满足约束条件+-,-,则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由+-=,+-=,解得=,=,即C点坐标为(3,0),故z max=3×3-0=9.2.(2019·北京文,10)若x,y满足,-,-+,则y-x的最小值为________,最大值为________.答案-3 1解析x,y满足的平面区域如图(阴影部分)所示.设z=y-x,则y=x+z.把z看作常数,则目标函数是可平行移动的直线,z的几何意义是直线y=x+z在y轴上的截距,通过图象可知,当直线y=x+z经过点A(2,3)时,z取得最大值,此时z max=3-2=1. 当经过点B(2,-1)时,z取得最小值,此时z min=-1-2=-3.3.(2019·天津文,10)设x∈R,使不等式3x2+x-2<0成立的x的取值范围为________.答案解析3x2+x-2<0变形为(x+1)(3x-2)<0,解得-1<x<,故使不等式成立的x的取值范围为.4.(2019·天津文,13)设x>0,y>0,x+2y=4,则的最小值为________.答案解析===2+.∵x>0,y>0且x+2y=4,∴4≥2(当且仅当x=2,y=1时取等号),∴2xy≤4,∴≥,∴2+≥2+=.5.(2019·天津理,13)设x>0,y>0,x+2y=5,则的最小值为________.答案4解析===2+.由x+2y=5得5≥2,即≤,即xy≤,当且仅当x=2y=时等号成立.所以2+≥2=4,当且仅当2=,即xy=3时取等号,结合xy≤可知,xy可以取到3,故的最小值为4.三、解答题1.(2019·全国Ⅰ文,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国Ⅱ文,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).3.(2019·全国Ⅲ文,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.4.(2019·江苏,21)C.[选修4-5:不等式选讲]设x∈R,解不等式|x|+|2x-1|>2.解当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为或.5.(2019·全国Ⅰ理,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.6.(2019·全国Ⅱ理,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).7.(2019·全国Ⅲ理,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十一、不等式一、选择题1.(重庆理7)已知a >0,b >0,a+b=2,则y=14a b +的最小值是 A .72 B .4 C . 92D .5【答案】C2.(浙江理5)设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是A .14B .16C .17D .19【答案】B3.(全国大纲理3)下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >【答案】A4.(江西理2)若集合{},{}x A x x B xx -2=-1≤2+1≤3=≤0,则A B ⋂=A .{}x x -1≤<0 B . {}x x 0<≤1C .{}x x 0≤≤2D .{}x x 0≤≤1【答案】B5.(辽宁理9)设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是 (A )1[-,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞)【答案】D6.(湖南理7)设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m的取值范围为 A .(1,1 B .(1+∞)C .(1,3 )D .(3,+∞)【答案】A7.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式1x y +≤,则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D8.(广东理5)。
已知在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则z OM OA =⋅的最大值为A. B. C .4 D .3 【答案】C9.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【答案】C【解析】由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件08071210672219x y x y x y x y ≤≤⎧⎪≤≤⎪⎪+≤⎨⎪+≥⎪+≤⎪⎩画出可行域在12219x y x y +≤⎧⎨+≤⎩的点75x y =⎧⎨=⎩代入目标函数4900z =10.(福建理8)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域21y 2x y x +≥⎧⎪≤⎨⎪≤⎩,上的一个动点,则OA ·OM 的取值范围是 A .[-1.0] B .[0.1] C .[0.2] D .[-1.2]【答案】C11.(安徽理4)设变量y x y x y x 2,1||||,+≤+则满足的最大值和最小值分别为 (A )1,-1 (B )2,-2 (C ) 1,-2(D ) 2,-1【答案】B12.(上海理15)若,a b R ∈,且0ab >,则下列不等式中,恒成立的是A .222a b ab +>B.a b +≥C .D 11a b+>D .2b aa b +≥【答案】二、填空题13.(陕西理14)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米。
开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。
【答案】200014.(浙江理16)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .。
【答案】15.(全国新课标理13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________. 【答案】-616.(上海理4)不等式13x x +<的解为 。
