2018高考数学试题分类汇编 圆的方程、直线与圆、圆与圆的位置关系 解析版

合集下载

【高三数学试题精选】2018年高考真题理科数学直线与圆归类汇编

【高三数学试题精选】2018年高考真题理科数学直线与圆归类汇编

2018年高考真题理科数学直线与圆归类汇编
5 5)2+2=9外,且对c1上任意一点,到直线x=﹣2的距离等于该点与圆c2上点的距离的最小值
(Ⅰ)求曲线c1的方程;
(Ⅱ)设P(x0,0)(0≠±3)为圆c2外一点,过P作圆c2的两条切线,分别与曲线c1相交于点A,B和c,D证明当P在直线x=﹣4上运动时,四点A,B,c,D的纵坐标之积为定值
【解析】(Ⅰ)解法1 设的坐标为,由已知得

易知圆上的点位于直线的右侧于是,所以
化简得曲线的方程为
解法2 由题设知,曲线上任意一点到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为
(Ⅱ)当点P在直线上运动时,P的坐标为,又,则过P且与圆
相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为于是
整理得

设过P所作的两条切线的斜率分别为,则是方程①的两个实根,故

由得③
设四点A,B,c,D的纵坐标分别为,则是方程③的两个实根,所以
④。

历届高考直线与圆试题汇编

历届高考直线与圆试题汇编

历届高考直线与圆试题汇编专题九:解析几何第二十五讲直线与圆一、选择题1.(2018全国卷Ⅲ) 直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆 (x-2)²+y²=2 上,则ΔABP 面积的取值范围是:A。

[2,6]B。

[4,8]C。

[2,32]D。

[22,32]2.(2018天津) 已知圆 x+y-2x=0 的圆心为 C,直线 y=3-x相交于 A,B 两点,则ΔABC 的面积为:3.(2018北京) 在平面直角坐标系中,记 d 为点P(cosθ,sinθ) 到直线 x-my-2=0 的距离,当θ,m 变化时,d 的最大值为:A。

1B。

2C。

3D。

44.(2017新课标Ⅲ)已知椭圆C:(x²/a²)+(y²/b²)=1 (a>b>0) 的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的圆与直线 bx-ay+2ab=0 相切,则 C 的离心率为:A。

√(3/32)B。

1/√(3/32)C。

√(3/8)D。

1/√(3/8)5.(2017新课标Ⅲ)在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上。

若AP=λAB+μAD,则λ+μ 的最大值为:A。

3B。

2√2C。

5D。

26.(2015山东)一条光线从点 (-2,-3) 射出,经 y 轴反射后与圆 (x+3)²+(y-2)²=1 相切,则反射光线所在直线的斜率为:A。

-2/5 或 5/2B。

-5/2 或 2/5C。

-2/3 或 3/2D。

-3/2 或 2/37.(2015新课标2)已知圆 C1:(x-1)²+y²=1,圆 C2:(x-2)²+y²=4,则圆 C1 与圆 C2 的公共弦所在直线的斜率为:A。

1/3B。

1/2C。

2/3D。

3/48.(2015新课标2)过三点 A(1,3),B(4,2),C(1,-7) 的圆交于 y 轴于 M、N 两点,则 MN 的长度为:A。

(五年高考真题)2018届高考数学复习 第九章 第二节 圆与方程及直线与圆的位置关系 理(全国通用)

(五年高考真题)2018届高考数学复习 第九章 第二节 圆与方程及直线与圆的位置关系 理(全国通用)

第二节 圆与方程及直线与圆的位置关系考点一 圆的方程1.(2017²重庆,7)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M 、N 分别是圆C 1、C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A .52-4 B.17-1 C .6-2 2D.17解析 依题意,设⊙C 1关于x 轴的对称圆为⊙C ′, 圆心C ′为(2,-3), 半径为1, ⊙C 2的圆心为(3,4),半径为3, 则(|PC ′|+|PC 2|)min =|C ′C 2|=52,∴(|PM |+|PN |)min =(|PC ′|+|PC 2|)min -(1+3)=52-4,选A. 答案 A2.(2015²新课标全国Ⅰ,14)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析 由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2),令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52.故圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案 ⎝ ⎛⎭⎪⎫x -322+y 2=2543.(2015²江苏,10)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析 直线mx -y -2m -1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r =(1-2)2+(0+1)2= 2. 故所求圆的标准方程为(x -1)2+y 2=2. 答案 (x -1)2+y 2=24.(2014²陕西,12)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________.解析 因为点(1,0)关于直线y =x 对称点的坐标为(0,1),即圆心C 为(0,1),又半径为1,∴圆C 的标准方程为x 2+(y -1)2=1. 答案 x 2+(y -1)2=15.(2011²福建,17)已知直线l :y =x +m ,m ∈R .(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程; (2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.解 法一 (1)依题意,点P 的坐标为(0,m ).因为MP ⊥l ,所以0-m2-0³1=-1,解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP |= (2-0)2+(0-2)2=22, 故所求圆的方程为(x -2)2+y 2=8. (2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m .由⎩⎪⎨⎪⎧y =-x -m ,x 2=4y 得x 2+4x +4m =0. Δ=42-4³4m =16(1-m ).①当m =1,即Δ=0时,直线l ′与抛物线C 相切; ②当m ≠1时,即Δ≠0时,直线l ′与抛物线C 不相切. 综上,当m =1时, 直线l ′与抛物线C 相切; 当m ≠1时,直线l ′与抛物线C 不相切.法二 (1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2. 依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎨⎧m =2,r =2 2.所以所求圆的方程为(x -2)2+y 2=8. (2)同法一.考点二 直线与圆、圆与圆的位置关系1.(2015²广东,5)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x -y +5=0或2x -y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x +y +5=0或2x +y -5=0解析 设所求切线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求切线的直线方程为2x +y +5=0或2x +y -5=0,故选D. 答案 D2.(2015²新课标全国Ⅱ,7)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( ) A .2 6B .8C .4 6D .10解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →²BC →=3³(-3)+(-1)³(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C. 答案 C3.(2015²重庆,8)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( ) A .2B .4 2C .6D .210解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径为r =2,因此2+a ³1-1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(-4-2)2+(-1-1)2-4=6,选C. 答案 C。

