数学北师大版高中必修2垂直关系的判定(二)
北师大版高中数学必修2教案备课垂直关系的判定

§6垂直关系6.1垂直关系的判定学习目标核心素养1.掌握直线与平面垂直、平面与平面垂直的定义.(重点)2.掌握直线与平面垂直、平面与平面垂直的判定定理,并能灵活应用判定定理证明直线与平面垂直、平面与平面垂直.(重点、难点)3.了解二面角、二面角的平面角的概念,会求简单的二面角的大小.(重点、易错点)1.通过应用判定定理证明空间中的垂直关系,提升逻辑推理素养.2.通过求解二面角的大小培养直观想象数学运算素养.1.直线与平面垂直的概念及判定定理(1)定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.(2)画法:通常把表示直线的线段画成和表示平面的平行四边形的横边垂直,如图所示.(3)直线与平面垂直的判定定理:文字语言如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直图形语言符号语言若直线a平面α,直线b平面α,直线l⊥a,l⊥b,a∩b=A,则l⊥平面α思考1:若一条直线垂直于一个平面内的两条直线,则此直线与平面什么关系?提示:相交、垂直或在平面内.2.二面角(1)二面角的概念:①半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.②二面角:从一条直线出发的两个半平面所组成的图形叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.③二面角的记法:以直线AB为棱、半平面α,β为面的二面角,记作二面角α-AB-β.(2)二面角的平面角:文字语言以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角图形语言符号语言若α∩β=l,OAα,OBβ,且OA⊥l,OB⊥l,则∠AOB为二面角α-l-β的平面角取值范围0°≤θ≤180°直二面角平面角是直角的二面角叫作直二面角提示:没关系.3.平面与平面垂直(1)平面与平面垂直:定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直画法把表示直立平面的平行四边形的竖边画成和表示水平平面的平行四边形的横边垂直(如图)记法α⊥β(2)平面与平面垂直的判定定理:文字语言如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直符号语言若直线AB平面β,AB⊥平面α,则β⊥α思考3:若两个平面垂直,则一个平面内的直线与另一个平面有何位置关系?提示:平行、垂直、斜交.1.已知平面α及α外一直线l,给出下列命题:①若l垂直于α内两条直线,则l⊥α;②若l垂直于α内所有直线,则l⊥α;③若l垂直于α内任意一条直线,则l⊥α;④若l垂直于α内两条平行直线,则l⊥α.其中,正确命题的个数是()A.0B.1C.2D.3C[根据直线与平面垂直的定义可知,②③正确,①④不正确.]2.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有()A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBCD[∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BCD.又∵AD平面ADC,∴平面ADC⊥平面DBC.]3.如图所示,∠BCA=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中.(1)与PC垂直的直线有________;(2)与AP垂直的直线有________.(1)AB,BC,AC(2)BC[(1)因为PC⊥平面ABC,AB,AC,BC平面ABC,所以与PC垂直的直线有AB,AC,BC.(2)∠BCA=90°,即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面P AC,又AP平面P AC,所以BC⊥AP.]4.如图,正方体ABCD-A1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1-AB-C的大小为________.45°[∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1-AB-C的平面角,其大小为45°.]线面垂直的判定【例1】如图所示,Rt△ABC所在的平面外一点S,SA=SB=SC,点D为斜边AC的中点.求证:直线SD⊥平面ABC.[证明]∵SA=SC,点D为斜边AC的中点,∴SD⊥AC.连接BD,在Rt△ABC中,则AD=DC=BD,∴△ADS≌△BDS,∴SD⊥BD.又AC∩BD=D,∴SD⊥平面ABC.1.在本例中,若AB=BC,其他条件不变,求BD与平面SAC的位置关系.[解]∵AB=BC,点D为斜边AC的中点,∴BD⊥AC.