【答案】0x <或12x ≥17.(广东理9)不等式130x x +--≥的解集是 .【答案】[1,)+∞18.(江苏14)设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=,},,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________【答案】]22,21[+三、解答题19.(安徽理19) (Ⅰ)设1,1,x y ≥≥证明;111xy y x xy y x ++≤++,(Ⅱ)c b a ≤≤<1,证明log log log log log log a b c b c a b c a a b c ++≤++.本题考查不等式的基本性质,对数函数的性质和对数换底公式等基本知识,考查代数式的恒等变形能力和推理论证能力.证明:(I )由于1,1≥≥y x ,所以,)(1)(1112xy x y y x xy xy y x xy y x ++≤++⇔++≤++将上式中的右式减左式,得,0)1)(1)(1(,1,1).1)(1)(1()1)(1()1)(()1)(1())()(()1)(()1)(())((22≥---≥≥---=+---=-+--+=+-+--=++-++y x xy y x y x xy y x xy xy xy y x xy xy y x y x xy xy y x xy xy x y 所以即然从而所要证明的不等式成立.(II )设,log ,log y c x b b a ==由对数的换底公式得.log ,1log ,1log ,1log xy c y b x a xy a a c b c ====于是,所要证明的不等式即为,111xy y x xy y x ++≤++其中.1log ,1log ≥=≥=c y b x b a 故由(I )立知所要证明的不等式成立. 20.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况。
在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。
当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0200x ≤≤时,求函数()v x的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()().f x x v x=可以达到最大,并求出最大值(精确到1辆/小时) 本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。
(满分12分)解:(Ⅰ)由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得故函数()v x 的表达式为60,020,()1(200),202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩(Ⅱ)依题意并由(Ⅰ)可得60,020,()1(200),202003x x f x x x x ≤<⎧⎪=⎨-≤≤⎪⎩当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;当20200x ≤≤时,211(200)10000()(200)[]3323x x f x x x +-=-≤=当且仅当200x x =-,即100x =时,等号成立。
所以,当100,()x f x =时在区间[20,200]上取得最大值10000.3综上,当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈。
即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。
21.(湖北理21)(Ⅰ)已知函数()1f x Inx x =-+,(0,)x ∈+∞,求函数()f x 的最大值; (Ⅱ)设,k k a b (1,2k =…,)n 均为正数,证明:(1)若1122a b a b ++…n n a b ≤12b b ++…n b ,则12121n k k k n a a a ≤; (2)若12b b ++…n b =1,则1n ≤121222212.n k k k n n b b b b b b ≤+++本题主要考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及化归与转化的思想。
(满分14分)解:(I )()f x 的定义域为(0,)+∞,令1'()10, 1.f x x x =-==解得当01,'()0,()x f x f x <<>时在(0,1)内是增函数; 当1x >时,'()0,()(1,)f x f x <+∞在内是减函数; 故函数()1f x x =在处取得最大值(1)0.f = (II )(1)由(I )知,当(0,)x ∈+∞时, 有()(1)0,ln 1.f x f x x ≤=≤-即,0k k a b >,从而有ln 1k k a a ≤-,得ln (1,2,,)k k k k k b a a b b k n ≤-=,求和得1111ln .nn nk kk k k k k k aa b b ===≤-∑∑∑2111,ln 0,nn nk k kkkk k k a b b a===≤∴≤∑∑∑即1212ln()0,n k k k na aa ≤12121.n k k k n a aa ∴≤(2)①先证12121.nk k k n b b b n ≥ 令1(1,2,,),k ka k n nb ==则11111,nnnk k k k k k a b b n ======∑∑∑于是由(1)得1212111()()()1n k k k n nb nb nb ≤,即1212121,nn k k k k k k nn n b b b +++≤=12121.n k k k n b b b n ∴≥ ②再证122221212.n k k k n n b b b b b b ≤+++ 记21,(1,2,,)nkk k k b S b a k n S====∑令,则2111111nn nk k k k k k a b b b S ======∑∑∑,于是由(1)得1212()()() 1.nk k k n b b bSS S ≤ 即121212,nn k k k k k k n b b b S S +++≤=122221212.n k k k n n b b b b b b ∴≤+++综合①②,(2)得证。