高考理科数学考点解析圆的方程、直线与圆、圆与圆的位置关系

高考理科数学考点解析圆的方程、直线与圆、圆与圆的位置关系

考点36 圆的方程、直线与圆、圆与圆的位置关系1.(2018·全国卷I高考文科·T15)直线y=x+1与圆x2+y2+2y-3=0交于A,B 两点,则=.【解析】由x2+y2+2y-3=0,得圆心为(0,-1),半径为2,所以圆心到直线的距离d==.所以|AB|=2=2.答案:22.(2018·全国Ⅲ高考理科·T6)同 (2018·全国Ⅲ高考文科·T8)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆+y2=2上,则△ABP面积的取值范围是()A.B.C.D.【命题意图】本题以直线与圆作为问题背景,考查圆的方程、点到直线的距离以及三角形的面积的求解,考查逻辑推理能力、运算求解能力,体现了逻辑推理和数学运算的核心素养.试题难度:中.【解析】选A.由A(-2,0),B(0,-2),则三角形ABP的底边|AB|=2,圆心(2,0)到直线x+y+2=0的距离为d==2,又因为半径为r=,所以点P到直线x+y+2=0的距离的最大值为2+=3,最小值为2-=,则三角形ABP的面积的最大值为S×2×3=6,最小值为S min=×2×=2,故△ABP面积的取值范围为[2,6].3.(2018·北京高考理科·T7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x-my-2=0的距离,当θ,m变化时,d的最大值为 ()A.1B.2C.3D.4【命题意图】本小题主要考查三角函数,点到直线的距离公式,直线方程,圆的方程等知识,意在考查基本运算能力,转化思想,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.【解析】选C.方法一:由已知d===≤|sin(θ+φ)|+||≤1+2=3.当且仅当=2,且sin(θ+φ)=-1时取=,此时m=0,d=|cosθ-2|,cosθ能取到-1,所以d的最大值为3.方法二:由已知及sin2θ+cos2θ=1,点P(cosθ,sinθ)在圆x2+y2=1上.又直线x-my-2=0过定点(2,0),当d取得最大值时,即圆x2+y2=1上的动点P到动直线x-my-2=0距离最大, 此时圆x2+y2=1的圆心(0,0)到动直线x-my-2=0距离最大,数形结合,可知动直线为x=2时,圆心(0,0)到动直线x-my-2=0距离最大值为2,所以圆x2+y2=1上的动点P到动直线x-my-2=0的距离最大值为2+1=3,即d 的最大值为3.4.(2018·天津高考文科·T12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.【命题意图】本题考查圆的概念、圆的一般方程或标准方程以及待定系数法,考查方程思想以及运算求解能力.【解题指南】可选择圆的一般方程,利用待定系数法求解.【解析】设圆的一般方程为x2+y2+Dx+Ey+F=0,又因为圆经过三点(0,0),(1,1),(2,0),所以解得D=-2,E=0,F=0,所以圆的方程为x2+y2-2x=0.答案:x2+y2-2x=0【光速解题】在平面直角坐标系中,画出圆上的三点,显然圆心坐标为(1,0),半径为1,所以圆的标准方程为(x-1)2+y2=1.答案:(x-1)2+y2=15.(2018·江苏高考·T12)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若·=0,则点A的横坐标为.【解析】因为AB为直径,所以AD⊥BD,所以BD即B到直线l的距离,BD==2.因为CD=AC=BC=r,又CD⊥AB,所以AB=2BC=2,设A(a,2a),AB==2⇒a=-1或3(a=-1舍去).答案:3。