又由本例知SD⊥平面ABC,∴SD⊥BD.于是BD垂直于平面SAC内的两条相交直线,故BD⊥平面SAC.2.将本例改为:已知四棱锥P-ABCD的底面是菱形,且P A=PC,PB=PD.若O是AC与BD的交点,求证:PO⊥平面ABCD.[证明]在△PBD中,PB=PD,O为BD的中点,∴PO⊥BD.在△P AC中,P A=PC,O为AC的中点,∴PO⊥AC,又∵AC∩BD=O,∴PO⊥平面ABCD.1.直线与平面垂直的判定(或证明)常用的方法是线面垂直的判定定理,要注意定理中的两个关键条件:①平面内的两条相交直线;②都垂直.2.要证明线面垂直,先证线线垂直,而证线线垂直,通常又借助线面垂直,它们是相互转化的.面面垂直的判定【例2】如图所示,在四面体ABCS中,已知∠BSC=90°,∠BSA=∠CSA =60°,又SA=SB=SC.求证:平面ABC⊥平面SBC.[证明]法一:因为∠BSA=∠CSA=60°,SA=SB=SC,所以△ASB和△ASC 是等边三角形,则有SA=SB=SC=AB=AC,设其值为a,则△ABC和△SBC为共底边BC的等腰三角形.取BC的中点D,如图所示,连接AD,SD,则AD⊥BC,SD⊥BC,所以∠ADS为二面角A-BC-S的平面角.在Rt△BSC中,因为SB=SC=a,所以SD=22a,BD=BC2=22a,在Rt△ABD中,AD=22a,在△ADS中,因为SD2+AD2=SA2,所以∠ADS=90°,即二面角A-BC-S为直二面角,故平面ABC⊥平面SBC.法二:因为SA=SB=SC,且∠BSA=∠CSA=60°,所以SA=AB=AC,所以点A在平面SBC上的射影为△SBC的外心.因为△SBC为直角三角形,所以点A在△SBC上的射影D为斜边BC的中点,所以AD⊥平面SBC.又因为AD平面ABC,所以平面ABC⊥平面SBC.证明面面垂直的方法:(1)定义法:即说明两个半平面所成的二面角是直二面角;(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为“线面垂直”;(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.[跟进训练]1.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB 上.求证:平面AEC⊥平面PDB.[证明]∵AC⊥BD,AC⊥PD,PD,BD为平面PDB内两条相交直线,∴AC⊥平面PDB.又∵AC平面AEC,∴平面AEC⊥平面PDB.二面角[探究问题]1.如图所示,在三棱锥S-ABC中,△SBC,△ABC都是等边三角形,请根据二面角的平面角的定义作出二面角S-BC-A的平面角,并说明理由.提示:取BC的中点O,连接SO,AO,因为AB=AC,O是BC的中点,所以AO⊥BC.同理可证SO⊥BC,所以∠SOA是二面角S-BC-A的平面角.2.在上述问题中,若BC=1,SA=32,请计算二面角S-BC-A的大小.提示:在△AOB中,∠AOB=90°,∠ABO=60°,AB=1,所以AO=1×sin 60°=32.同理可求SO=32.又SA=32,所以△SOA是等边三角形,所以∠SOA=60°,所以二面角S-BC-A的大小为60°.【例3】如图,AB是⊙O的直径,P A垂直于⊙O所在平面,C是圆周上不同于A、B的一点,且AB=2,P A=BC=1.(1)求证:平面P AC⊥平面PBC;(2)求二面角P-BC-A的大小.[解](1)证明:∵A,B,C在⊙O上,∴⊙O所在平面可记为平面ABC,∵P A⊥平面ABC,BC平面ABC,∴P A⊥BC.∵C在圆周上,且异于A、B两点,AB是⊙O的直径,∴BC⊥AC.又AC∩P A=A,∴BC⊥平面P AC.又BC平面PBC,∴平面P AC⊥平面PBC.(2)由(1)知,BC⊥平面P AC,∵PC平面P AC,∴PC⊥BC,又∵AC⊥BC,∴∠PCA为二面角P-BC-A的平面角.在Rt△P AC中,P A=1,AC=3,∠P AC=90°,∴tan∠PCA=33,∴∠PCA=30°,所以二面角P-BC-A的大小是30°.1.本例条件不变,试求二面角C-P A-B的大小.[解]∵P A⊥平面ABC.∴P A⊥AC,P A⊥AB,∴∠CAB即为二面角C-P A-B的平面角,在Rt△ACB中,易知AB=2,BC=1,∴AC=3,∴sin∠BAC=1 2,∴∠BAC=30°,∴二面角C-P A-B的大小为30°.2.本例条件不变,试求二面角A-PB-C的正弦值.[解]过A作AE⊥PB于点E,过E作EF⊥PB交PC于点F,连AF,则∠AEF 即为二面角A-PB-C的平面角(图略).由例题知,BC⊥平面P AC,又AF平面P AC,∴AF⊥BC,又PB⊥AE,PB⊥EF,∴PB⊥平面AEF,∴AF⊥PB,又BC∩PB=B,∴AF⊥平面PBC.∴△AFE为直角三角形.在Rt△P AC中,P A=1,AC= 3.