可控性与可观性

合集下载

第三章线性系统的可控性与可观性2

第三章线性系统的可控性与可观性2

第 三章 线性控制系统式的可控性和可观测性
若满足下列条件,则称 1 与 2 是互为对偶的。
A2 A1T , B2 C1T , C 2 B1T
式中
x1 , u1 , y1 , A1 , B1 , C1 , x2 u2 y2 A2 B2 C2
——n维状态矢量; ——各为r维与m维控制矢量; ——各为m 维与r维输出矢量; —— n n 系统矩阵; ——各为n×r 维与n×m维控制矩阵; ——各为n×m 维与n×r维输出矩阵;
第 三章 线性控制系统式的可控性和可观测性
非奇异变换不改变系统的自然模态及能控性, 能观性,而且只有系统完全能控(能观)才能 化成能控(能观)标准型,对于一个传递函数 为
bn 1 s n 1 bn 2 s n 2 b1 s b0 W ( s) n s a n 1 s n 1 a1 s a 0
第 三章 线性控制系统式的可控性和可观测性
两个n维系统 S1(A1 B1 CI)、S2(A2 B2 C2) 若满足下列关系 A2=A1T B2=C1T C2=B1T 则称S1与S2是对偶系统.
式中
x1 , u1 , y1 , A1 , B1 , C1 , x2 u2 y2 A2 B2 C2
——n维状态矢量; ——各为r维与m维控制矢量; ——各为m 维与r维输出矢量; —— n n 系统矩阵; ——各为n×r 维与n×m维控制矩阵; ——各为n×m 维与n×r维输出矩阵;
第 三章 线性控制系统式的可控性和可观测性
如果∑1 和 ∑2 互为对偶系统,那么: 1.如果将∑1模拟结构图中将信号线反向;输入 端变输出端,输出端变输入端;信号综合点变信 号引出点,信号引出点变信号综合点,那么形成 的就是∑2的模拟结构图,如下图所示。

线性系统的可控性与可观测性

线性系统的可控性与可观测性

12
第3章 线性系统的可控性和可观测性
必要性:已知系统完全可控,欲证W(0, t1) 非奇异。反
设W(0, t1)为奇异,即存在某个非零向量 x0 Rn ,使
T x0 W (0, t1 ) x0 0
0 x W (0, t1 ) x0 x e
T 0 0 T 0 t1 T
t1
At
13
第3章 线性系统的可控性和可观测性
因系统完全可控,根据定义对此非零向量 x0 应有
x(t1 ) e x0 e At1 e At Bu (t )dt 0
At1 0 t1
x0 e At Bu(t )dt
0
t1
x0
2
x x0 e 0
T 0 t1
8
第3章 线性系统的可控性和可观测性
三.可观测性定义
1.系统完全可观测
对于线性时变系统
x A(t ) x, y C (t ) x x(t0 ) x0 t0 , t Tt
如果取定初始时刻 t0 Tt ,存在一个有限时刻t1 Tt , t1 t0 ,
对于所有 t t0 , t1 ,系统的输出y(t)能唯一确定状态向量 可观测。如果对于一切t1>t0系统都是可观测的,则称系 的初值x(t0),则称系统在[t0, t1]内是完全可观测的,简称
2 T B AB A B
, T An1B 0
T An 1 B S 0
由于 α≠0 ,所以上式意味着 S 为行线性相关的,即
rankS<n 。这显然与已知rankS=n相矛盾。因而反
设不成立,系统应为完全可控,充分性得证。
必要性:已知系统完全可控,欲证 rankS=n ,采用 反证法。反设rankS<n ,这意味着S为行线性相关, 因 此 必 存 在 一 个 非 零 n 维 常 向 量 α 使 成立。