高考数学复习讲义:圆的方程、直线与圆及圆与圆的位置关系

高考数学复习讲义:圆的方程、直线与圆及圆与圆的位置关系

返回
[方法技巧]
求过圆外一点(x0,y0)的圆的切线方程 2 方法
几 当斜率存在时,设为k,则切线方程为y-y0=k(x-x0), 何 即kx-y+y0-kx0=0.由圆心到直线的距离等于半径,即 法 可求出k的值,进而写出切线方程 代 当斜率存在时,设为k,则切线方程为y-y0=k(x-x0), 数 即y=kx-kx0+y0,代入圆的方程,得到一个关于x的一 法 元二次方程,由Δ=0,求得k,切线方程即可求出
d=|-11++k32k|=1,|-1+ 3k|= 1+k2,解得 k=0 或 k= 3,
故选 D. 答案:D
返回
弦长问题
[典例] 如图,在平面直角坐标系 xOy 中,已知圆 C:x2+y2-4x=0 及点 A(-1,0),B(1,2).
2.(2019·黑龙江伊春三校联考)已知圆 C1:(x+1)2+(y-1)2 返回
=1,圆 C2 与圆 C1 关于直线 x-y-1=0 对称,则圆 C2
的方程为
()
A.(x+2)2+(y-1)2=1 B.(x-2)2+(y+2)2=1
C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1
C 到直线 x+y+2=0 的距离为|2+22|=2 2,可得 dmax=2 2+
r=3 2,dmin=2 2-r= 2.由已知条件可得|AB|=2 2,所以 △ABP 面积的最大值为12|AB|·dmax=6,△ABP 面积的最小值
为12|AB|·dmin=2.综上,△ABP 面积的取值范围是[2,6]. 答案:A
(2)求过点 A,B 且与 C 的准线相切的圆的方程.
返回
[解] 由(1)得 AB 的中点坐标为(3,2),
所以 AB 的垂直平分线方程为 y-2=-(x-3),

高三数学-2018年全国高考试题分类解析(直线与圆) 精品

高三数学-2018年全国高考试题分类解析(直线与圆) 精品

2018年全国高考试题分类解析(直线与圆)一、选择题1.(江西卷)在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ ( )A .6π B .4π C .3π D .2π2.(江西卷) “a =b ”是“直线相切与圆2)()(222=-+-+=b y a x x y ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3. (重庆卷)圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) (A) (x -2)2+y 2=5; (B) x 2+(y -2)2=5;(C) (x +2)2+(y +2)2=5; (D) x 2+(y +2)2=5。

4 (浙江)点(1,-1)到直线x -y +1=0的距离是 ( )(A)21 (B) 32 (C) 2 (D)25.(浙江)设集合A ={(x ,y )|x ,y ,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是 ( )6.(天津卷)将直线2x -y +λ=0,沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y=0相切,则实数λ的值为 ( ) A .-3或7 B .-2或8 C .0或10 D .1或11 7. (全国卷Ⅰ)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为()(A )2(B )23(C )223 (D )28. (全国卷Ⅰ)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是 ( )(A )1±(B )21±(C )33±(D )3±9. (全国卷I)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是 ( )(A )),(2222- (B )),(22- (C )),(4242-(D )),(8181- 10. (全国卷III)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )(A )0 (B )-8 (C )2 (D )10 11.(北京卷)从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为( ) (A )π (B )2π (C )4π (D )6π12. (辽宁卷)若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-813. (湖南卷)设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、 B 的值,则所得不同直线的条数是 ( )A .20B .19C .18D .1614.(湖南卷)已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是 ( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2] 15.(北京卷)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) (A )充分必要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件填空题1.(全国卷II)圆心为(1,2)且与直线51270x y --=相切的圆的方程为 . 2.(湖南卷)设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是3.(湖南卷)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则⋅=4.(湖北卷)某实验室需购某种化工原料118千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.5 (福建卷)15.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为6(江西卷)设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤--7(上海)3.若x,y 满足条件 x+y ≤3y ≤2x ,则z=3x+4y 的最大值是 8(上海)直线y=21x 关于直线x =1对称的直线方程是 9.(上海)将参数方程⎩⎨⎧=+=θθsin 2cos 21y x (θ为参数)化为普通方程,所得方程是10.(山东卷)设x 、y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的最大的点(,)x y 是11.(重庆卷文)若y x y x -=+则,422的最大值是 . 12.(重庆文)已知B A ),0,21(-是圆F y x F (4)21(:22=+-为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .解答题1.(广东卷)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落在线段DC上. (Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程; (Ⅱ)求折痕的长的最大值.XPMN2.(江苏卷) 如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM 试建立适当的坐标系,并求动点 P 的轨迹方程.3.(天津卷)某人在一山坡P 处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平地面的夹角为a ,tana=1/2试问此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)2018年全国高考试题分类解析(直线与圆)参考答案选择题1.4)2()1(22=-+-y x 2. 0323=--y x 3. 21-4. 5005. 96.237. 11 8. 022=-+y x 9. 4)1(22=+-y x 10. (2, 3) 11. 22 12. 13422=+y x 解答题 1.(广东卷).解(I) (1)当0=k 时,此时A 点与D 点重合, 折痕所在的直线方程21=y (2)当0≠k 时,将矩形折叠后A 点落在线段CD 上的点为G(a,1) 所以A 与G 关于折痕所在的直线对称,有k a k ak k OG -=⇒-=-=⋅11,1 故G 点坐标为)1,(k G -,从而折痕所在的直线与OG 的交点坐标(线段OG 的中点)为)21,2(k M -折痕所在的直线方程)2(21kx k y +=-,即222k k kx y ++= 由(1)(2)得折痕所在的直线方程为:k=0时,21=y ;0≠k 时222k k kx y ++= (II )(1)当0≠k 时,折痕的长为2;(1) 当0≠k 时, 折痕所在的直线与坐标轴的交点坐标为)0,21(),21,0(22k k P k N +-+ 23222224)1()21()21(kk k k k PN y +=+-++== 432222/168)1(42)1(3k kk k k k y ⋅+-⋅⋅+=令0/=y 解得22-=k ∴21627max <=PN 所以折痕的长度的最大值2PMN2.(江苏卷)解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴, 建立平面直角坐标系,则两圆心分别为12(2,0),(2,0)O O -. 设(,)P x y ,则2222211(2)1PM O P O M x y =-=++-, 同理222(2)1PN x y =-+-.∵PM ,∴2222(2)12[(2)1]x y x y ++-=-+-,即221230x x y -++=,即22(6)33x y -+=.这就是动点P 的轨迹方程. 3.(天津卷)以OA 所在直线为x 轴,以OB 所在直线为y 轴建立直角坐标系, 直线l 与水平面的夹角为α,tan α=21即l 的斜率为21,又直线l 过A (200,0)点, 所以l 方程为)200(21-=x y ,即02002=--y x 过B ,C 两点作一个圆,圆心为M ,点M 在线段BC 的垂直平分线上。