∴PC=2,∴AF=3 2,在Rt△P AB中,P A=1,AB=2,∴PB=5,∴AE=2 5 .∴在Rt△AFE中,sin∠AEF=AFAE=3225=154.1.求二面角大小的关键是先找出或作出平面角,再把平面角放在三角形中,最后利用解三角形得到平面角的大小或三角函数值,其步骤为:作角→证明→计算.2.要在适当位置作出二面角的平面角,就要注意观察二面角两个面的特点,如是否为等腰三角形等.1.直线和平面垂直的判定方法:(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.求二面角大小的步骤简称为“一作二证三求”.3.平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.1.思考辨析(1)如果一条直线和一个平面内的两条平行直线都垂直,则该直线与此平面垂直.()(2)一条直线和一个平面内的所有直线垂直,则该直线与该平面垂直.()(3)一条直线和一个平面内的无数条直线垂直,则该直线与该平面垂直.()(4)若直线l不垂直于平面α,则α内不存在直线垂直于直线l.() [答案](1)×(2)√(3)×(4)×2.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,nαC.m∥n,n⊥β,mαD.m∥n,m⊥α,n⊥βC[∵n⊥β,m∥n,∴m⊥β,又mα,由面面垂直的判定定理,∴α⊥β.]3.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,则二面角B-P A-C的大小为________.90°[∵P A⊥平面ABC,BA,CA平面ABC,∴BA⊥P A,CA⊥P A,因此,∠BAC即为二面角B-P A-C的平面角.又∠BAC=90°,故二面角B-P A-C的大小为90°.]4.如图,在矩形ABCD中,AB=2,BC=2,E为BC的中点,把△ABE和△CDE沿AE、DE折起,使点B与点C重合于点P.求证:平面PED⊥平面P AD.[证明]由矩形ABCD知折起前AB⊥BE,所以折起后AP⊥PE,同理PD⊥PE,因为PD∩P A=P,所以PE⊥平面P AD,因为PE平面PED,所以平面PED⊥平面P AD.。
6.1垂直关系的判定-北师大版必修2教案

6.1 垂直关系的判定-北师大版必修2教案
教学目标
1.理解垂直的概念,掌握相交直线垂直的判断方法;
2.掌握平行线、垂直线、相交线的性质;
3.学会运用垂直关系的性质解决实际问题。
教学内容
1. 垂直的概念及相交直线垂直的判断方法
1.1 垂直的概念
垂直是指两个直线或线段在相交于一点时,以这个交点为中心,两个直线或线段互相垂直的状态。
1.2 相交直线垂直的判断方法
•角度法:两个直线或线段相交形成的角度为90度时,两条直线或线段垂直。
•斜率法:当两个直线或线段的斜率的乘积为-1时,两个直线或线段垂直。
•同名角法:在同一条直线上取一点,分别作一条直线与另一条直线相交,如果形成了同名角,则两个直线垂直。
2. 平行线、垂直线、相交线的性质
2.1 平行线的性质
•具有相同的斜率;
•不会相交;
•两个平行线之间的距离是恒定的。
2.2 垂直线的性质
•两个垂直线的斜率的乘积为-1;
•垂直线与其他直线的交角为90度。
2.3 相交线的性质
•相交线上的同名角和补角相等;
•相邻角互不相等;
•对顶角相等。
3. 运用垂直关系的性质解决实际问题
在生活中,我们经常需要运用垂直关系的性质来解决一些实际问题。
例如,建造房屋、摆放家具等。
4. 练习与应用
(1)判断下列直线是否垂直:
<img src=。
北师大版高中数学必修二—学同步教学案 立体几何初步§ 垂直关系

§6 垂直关系6.1 垂直关系的判定(一)【课时目标】 1.掌握直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用定理证明直线与平面垂直.1.定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.2.判定定理文字表述:如果一条直线和一个平面内的__________________都垂直,那么该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥al ⊥b⇒l ⊥α.一、选择题1.下列命题中正确的个数是( )①如果直线l 与平面α内的无数条直线垂直,则l ⊥α; ②如果直线l 与平面α内的一条直线垂直,则l ⊥α; ③如果直线l 不垂直于α,则α内没有与l 垂直的直线;④如果直线l 不垂直于α,则α内也可以有无数条直线与l 垂直. A .0 B .1 C .2 D .32.直线a ⊥直线b ,b ⊥平面β,则a 与β的关系是( ) A .a ⊥β B .a ∥βC .a βD .a β或a ∥β3.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( ) A .垂直且相交 B .相交但不一定垂直 C .