现代控制理论 2-0

现代控制理论 2-0


t
0
e − Aτ f (τ )dτ =
e [ x(0) + ∫ e
At 0 At
t
− Aτ
f (τ )dτ ] + ∫ e A( t −τ ) Bu (τ )dτ
t1 − Aτ
当t = t1时,有 x(t1 ) = e [ x(0) + ∫ e
0
f (τ )dτ ] + ∫ e A( t −τ ) Bu (τ )dτ
λ − 1 0 det[λI − A] = det = (λ − 1)(λ + 3) = 0 λ + 3 2 λ1 = 1, λ2 = −3 0 0 rank [λ1 I − AMb] = rank 2 4 − 4 rank [λ2 I − AMb] = rank 0 系统能控。 1 =2 1 0 1 =2 0 1
0
t1

t1
0
e − Aτ f (τ )dτ为一个确定的值,仅仅相当于把系统
原来的初态改变了一确定的常值。所以在讨论系统 的能控性时,不考虑系统存在的确定性干扰。
第二章 系统的可观性和可控性
(三)能控性判据
判据一: 判据一:若系统能控,则能控性矩阵
Qc = [B AB A 2 B ... A n −1 B ] 满秩,即
第二章 系统的可观性和可控性
现代控制理论基础
主讲人: 主讲人:荣军 mail:rj1219 163. 1219@ E-mail:rj1219@
第二章 系统的可观性和可控性
2-1 能能控性及其判据
-、线性定常系统的能观测性及其判据 -、线性定常系统的能观测性及其判据
线性定常系统状态方程为 x = Ax + Bu 其中x、u分别为n、 r维向量,A、B为满足矩阵运算的常值矩阵。若给定系统的 一个初始状态x0和任一状态x1,如果在的有限时刻tf>0,定义在 时间区间[0,tf]的输入u(t)使状态x(0)=x0转移到x(tf)= x1 ,则称系统状态完全是能控的; 如果系统对任意一个初始状态都能控,则称系统是状态完全 能控的,简称系统是状态能控的或系统是能控的。

《自动控制原理》线性系统的可控性与可观测性

《自动控制原理》线性系统的可控性与可观测性

将状态 x(t0 ) = 0 转移到 x(t f ) =x f 的控制作用,则称状态 x f 是 t0 时刻 可达的。若x f 对所有时刻都是可达的,则称状态x f 为完全可达或 一致可达。若系统对于状态空间中的每一个状态都是时刻 t0 可达的, 则称该系统是 t0 时刻状态完全可达的,或简称该系统是 t0 时刻可达
可观测性问题: 相应地,如果系统所有状态变量的任意形式 的运动均可由输出完全反映,则称系统是状态可观测的,简称为系 统可观测。反之,则称系统是不完全可观测的,或简称为系统不可 观测。
可控性与可观测性概念,是卡尔曼于20世纪60年代首先提出 来的,是用状态空间描述系统引伸出来的新概念,在现代控制理论 中起着重要的作用。它不仅是研究线性系统控制问题必不可少的重 要概念,而且对于许多最优控制、最优估计和自适应控制问题,也 是常用到的概念之一。
在研究可观测性问题时,输出 y 和输入 u 均假定为已知,只有初始
状态 x0 是未知的。因此,若定义
t
y(t) = y(t) − C(t) (t, )B( )u( )d − D(t)u(t) t0
则式(9-79)可写为
y(t) = C(t)(t,t0 )x0
(9-80)
这表明可观测性即x0 可由 y 完全估计的性能,由于 y 和 x0 可任意取
y = −6x2
这表明状态变量 x1 和 x2 都可通过选择控制量 u 而由始点达到原
点,因而系统完全可控。 如何判别?
但是,输出 y 只能反映状态变量 x2 ,而与状态变量 x1 既无直
接关系也无间接关系,所以系统是不完全可观测的。如何判别?
变化:(1)b1=0 ? (2)a12≠0 ? (3) a21≠0 ?
值,所