2018年中考数学真题分类汇编第二期专题31直线与圆的位置关系试题含解析

点直线与圆的位置关系一.选择题1.(2018•江苏徐州•2分)⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含 B.内切 C.相交 D.外切【分析】根据两圆圆心距与半径之间的数量关系判断⊙O1与⊙O2的位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5和2,O1O2=3,则5﹣2=3,∴⊙O1和⊙O2内切.故选:B.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.2.(2018•上海•4分)如图,已知∠POQ=30°,点A.B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B与⊙A相切时,OB的长,可得结论.【解答】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.【点评】本题考查了圆和圆的位置关系、切线的性质、勾股定理,熟练掌握圆和圆相交和相切的关系是关键,还利用了数形结合的思想,通过图形确定OB的取值范围.3. (2018•湖州•4分)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是70°.【分析】先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.【解答】解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°﹣∠OBD=70°.故答案为70°.【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.4.(2018•嘉兴•3分)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内.B. 点在圆上.C. 点在圆心上.D. 点在圆上或圆内.【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.5.(2018•福建A卷•4分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(2018•福建B卷•4分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7. (2018湖南湘西州4.00分)如图,直线AB与⊙O相切于点A,AC.CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.4【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【解答】解:∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径及垂径定理.8.(2018•上海•4分)如图,已知∠POQ=30°,点A.B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B与⊙A相切时,OB的长,可得结论.【解答】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.【点评】本题考查了圆和圆的位置关系、切线的性质、勾股定理,熟练掌握圆和圆相交和相切的关系是关键,还利用了数形结合的思想,通过图形确定OB的取值范围.二.填空题1.(2018•江苏徐州•3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA= 126 度.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=72°;∵OA=OD,∴∠ODA=∠A=∠COD=36°,∴∠CDA=∠CDO+∠ODA=90°+36°=126°.【点评】本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.2.(2018•内蒙古包头市•3分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC= 115 度.【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.【解答】解:连接OC,∵DC切⊙O于C,∴∠DCO=90°,∵∠D=40°,∴∠COB=∠D+∠DCO=130°,∴的度数是130°,∴的度数是360°﹣130°=230°,∴∠BEC==115°,故答案为:115.【点评】本题考查了圆周角定理和切线的性质,能根据切线的性质求出∠DCO的度数是解此题的关键.3. (2018•嘉兴•4分.)如图,量角器的度刻度线为.将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的读数为.则该直尺的宽度为________【答案】【解析】【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【解答】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为:【点评】考查垂径定理,熟记垂径定理是解题的关键.4. (2018•广西玉林•3分)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10 cm.【分析】先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【解答】解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD= AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.4. (2018·黑龙江大庆·3分)在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形的内切圆半径为 2 .【分析】先利用勾股定理计算出BC=8,然后利用直角三角形内切圆的半径=(A.b为直角边,c为斜边)进行计算.【解答】解:∵∠C=90°,AB=10,AC=6,∴BC==8,∴这个三角形的内切圆半径==2.故答案为2.5. (2018•广东•3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE.线段EC.CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE.线段EC.CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.6. (2018湖南长沙3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 50 度.【分析】由圆周角定理易求∠BOC的度数,再根据切线的性质定理可得∠OBC=90°,进而可求出求出∠OCB 的度°°【解答】解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.