垂直但不相交 D .不垂直也不相交4.如图所示,定点A 和B 都在平面α内,定点P ∉α,PB ⊥α,C 是平面α内异于A 和B 的动点,且PC ⊥AC ,则△ABC 为( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定5.如图所示,PA ⊥平面ABC ,△ABC 中BC ⊥AC ,则图中直角三角形的个数为( )A.4 B.3 C.2 D.16.从平面外一点P向平面引一条垂线和三条斜线,斜足分别为A,B,C,如果PA=PB =PC,有如下命题:①△ABC是正三角形;②垂足是△ABC的内心;③垂足是△ABC的外心;④垂足是△ABC的垂心.其中正确命题的个数是()A.1 B.2 C.3 D.4二、填空题7.下列五个正方体图形中,l是正方体的一条体对角线,点M、N、P分别为其所在棱的中点,能得出l⊥平面MNP的图形的序号是______________(写出所有符合要求的图形序号).8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN 是直角,则∠C1MN=________.三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F 分别是AB,PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.能力提升12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;(2)PQ⊥SC.1.运用化归思想,将直线与平面垂直的判定转化为直线与平面内两条相交直线的判定,而同时还由此得到直线与直线垂直.即“线线垂直⇔线面垂直”.2.直线和平面垂直的判定方法 (1)利用线面垂直的定义. (2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a ∥b ,a ⊥α,则b ⊥α;②若α∥β,a ⊥α,则a ⊥β.§6 垂直关系6.1 垂直关系的判定(一)答案知识梳理2.两条相交直线 a α b α a ∩b =A作业设计1.B [只有④正确.] 2.D 3.C[取BD 中点O ,连接AO ,CO , 则BD ⊥AO ,BD ⊥CO , ∴BD ⊥面AOC ,BD ⊥AC , 又BD 、AC 异面,∴选C .]4.B [易证AC ⊥面PBC ,所以AC ⊥BC .]5.A [ ⎭⎪⎬⎪⎫PA ⊥平面ABC BC 平面ABC ⇒⎭⎪⎬⎪⎫PA ⊥BC AC ⊥BC ⇒BC ⊥平面PAC ⇒BC ⊥PC , ∴直角三角形有△PAB 、△PAC 、△ABC 、△PBC .] 6.A[PO⊥面ABC.则由已知可得,△PAO、△PBO、△PCO全等,OA=OB=OC,O为△ABC外心.只有③正确.]7.①④⑤8.∠A1C1B1=90°[如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)]9.90°解析∵B1C1⊥面ABB1A1,∴B1C1⊥MN.又∵MN⊥B1M,∴MN⊥面C1B1M,∴MN⊥C1M.∴∠C1MN=90°.10.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.11.证明(1)∵PA⊥底面ABCD,∴CD⊥PA.又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.(2)取PD的中点G,连接AG,FG.又∵G、F分别是PD,PC的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形, ∴AG ∥EF .∵PA =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD ,∵CD ⊥平面PAD ,AG 平面PAD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 12.证明 连接AB 1,CB 1, 设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC . 连接PB 1.∵OB 21=OB 2+BB 21=32, PB 21=PD 21+B 1D 21=94, OP 2=PD 2+DO 2=34,∴OB 21+OP 2=PB 21. ∴B 1O ⊥PO ,又∵PO ∩AC =O , ∴B 1O ⊥平面PAC .13.证明 (1)∵SA ⊥平面ABC ,BC 平面ABC , ∴SA ⊥BC .又∵BC ⊥AB ,SA ∩AB =A , ∴BC ⊥平面SAB . 又∵AQ 平面SAB ,∴BC ⊥AQ .又∵AQ ⊥SB ,BC ∩SB =B , ∴AQ ⊥平面SBC .(2)∵AQ ⊥平面SBC ,SC 平面SBC , ∴AQ ⊥SC .又∵AP ⊥SC ,AQ ∩AP =A , ∴SC ⊥平面APQ .