可控制性和可观性

可控制性和可观性
∴系统不可控。
1 1 0 0 1 0 1 0 x 1 0 u x ( 4) 0 1 1 0 1
解: Qc [ B
0 1 AB] 1 0
解:
Qc [ B AB
rankQc 2 n
∴系统可控。
x(t 0 ) 0
,终端状态规定为任意非零有限点,则可达定义表述如下: 对于给定的线性定常系统
Ax Bu x
如果存在一个分段连续的输入u(t) , ,能在[ t0 , tf ]有限时间 间隔内,将系统由零初始状态 x(t0) 转移到任一指定的非零终 端状态 x(tf ) ,则称此系统是状态完全可达的,简称系统是 可达的(能达的)。
0 7 0 0 1 0 5 0 x 4 0u ( 3) x 0 1 0 7 5
解: (1)状态方程为对角标准型,B阵中不含有元素全为零的行,故系统是 可控的。 (2)状态方程为对角标准型,B阵中含有元素全为零的行,故系统是不 可控的。 (3)系统可控。 (4)系统不可控。
1 2 AB] , 0 0
1 0 1 x x ( 2) 0 1 1u
解: Qc [ B
解:
rankQ c 1 n
∴系统不可控
0 1 0 x 1u ( 3) x 1 0
1 1 Qc [ B AB] 1 1 rankQ c 1 n
1 x
u
2 x
1 s 1 s
x1
y
x2
2
2009-08 CAUC--空中交通管理学院 4
§4-1 问题的提出
1 0 1 x u ( 3) x 0 1 1

现代控制理论 3-3 线性系统的可观性 3-4 可控可观标准型

现代控制理论 3-3 线性系统的可观性 3-4 可控可观标准型

返回
说说 明明
⎧x&(t) = Ax(t) ⎩⎨y(t) = Cx(t)
e 当输出个数与状态个数相等,且C 阵可逆时,
状态观测值可以立刻获得:x(t) = Cn×n−1y(t)
a 当输出个数少于状态个数时,状态观测值需要一定
c的时间来确定,即:
y(t0 ) = Cx(t0 )
y y(t1) = Cx(t1) = CeA(t1−t0 )x(t0 )
tc M
x(t ) = eA(t−t0 )x(t0 )
y(t) ⇒ x(t0 ) ⇒ x(t)
——由输出测量值求状 态初值,再由状态初值 求状态任意时刻的值。
定义
3
二、线性定常连续系统的可观测性判据
e 格拉姆矩阵判据
ca 线性定常连续系统完全可观 ⇔ 存在 t1 > 0
tcy ∫ 使格拉姆矩阵
注 意 对角阵含有相同元素时,要求更高!
e ⎡λ1


a ⎢
λ1
⎥ ⎥
⎢⎣
λ2 ⎥⎦
A 的两重特征值有两个 独立的特征向量
c¾¾CC矩矩阵阵的的列列线线性性无无关关 tcy or:秩判据
⎡C⎤
⎢ rank ⎢
CA
⎥ ⎥=n
⎢M⎥
⎢ ⎣CA
n−1
⎥ ⎦
返回
8
例:判别下列对角规范型线性定常系统的可观性。
CA M

⎥ ⎥
=
dim
A
=
n
tc ⎢⎣CA
n−1
⎥ ⎦
nq×n阶可观测性矩阵
返回
4
例:判别下列系统的可观性。
⎡0 1 0⎤
e x&

线性系统的可控性与可观测性

线性系统的可控性与可观测性
第3章 线性系统的可控性和可观测性
Image No
第三章 线性系统的可控性与可观测性
本章主要介绍定性分析方法,即对决定系统运
动行为和综合系统结构有重要意义的关键性质(如
可控性、可观测性、稳定性等)进行定性研究。
在线性系统的定性分析中,一个很重要的内容
是关于系统的可控性、可观测性分析。系统的可控、
可观测性是由卡尔曼于60年代首先提出的,事后被
证明这是系统的两个基本结构属性。
本章首先给出可控性、可观测性的严格的数学
定义,然后导出判别线性系统的可控性和可观测性
的各种准则,这的。
整理版
1
Image No
第3章 线性系统的可控性和可观测性
第三章 线性系统的可控性与可观测性
3.1 可控性和可观测性的定义 3.2 线性定常连续系统的可控性判据(※) 3.3 线性定常连续系统的可观测性判据(※) 3.4 对偶原理
如果系统内部所有状态变量的任意形式的运动均可
由输出完全反映,则称系统是状态可观测的,否则就
称系统为不完全可观测的,或简称为系统不可观测。
整理版
3
Image No
第3章 线性系统的可控性和可观测性
例3-1:给定系统的状态空间描述为
xx1204 05xx1212u
y 0
6
x1 x2
图3-1 系统结构图
如果对取定初始时刻 t0 Tt 的一个非零初始状态 x(t0) =x0,存在一个时刻 t1Tt,t1t0 和一个无约 束的容许控制u(t),t [t0,t1],使状态由x(t0)=x0转 移到t1时的x(t1)=0 ,则称此x0是在时刻t0可控的.
整理版
5
第3章 线性系统的可控性和可观测性