【点评】本题考查了圆周角定理、切线的性质定理的运用,熟记和圆有关的各种性质和定理是解题的关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·8分)如图,在⊙O中,AB为直径,AC为弦.过BC 延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.2. (2018·湖北随州·8分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交于D.M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【点评】本题考查切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.3. (2018·湖北襄阳·8分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E 作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.【分析】(1)连接OE.推知CD为⊙O的切线,即可证明DA=DE;(2)利用分割法求得阴影部分的面积.【解答】解:(1)证明:连接OE.OC.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵BC==2,∴BC﹣AD=2,∴BC=3.在直角△OBC中,tan∠BOE==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°.∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.【点评】本题考查了切线的判定与性质:从圆外一点引圆的两条切线,它们的切线长相等,运用全等三角形的判定与性质进行计算.4. (2018·湖南郴州·8分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.【分析】(1)先求出∠ABC=30°,进而求出∠BAD=120°,即可求出∠OAB=30°,结论得证;(2)先求出∠AOC=60°,用三角函数求出AM,再用垂径定理即可得出结论.【解答】解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.【点评】此题主要考查了等腰三角形的性质,垂径定理,切线的判定,锐角三角函数,三角形内角和定理,圆周角定理,求出∠AOC=60°是解本题的关键.5. (2018·湖南怀化·12分)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.【分析】(1)由扇形的面积公式即可求出答案.(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.【解答】解:(1)∵AB=4,∴OB=2∵∠COB=60°,∴S扇形OBC==(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线【点评】本题考查圆的综合问题,解题的关键是熟练运用扇形面积公式以及切线的判定方法,本题属于中等题型.6.(2018•江苏宿迁•10分)如图,AB.AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD 的延长线交于点P,PC.AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.【答案】(1)证明见解析;(2)CF=5.【分析】试题分析:(1)、连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)、依据切线的性质定理可知OC⊥PE,然后通过解直角三角函数,求得OF的值,再减去圆的半径即可.试题解析:(1)、连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)、∵AB是直径,∴∠ACB=90°,∵∠CAB=30°,∴∠COF=60°,∵PC是⊙O的切线,AB=10,∴OC⊥PF,OC=OB=AB=5,∴OF==10,∴BF=OF﹣OB=5.【点睛】(1)、切线的判定与性质;(2)、解直角三角形7.(2018•江苏淮安•10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.【分析】(1)连接OE.OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.【解答】解:(1)直线DE与⊙O相切.理由如下:连接OE.OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线;(2)∵点E是AC的中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4﹣=4.8﹣π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形的面积公式.8.(2018•江苏苏州•10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE 垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.9.(2018•内蒙古包头市•10分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB 于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.【分析】(1)先利用等角的余角相等即可得出结论;(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.【解答】解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.10.(2018•山东烟台市•10分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.【分析】(1)根据同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE=∠DEC=2α,再根据三角形内角和定理可得结论;(2)设∠MBE=x,同理得:∠EMB=∠MBE=x,根据切线的性质知:∠DEF=90°,所以∠CED+∠MEB=90°,同理根据三角形内角和定理可得∠CAD=45°;(3)由(2)得:∠CAD=45°;根据(1)的结论计算∠MBE=30°,证明△CDE是等边三角形,得CD=CE=DE=EF=AD=,求EM=1,MF=EF﹣EM=﹣1,根据三角形内角和及等腰三角形的判定得:EN=CE=,代入化简可得结论.【解答】解:(1)连接CD.DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;(2)设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.