∵PQ 平面APQ ,∴PQ ⊥SC .6.1 垂直关系的判定(二)【课时目标】 1.掌握二面角的概念,二面角的平面角的概念,会求简单的二面角的大小.2.掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直.1.二面角:从一条直线出发的______________所组成的图形叫做二面角.______________叫做二面角的棱.__________________叫做二面角的面.2.平面与平面的垂直①定义:两个平面相交,如果所成的二面角是____________,就说这两个平面互相垂直. ②面面垂直的判定定理文字语言:如果一个平面经过另一个平面的________,那么这两个平面互相垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β ⇒α⊥β.一、选择题1.下列命题:①两个相交平面组成的图形叫做二面角;②异面直线a 、b 分别和一个二面角的两个面垂直,则a 、b 组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角; ④二面角的大小与其平面角的顶点在棱上的位置没有关系. 其中正确的是( )A .①③B .②④C .③④D .①② 2.下列命题中正确的是( )A .平面α和β分别过两条互相垂直的直线,则α⊥βB .若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC .若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD .若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β 3.设有直线m 、n 和平面α、β,则下列结论中正确的是( ) ①若m ∥n ,n ⊥β,m α,则α⊥β; ②若m ⊥n ,α∩β=m ,n α,则α⊥β; ③若m ⊥α,n ⊥β,m ⊥n ,则α⊥β.A .①②B .①③C .②③D .①②③ 4.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个C .有且只有一个或无数个D .可能不存在5.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .326.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面PAEC .面PDF ⊥面ABCD .面PAE ⊥面ABC 二、填空题7.过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.8.如图所示,已知PA ⊥矩形ABCD 所在的平面,图中互相垂直的平面有________对.9.已知α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________.三、解答题10.如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA 和对角线AC的中点.求证:平面BEF⊥平面BGD.11.如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.能力提升12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.13.如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.1.证明两个平面垂直的主要途径(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的的.6.1垂直关系的判定(二) 答案知识梳理1.两个半平面这条直线这两个半平面2.①直二面角②垂线aα作业设计1.B[①不符合二面角定义,③从运动的角度演示可知,二面角的平面不是最小角.故选B.]2.C3.B[②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.]4.C[当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]5.B[如图所示,由二面角的定义知∠BOD即为二面角的平面角.∵DO=OB=BD=3 2,∴∠BOD=60°.] 6.C[如图所示,∵BC∥DF,∴BC∥平面PDF.∴A正确.由BC⊥PE,BC⊥AE,∴BC⊥平面PAE.∴DF ⊥平面PAE . ∴B 正确.∴平面ABC ⊥平面PAE(BC ⊥平面PAE). ∴D 正确.] 7.45°解析 可将图形补成以AB 、AP 为棱的正方体,不难求出二面角的大小为45°. 8.5解析 由PA ⊥面ABCD 知面PAD ⊥面ABCD , 面PAB ⊥面ABCD ,又PA ⊥AD ,PA ⊥AB 且AD ⊥AB ,∴∠DAB 为二面角D —PA —B 的平面角, ∴面DPA ⊥面PAB .