第二章 可控性与可观性 7

第二章 可控性与可观性 7

(3)Popov-Belevitch-Hautus判据
线性定常连续系统完全可观测的充分必要条件是 对系统矩阵的所有特征值 si (i 1,2,...n)
C rank n si I A

其中n为系统矩阵A的阶次。
(4)约当规范型判据 1) 系统矩阵A的特征值 si (i 1,2,...n) 互异
BB e
T AT t
d
为非奇异的或是正定的。
(2)秩判据 假设线性时变连续系统的A(t)和B(t) 的每个元素 分别是n-2和n-1次连续可微函数,并记
B1 (t ) B(t )
(t ), i 2,3,...n Bi (t ) A(t ) Bi 1 (t ) B i 1
几点说明:
(1)未限制状态转移的轨迹。可控性只表征系统状态运 动的一个定性特性 。 (2)定义中对控制量的每个分量的大小并未限制,只要 求控制量u是容许控制的,这表明控制量的每个分量应在 时间区间Tf上平方可积:

t
t0
ui dt , t0 , t T f
2
(3)定义是相对于时间区间Tf中的一个取定时刻来定义 的,对于线性时变系统是完全必要的,而对于线性定常 系统,系统的可控性与初始时刻的选取无关。
1 0 1 dx / dt x u 0 1 1 y 1 1x

u



1
x1

y


1
x2

1 0 1 dx / dt x u 0 1 1 y 1 0x

x1


1
u


y

ˆx ˆu x ˆA ˆB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




制 理 论
【例】
2
x
0
1 1
x
1 0
u,
试判别状态可控性
解:
Qc [b
1 Ab] 0
2
0

rankQc 1 n
∴系统不可控。
Modern Control Theory
Page: 5
连续时间系统状态完全可控的条件

代 控
定理2:
定理2
制 理
设连续时间系统 x Ax Bu, 系统状态完全可控的充要条件为:
理 论
y 1 0 x
解:上述动态方程可写成:
x1 x 2
x1 2x2
2u
y x1
输入u不能控制状态变量 x1,所以状态变量 x1是不可控的;
从输出方程看,输出y不能反映状态变量 x2 ,所以状态变量 x2 不能观测。
Modern Control Theory
Page: 3
状态完全可控的条件
在S平面上状态完全可控的条件


完全可观测性条件也可用传递函数或者传递矩阵阐述。完全
x
5 u
0 0 1 7
(3)
(4)
7 0 0 0 1
7 0 0 0 1
x
0
5
0
x
4
0 u
x
0
5
0
x
0
0 u
0 0 1 7 5
0 0 1 7 5
解:
(1)状态方程为对角标准型,B阵中不含有元素全为零的行,故系统是可控的。
(2)状态方程为对角标准型,B阵中含有元素全为零的行,故系统是不可控的。
C
状 态 完 全 可 观 测 的 充 要条 件 是nq n维 能 观 测 矩 阵S0
CA :
CA
n1
满 秩 , 即rankS0 n,或 CT AT C T ... ( AT )n1 C T n
Modern Control Theory
Page: 11
例 连续时间系统的可观测性

论 当A为对角阵且特征根互异时,输入矩阵B无全零行
Modern Control Theory
Page: 6
线性定常连续系统状态完全可控的条件
状 态 可 控 性 例题
现 代
【例】判别下列系统的状态可控性。