【点评】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质和判定等知识,解题的关键是学会利用三角形角之间的关系确定边的关系,学会构建方程解决问题,属于中考常考题型.11.(2018•山东济宁市•8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB 于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB.由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴=,即=,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴=,即=,解得:AD=.【点评】本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.12.(2018•山东东营市•8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C.∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD.AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.13. (2018•达州•8分)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D 作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.【分析】(1)连接CD.OD,先利用等腰三角形的性质证AD=BD,再证OD为△ABC的中位线得DO∥AC,根据DF ⊥AC可得;(2)连接OE.作OG⊥AC,求出EF、DF的长及∠DOE的度数,根据阴影部分面积=S梯形EFDO﹣S扇形DOE计算可得.【解答】解:(1)如图,连接CD.OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)连接OE.作OG⊥AC于点G,∴∠OGF=∠DFG=∠ODF=90°,∴四边形OGFD是矩形,∴FG=OD=4,∵OC=OE=OD=OB,且∠COE=∠B=60°,∴△OBD和△OCE均为等边三角形,∴∠BOD=∠COE=60°,CE=OC=4,∴EG=CE=2.DF=OG=OCsin60°=2,∠DOE=60°,∴EF=FG﹣EG=2,则阴影部分面积为S梯形EFDO﹣S扇形DOE=×(2+4)×2﹣=6﹣.【点评】本题主要考查了切线的判定与性质,等边三角形的性质,垂径定理等知识.判断直线和圆的位置关系,一般要猜想是相切,再证直线和半径的夹角为90°即可.注意利用特殊的三角形和三角函数来求得相应的线段长.14. (2018•遂宁•10分)如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C.D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC.CM.(1)求证:CM2=MN•MA;(2)若∠P=30°,PC=2,求CM的长.【分析】(1)由=知∠CAM=∠DCM,根据∠CMA=∠NMC证△AMC∽△CMN即可得;(2)连接OA.DM,由Rt△PAO中∠P=30°知OA=PO=(PC+CO),据此求得OA=OC=2,再证△CMD是等腰直角三角形得CM的长.【解答】解:(1)∵⊙O中,M点是半圆CD的中点,∴=,∴∠CAM=∠DCM,又∵∠CMA=∠NMC,∴△AMC∽△CMN,∴=,即CM2=MN•MA;(2)连接OA.DM,∵PA是⊙O的切线,∴∠PAO=90°,又∵∠P=30°,∴OA=PO=(PC+CO),设⊙O的半径为r,∵PC=2,∴r=(2+r),解得:r=2,又∵CD是直径,∴∠CMD=90°,∵CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,即2CM2=(2r)2=16,则CM2=8,∴CM=2.【点评】本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点.15. (2018•资阳•9分)已知:如图,在△ABC中,AB=AC,点P是底边BC上一点且满足PA=PB,⊙O是△PAB 的外接圆,过点P作PD∥AB交AC于点D.(1)求证:PD是⊙O的切线;(2)若BC=8,tan∠ABC=,求⊙O的半径.【分析】(1)先根据圆的性质得:,由垂径定理可得:OP⊥AB,根据平行线可得:OP⊥PD,所以PD是⊙O的切线;(2)如图2,作辅助线,构建直角三角形,根据三角函数设CG=,BG=2x,利用勾股定理计算x=,设AC=a,则AB=a,AG=﹣a,在Rt△ACG中,由勾股定理列方程可得a的值,同理设⊙O的半径为r,同理列方程可得r的值.【解答】(1)证明:如图1,连接OP,∵PA=PB,∴,∴OP⊥AB,∵PD∥AB,∴OP⊥PD,∴PD是⊙O的切线;(2)如图2,过C作CG⊥BA,交BA的延长线于G,Rt△BCG中,tan∠ABC=,设CG=,BG=2x,∴BC=x,∵BC=8,即x=8,x=,∴CG=x=,BG=2x=,设AC=a,则AB=a,AG=﹣a,在Rt△ACG中,由勾股定理得:AG2+CG2=AC2,∴,a=2,∴AB=2,BE=,Rt△BEP中,同理可得:PE=,设⊙O的半径为r,则OB=r,OE=r﹣,由勾股定理得:,r=,答:⊙O的半径是.【点评】本题考查了切线的判定,等腰三角形的性质,直角三角形的性质,三角函数和勾股定理的计算,利用勾股定理列方程是解题的关键.15. (2018•乌鲁木齐•10分)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD∥AC,∴,即,∵a=,解得BD=r.(10分)【点评】此题考查了切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.16. (2018•乌鲁木齐•10分)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD∥AC,∴,即,∵a=,解得BD=r.(10分)【点评】此题考查了切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.18. (2018•金华、丽水•8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=12,求⊙O的半径.【解析】【分析】(1)证明切线时,第一步一般将圆心与切点连结起来,证明该半径和该直线垂直即可证得;此题即证∠ADO=90°;(2)直接求半径会没有头绪,先根据题中的条件,求出相关结论,由BC=8,tan B =不难得出AC,AB的长度;而tan∠1=tanB= ,同样可求出CD,AD的长度;设半径为r,在Rt△ADO中,由勾股定理构造方程解出半径r即可。