又BC ⊥面PAB , ∴面PBC ⊥面PAB ,同理DC ⊥面PDA , ∴面PDC ⊥面PDA .9.①③④⇒②(或②③④⇒①)10.证明 ∵AB =BC ,CD =AD ,G 是AC 的中点, ∴BG ⊥AC ,DG ⊥AC , ∴AC ⊥平面BGD .又EF ∥AC ,∴EF ⊥平面BGD .∵EF 平面BEF ,∴平面BEF ⊥平面BGD .11.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形.因为E 是CD 的中点,所以BE ⊥CD .又AB ∥CD ,所以BE ⊥AB . 又因为PA ⊥平面ABCD , BE 平面ABCD ,所以PA ⊥BE .而PA ∩AB =A , 因此BE ⊥平面PAB . 又平面PBE ,所以平面PBE ⊥平面PAB .(2)解 由(1)知,BE ⊥平面PAB ,PB 平面PAB , 所以PB ⊥BE .又AB ⊥BE ,所以∠PBA 是二面角A —BE —P 的平面角.在Rt △PAB 中,tan ∠PBA =PAAB=3,则∠PBA =60°.故二面角A —BE —P 的大小是60°.12.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知 EF ∥BC .因为EF 平面ABC .BC 平面ABC . 所以EF ∥平面ABC .(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知 CC 1⊥平面A 1B 1C 1.又A 1D 平面A 1B 1C 1,故CC 1⊥A 1D .又因为A 1D ⊥B 1C ,CC 1∩B 1C =C ,故A 1D ⊥平面BB 1C 1C ,又A 1D 平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C . 13.(1)证明 ∵PA ⊥底面ABC , ∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC .又∵AC ∩PA =A , ∴BC ⊥平面PAC .(2)解 ∵DE ∥BC ,又由(1)知, BC ⊥平面PAC , ∴DE ⊥平面PAC .又∵AE 平面PAC ,PE 平面PAC , ∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°. ∴在棱PC 上存在一点E , 使得AE ⊥PC . 这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角.6.2 垂直关系的性质(一)【课时目标】 1.理解直线和平面垂直的性质定理,并能用文字、符号和图形语言描述定理.2.能够灵活地应用线面垂直的性质定理证明相关问题.文字语言垂直于同一个平面的两条直线______符号语言⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒________ 图形语言作用①线面垂直⇒线线平行②作平行线一、选择题1.下列说法正确的是( )A .若l 上有无数个点不在平面α内,则l ∥αB .若直线l 与平面α垂直,则l 与α内的任一直线垂直C .若E 、F 分别为△ABC 中AB 、BC 边上的中点,则EF 与经过AC 边的所有平面平行D .两条垂直的直线中有一条和一个平面平行,则另一条和这个平面垂直 2.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ②⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ;③ ⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2 C .3 D .4 3.已知直线PG ⊥平面α于G ,直线,且PF ⊥EF 于F ,那么线段PE ,PF ,PG 的大小关系是( )A .PE>PG>PFB .PG>PF>PEC .PE>PF>PGD .PF>PE>PG4.PA 垂直于以AB 为直径的圆所在平面,C 为圆上异于A ,B 的任一点,则下列关系不正确的是( )A .PA ⊥BCB .BC ⊥平面PAC C .AC ⊥PBD .PC ⊥BC 5.下列命题:①垂直于同一直线的两条直线平行; ②垂直于同一直线的两个平面平行; ③垂直于同一平面的两条直线平行; ④垂直于同一平面的两平面平行. 其中正确的个数是( )A .1B .2C .3D .46.在△ABC 所在的平面α外有一点P ,且PA 、PB 、PC 两两垂直,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心二、填空题7.线段AB 在平面α的同侧,A 、B 到α的距离分别为3和5,则AB 的中点到α的距离为________.8.