制 理
(1)
7
x
0
0 5
0 2
0
x
5
u

0 0 1 7
(2)
7
x
0
0 5
0 0
0
Page: 12
定理2 连续时间系统的可观测性


控 制
定理2:线性定常系统 x Ax Bu, y Cx Du,系统状态空间
理 可观测的充要条件为:当A为对角矩阵且特征值互异时,输出矩阵C中
论 不包含全为零的列。
Modern Control Theory
Page: 13
例 题
连续时间系统的可观测性


【例】判别可观测性
控 制 理 论
(1) (2)
4 5 1
x
1
0 x 1 u
2 1 1
x 1
3
x
1
u
y 1 1 x
1 0 y 1 0 x
解:(1)
c 1 1
Qo cA 5
5
(2)
1 0
Qo
c cA
1 2
0
1
2
1
Modern Control Theory
rankQo 1 2 故系统不可观测 rankQo 2 2 系统可观测

代 【例】判别可观测性


(1)
1 0 0 0
理 论
x 0 2 0 x 0 u y 5 3 2 x
0 0 3 1
解:系统可观测。
(2) 1 0 0 0
x 0 2 0 x 0 u 0 0 3 1
解:系统不可观测。
Modern Control Theory
y 5 3 0 x
Page: 14
rank CB CAB ... CAn1B D q
(q-输出变量个数)
一般而言,系统输出可控性和状态可控性之间没有什么必然的联系。 即输出可控不一定状态可控,状态可控不一定输出可控。
Modern Control Theory
Page: 10
连的续可系观统测连续时间系统的可观测性 性

代 一、定义
当 R1R4 R2 R3 ,即电桥不平衡时,u能控制
u
x1,x2所有变量,称系统可控。
控制量对状态变量的控制能力-称状态可控性
输出量对状态变量的反映能力-称状态可观测性
Modern Control Theory
Page: 2
可控性可观测性例题

代 控 制
【例】 1 0 0 x 0 2 x 2 u
(3)系统可控。 (4)系统不可控。
Modern Control Theory
Page: 7
定理3 在S平面上状态完全可控的条件

代 控
状态完全可控的条件也可用传递函数或传递矩
制 阵描述。


状态完全可控性的充分必要条件是在传递函数
或传递矩阵中不出现相约现象。如果发生相约,那
么在相约的模态上,系统不可控。
控 制
定义:若对系统{A,B,C,D},存在给定输入u(t),能在[ t0,tf )
理 论
有限时间内,由输出y(t)能任一确定系统初始状态x(t0),则系统
则系统各个状态都可观测,则称系统是状态完全可观测的,简
称系统可观测。
二、可观测性定理
x Ax Bu
定理1:线性定常连续系统 y Cx Du

代 控
一. 可控性判据
制 理 论
定理1:
若定义连续时间系统A, B的n*(np)可控矩阵
Sc B AB A2B
An1B
则系统状态完全可控(或系统可控)的充要条件是:
该系统的可控性矩阵满秩,即 rankSc n
Modern Control Theory
Page: 4
连续时间系统状态例完全题可控的条件
,所以该系统状态不完全可控。
Modern Control Theory
Page: 9
连续时间连系续统系状统态的完输全出可可控控的性条件

代 控
三 连续系统的输出可控性
制 定理:
理 论
设系统 x Ax Bu, y Cx Du,则系统输出完全可控的充要条件是
输出可控性矩阵 CSc | D 满秩,即
可控性和可观测性

代 控
1. 可控性与可观测性定义
制 理
2. 连续时间系统的可控性判据

3. 输出可控性
4. 连续时间系统的可观测性判据
5. 对偶原理
Modern Control Theory
Page: 1
可控性可观测性定义

代 【例】RLC网络

制 理 论
取x1 iL , x2 uc , y uc
Modern Control Theory
Page: 8
例题 在S平面上Βιβλιοθήκη 态完全可控的条件现 代【例】判别下列系统的状态可控性。
控 制 理
传递函数:X (s) s 2.5
U (s) (s 2.5)(s 1)

显然,在此传递函数的分子和分母中存在相约的因
子(s+2.5)(因此失去一个自由度)。由于有相约因子
相关文档
最新文档