2018年高考数学(理)一轮复习文档第八章 平面解析几何第4讲 直线与圆、圆与圆的位置关系含答案

第4讲直线与圆、圆与圆的位置关系1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.方法位置关系几何法代数法相交d〈rΔ>0相切d=rΔ=0相离d〉rΔ〈0 2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r错误!(r1>0),圆O2:(x-a2)2+(y-b2)2=r错误!(r2〉0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况外离d>r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|〈d<r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d〈|r1-r2|(r1≠r2)无解1.辨明两个易误点(1)对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k不存在的情形.(2)两圆相切问题易忽视分两圆内切与外切两种情形.2.求圆的弦长的常用方法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则错误!错误!=r2-d2。

(2)代数法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=错误!.注意:常用几何法研究圆的弦的有关问题.1。

错误!直线x-y+1=0与圆(x+1)2+y2=1的位置关系是( ) A.相切B.直线过圆心C.直线不过圆心,但与圆相交D.相离B 依题意知圆心为(-1,0),到直线x-y+1=0的距离d=错误!=0,所以直线过圆心.2.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2错误!,则实数a的值为( )A.-1或错误!B.1或3C.-2或6 D.0或4D 圆心(a,0)到直线x-y=2的距离d=错误!,则错误!错误!+错误!错误!=22,所以a=0或4,故选D.3.圆Q:x2+y2-4x=0在点P(1,3)处的切线方程为()A.x+错误!y-2=0 B.x+错误!y-4=0C.x-错误!y+4=0 D.x-错误!y+2=0D 因点P在圆上,且圆心Q的坐标为(2,0),所以k PQ=错误!=-错误!,所以切线斜率k=错误!,所以切线方程为y-3=错误!(x-1),即x-3y+2=0。

2018高考数学真题 理科 9.4考点1 直线和圆的位置关系

第九章 平面解析几何第四节 直线与圆、圆与圆的位置关系考点1 直线和圆的位置关系(2018·天津卷(理))已知圆x 2+y 2-2x =0的圆心为C ,直线{x =−1+√22t,y =3−√22t(t 为参数)与该圆相交于A ,B 两点,则△ABC 的面积为________.【解析】将直线的参数方程化为普通方程为y =-x +2.联立方程组{y =-x +2,x 2+y 2-2x =0,可求得A ,B 两点的坐标分别为(1,1),(2,0).故|AB |=√2. 又圆心C 到直线AB 的距离d =√22,故S △ABC =12×√2×√22=12.【答案】12(2018·全国卷Ⅲ(理))直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[√2,3√2]D .[2√2,3√2]【解析】设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =√2,所以圆心C 到直线x +y +2=0的距离为2√2,可得d max =2√2+r =3√2,d min =2√2-r =√2.由已知条件可得|AB |=2√2,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2. 综上,△ABP 面积的取值范围是[2,6].【答案】A(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为________. 【解析】设A (a,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0.由题意知C (a+52,a).由{(x -5)(x -a)+y(y -2a)=0,y =2x,解得{x −1,y =2或{x =a,y =2a.∴D (1,2). 又AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,AB ⃗⃗⃗⃗⃗ =(5-a ,-2a ),CD ⃗⃗⃗⃗⃗ =(1−a+52,2−a), ∴(5-a ,-2a )·(1−a+52,2−a)=52a 2-5a -152=0, 解得a =3或a =-1.又a >0,∴a =3.【答案】3。

高考数学总复习历年考点知识与题型专题讲解18---直线与圆、圆与圆的位置关系(解析版)

高考数学总复习历年考点知识与题型专题讲解直线与圆、圆与圆的位置关系考点一 直线与圆的位置的关系【例1】(2020·林芝市第二高级中学高二期末(文))若直线y b =+与圆221x y +=相切,则b =( )A .3± B .C .2± D .【答案】C【解析】由题得圆的圆心坐标为(0,0)1,2b =∴=±.故选C 【举一反三】1.(2018·福建高一期末)若直线 :1(0)l y kx k =+<与圆22:4230C x x y y ++-+=相切,则直线l 与圆22:(2)3D x y -+=的位置关系是( )A .相交B .相切C .相离D .不确定【答案】A【解析】圆C 的方程可化为()()22212x y ++-=,故圆心为()2,1C -,半径C r =.由于直线l :10kx y -+=和圆C=k 0<解得1k =-,所以直线l 的方程为10x y --+=,即10x y +-=.圆D 的圆心为()2,0D,半径为D r =D 到直线l2=<l 与圆D 相交.故选:A 2.(2020·包头市田家炳中学高二期中)直线y =x ﹣1与圆x 2+y 2=1的位置关系为( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心【答案】D【解析】圆x 2+y 2=1的圆心坐标为(0,0)O ,半径为1,因为圆心(0,0)O 到直线y =x ﹣11=<, 所以直线y =x ﹣1与圆x 2+y 2=1相交,因为001≠-,所以直线y =x ﹣1与圆x 2+y 2=1的位置关系为相交但直线不过圆心. 故选:D3.(2020·辉县市第二高级中学高二期中(文))“点(),a b 在圆221x y +=内”是“直线10ax by ++=与圆221x y +=相离”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】若点(),a b 在圆221x y +=内,则221a b +<则圆心O 到直线10ax by ++=的距离1d =>则直线10ax by ++=与圆221x y +=相离反之直线10ax by ++=与圆221x y +=相离,则圆心O 到直线10ax by ++=的距离1d =>,即221a b +<,则点(),a b 在圆221x y +=内所以“点(),a b 在圆221x y +=内”是“直线10ax by ++=与圆221x y +=相离”的充分必要条件故选:C考点二 弦长【例2】(2020·全国高三其他(文))直线21y x =+被圆221x y +=截得的弦长为( )A .1BC .5D 【答案】C【解析】圆心()0,0到直线21y x =+,所求弦长为=故选:C .【举一反三】1.(2020·河南濮阳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程、直线与圆、圆与圆的位置关系
1.(2018·全国卷I高考文科·T15)直线y=x+1与圆x2+y2+2y-3=0交于A,B 两点,则错误!未找到引用源。