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面;②a 和b 在正方体两个相对的面内,且共面;③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直.9.如图所示,平面ABC ⊥平面ABD ,∠ACB =90°,CA =CB ,△ABD 是正三角形,O 为AB 中点,则图中直角三角形的个数为________.三、解答题 10.如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.11.如图所示,设三角形ABC的三个顶点在平面α的同侧,AA′⊥α于A′,BB′⊥α于B′,CC′⊥α于C′,G、G′分别是△ABC和△A′B′C′的重心,求证:GG′⊥α.能力提升12.如图,△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,CE=CA=2BD,M 是EA的中点,N是EC的中点,求证:平面DMN∥平面ABC.A1B,B1C1的中点.求证:MN⊥平面A1BC.1.直线和平面垂直的性质定理可以作为两条直线平行的判定定理,可以并入平行推导链中,实现平行与垂直的相互转化,即线线垂直⇒线面垂直⇒线线平行⇒线面平行.2.“垂直于同一平面的两条直线互相平行”、“垂直于同一直线的两个平面互相平行”都是真命题.但“垂直于同一直线的两条直线互相平行”、“垂直于同一平面的两个平面互相平行”都是假命题,一定要记住.6.2垂直关系的性质(一) 答案知识梳理作业设计1.B[由线面垂直的定义知B正确.]2.C[①②③正确,④中n与面α可能有:nα或n∥α或相交(包括n⊥α).]3.C[由于PG⊥平面α于G,PF⊥EF,∴PG最短,PF<PE,∴有PG<PF<PE.故选C.]4.C[PA⊥平面ABC,得PA⊥BC,A正确;又BC⊥AC,∴BC⊥面PAC,∴BC⊥PC,B、D均正确.∴选C.]5.B[由线线、线面垂直与平行的性质知②③正确,故选B.]6.A[设P在面α的射影为O,则PA⊥面PBC,∴PA⊥BC,又BC⊥PO,∴BC⊥AO,同理AC⊥BO,∴O为△ABC的垂心.]7.4解析 由直线与平面垂直的性质定理知AB 中点到α距离为以3和5为上、下底的直角梯形的中位线的长.8.①②③解析 ①为直线与平面垂直的性质定理的应用,②为面面平行的性质,③为公理4的应用.9.6解析 由题意知CO ⊥AB , ∴CO ⊥面ABD ,∴CO ⊥OD ,∴直角三角形为△CAO ,△COB ,△ACB ,△AOD ,△BOD ,△COD . 10.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 11.证明连接AG 并延长交BC 于D ,连接A ′G ′并延长交B ′C ′于D ′,连接DD ′,由AA ′⊥α,BB ′⊥α,CC ′⊥α,得AA ′∥BB ′∥CC ′.∵D 、D ′分别为BC 和B ′C ′的中点, ∴DD ′∥CC ′∥BB ′,∴DD ′∥AA ′,∵G 、G ′分别是△ABC 和△A ′B ′C ′的重心, ∴AG GD =A ′G ′G ′D ′,∴GG ′∥AA ′, 又∵AA ′⊥α,∴GG ′⊥α.12.证明 ∵M 、N 分别是EA 与EC 的中点, ∴MN ∥AC ,又∵AC 平面ABC ,MN 平面ABC ,∴MN ∥平面ABC ,∵DB ⊥平面ABC ,EC ⊥平面ABC ,∴BD∥EC,四边形BDEC为直角梯形,∵N为EC中点,EC=2BD,∴NC綊BD,∴四边形BCND为矩形,∴DN∥BC,又∵DN⊆平面ABC,BC平面ABC,∴DN∥平面ABC,又∵MN∩DN=N,∴平面DMN∥平面ABC.13.证明如图所示,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.由已知,可知侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.6.2垂直关系的性质(二)【课时目标】1.理解平面与平面垂直的性质定理.2.能应用面面垂直的性质定理证明空间中线、面的垂直关系.1.平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内________于它们________的直线垂直于另一个平面.用符号表示为:α⊥β,α∩β=l,aα,a⊥l⇒________.2.两个重要结论:(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.图形表示为:符号表示为:α⊥β,A∈α,A∈a,a⊥β⇒aα.(2)已知平面α⊥平面β,a⊆α,a⊥β,那么a∥α(a与α的位置关系).一、选择题1.平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交D.以上都有可能2.平面α∩平面β=l,平面γ⊥α,γ⊥β,则()A.l∥γ B.lγC .l 与γ斜交D .l ⊥γ3.