=.
【解析】由x2+y2+2y-3=0,得圆心为(0,-1),半径为2,
所以圆心到直线的距离d=错误!未找到引用源。

=错误!未找到引用源。

.所以|AB|=2错误!未找到引用源。

=2错误!未找到引用源。

.
答案:2错误!未找到引用源。

2.(2018·全国Ⅲ高考理科·T6)同 (2018·全国Ⅲ高考文科·T8)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆错误!未找到引用源。

+y2=2上,则△ABP面积的取值范围是()
A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【命题意图】本题以直线与圆作为问题背景,考查圆的方程、点到直线的距离以及三角形的面积的求解,考查逻辑推理能力、运算求解能力,体现了逻辑推理和数学运算的核心素养.试题难度:中.
【解析】选A.由A(-2,0),B(0,-2),则三角形ABP的底边|AB|=2错误!未找到引用源。

,圆心(2,0)到直线x+y+2=0的距离为d=错误!未找到引用源。

=2错误!未找到引用源。

,又因为半径为r=错误!未找到引用源。

,所以点P到直线x+y+2=0的距离的最大值为2错误!未找到引用源。

+错误!未找到引用源。

=3错误!未找到引用源。

,最小值为2错误!未找到引用源。

-错误!未找到引用源。

=错误!未找到引用源。

,则三角形ABP的面积的最大值为S max=错误!未找到引用源。

×2错误!未找到引用源。

×3错误!未找到引用源。

=6,最小值为S min=错误!未找到引用源。

×2错误!未找到引
用源。

×错误!未找到引用源。

=2,故△ABP面积的取值范围为[2,6].
3.(2018·北京高考理科·T7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x-my-2=0的距离,当θ,m变化时,d的最大值为 ()
A.1
B.2
C.3
D.4
【命题意图】本小题主要考查三角函数,点到直线的距离公式,直线方程,圆的方程等知识,意在考查基本运算能力,转化思想,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.
【解析】选C.方法一:由已知d=错误!未找到引用源。

=
错误!未找到引用源。

=
错误!未找到引用源。

≤|sin(θ+φ)|+|错误!未找到引用源。

|≤1+2=3.当且仅当错误!未找到引用源。

=2,且sin(θ+φ)=-1时取=,
此时m=0,d=|cosθ-2|,cosθ能取到-1,
所以d的最大值为3.
方法二:由已知及sin2θ+cos2θ=1,点P(cosθ,sinθ)在圆x2+y2=1上.
又直线x-my-2=0过定点(2,0),
当d取得最大值时,即圆x2+y2=1上的动点P到动直线x-my-2=0距离最大, 此时圆x2+y2=1的圆心(0,0)到动直线x-my-2=0距离最大,数形结合,可知动直线为x=2时,圆心(0,0)到动直线x-my-2=0距离最大值为2,
所以圆x2+y2=1上的动点P到动直线x-my-2=0的距离最大值为2+1=3,即d 的最大值为3.
4.(2018·天津高考文科·T12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.
【命题意图】本题考查圆的概念、圆的一般方程或标准方程以及待定系数法,考查方程思想以及运算求解能力.
【解题指南】可选择圆的一般方程,利用待定系数法求解.
【解析】设圆的一般方程为x2+y2+Dx+Ey+F=0,又因为圆经过三点(0,0),(1,1),(2,0),所以
错误!未找到引用源。

解得D=-2,E=0,F=0,
所以圆的方程为x2+y2-2x=0.
答案:x2+y2-2x=0
【光速解题】在平面直角坐标系中,画出圆上的三点,显然圆心坐标为(1,0),半径为1,所以圆的标准方程为(x-1)2+y2=1.
答案:(x-1)2+y2=1
5.(2018·江苏高考·T12)在平面直角坐标系xOy中,A为直线l:y=2x上在第
一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若·=0,则点A的横坐标为.
【解析】因为AB为直径,所以AD⊥BD,所以BD即B到直线l的距离,BD=错误!未找到引用源。

=2错误!未找到引用源。

.
因为CD=AC=BC=r,又CD⊥AB,所以AB=2BC=2错误!未找到引用源。

,
设A(a,2a),
AB=错误!未找到引用源。

=2错误!未找到引用源。

⇒a=-1或3(a=-1舍去).答案:3。

相关文档
最新文档