若平面α与平面β不垂直,那么平面α内能与平面β垂直的直线有( ) A .0条 B .1条 C .2条 D .无数条 4.若α⊥β,直线,直线,a ,b 与l 都不垂直,那么( ) A .a 与b 可能垂直,但不可能平行 B .a 与b 可能垂直,也可能平行 C .a 与b 不可能垂直,但可能平行 D .a 与b 不可能垂直,也不可能平行5.设x ,y ,z 中有两条直线和一个平面,已知条件⎩⎪⎨⎪⎧x ⊥y y ∥z可推得x ⊥z ,则x ,y ,z 中可能为平面的是( )A .x 或yB .xC .yD .z6.在空间四边形ABCD 中,若AB =BC ,AD =CD ,E 为对角线AC 的中点,下列判断正确的是( )A .平面ABD ⊥平面BDCB .平面ABC ⊥平面ABD C .平面ABC ⊥平面ADC D .平面ABC ⊥平面BED二、填空题7.若α⊥β,α∩β=l ,点P ∈α,P ∉l ,则下列结论中正确的为________.(只填序号) ①过P 垂直于l 的平面垂直于β; ②过P 垂直于l 的直线垂直于β; ③过P 垂直于α的直线平行于β; ④过P 垂直于β的直线在α内.8.α、β、γ是两两垂直的三个平面,它们交于点O ,空间一点P 到α、β、γ的距离分别是2 cm 、3 cm 、6 cm ,则点P 到O 的距离为________.9.在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则点C 1在底面ABC 上的射影H 必在________.三、解答题10.如图,在三棱锥P -ABC 中,PA ⊥平面ABC , 平面PAB ⊥平面PBC .求证:BC ⊥AB .11.如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB.能力提升12.如图,在三棱锥P—ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.证明:AB⊥PC.13.如图所示,已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.1.面面垂直的性质定理是判断线面垂直的又一重要定理. 2.判定线面垂直的方法主要有以下五种: (1)线面垂直的定义;(2)线面垂直的判定定理;(3)面面垂直的性质定理,另外,还有两个重要结论;(4)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面,⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α;(5)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面,⎭⎪⎬⎪⎫α∥βa ⊥α⇒a ⊥β.6.2 垂直关系的性质(二) 答案知识梳理1.垂直 交线 a ⊥β 作业设计 1.D 2.D[在γ面内取一点O , 作OE ⊥m ,OF ⊥n , 由于β⊥γ,γ∩β=m ,所以OE ⊥面β,所以OE ⊥l , 同理OF ⊥l ,OE ∩OF =O , 所以l ⊥γ.]3.A [若存在1条,则α⊥β,与已知矛盾.] 4.C 5.A 6.D 7.①③④解析 由性质定理知②错误. 8.7 cm解析 P 到O 的距离恰好为以2 cm,3 cm,6 cm 为长、宽、高的长方体的对角线的长. 9.直线AB 上解析 由AC ⊥BC 1,AC ⊥AB ,得AC ⊥面ABC 1,又AC 面ABC , ∴面ABC 1⊥面ABC .∴C 1在面ABC 上的射影H 必在交线AB 上. 10.证明 在平面PAB 内,作AD ⊥PB 于D .∵平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB.∴AD⊥平面PBC.又BC平面PBC,∴AD⊥BC.又∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC,∴BC⊥平面PAB.又AB平面PAB,∴BC⊥AB.11.证明(1)连接PG,由题知△PAD为正三角形,G是AD的中点,∴PG⊥AD.又平面PAD⊥平面ABCD,∴PG⊥平面ABCD,∴PG⊥BG.又∵四边形ABCD是菱形且∠DAB=60°,∴BG⊥AD.又AD∩PG=G,∴BG⊥平面PAD.(2)由(1)可知BG⊥AD,PG⊥AD.∴AD⊥平面PBG,∴AD⊥PB.12.证明因为△PAB是等边三角形,所以PB=PA.因为∠PAC=∠PBC=90°,PC=PC,所以Rt△PBC≌Rt△P AC,所以AC=BC.如图,取AB的中点D,连结PD、CD,则PD⊥AB,CD⊥AB,所以AB⊥平面PDC,所以AB⊥PC.13.证明(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又∵M是线段AC1的中点,∴MF∥AN.又∵MF 平面ABCD,AN平面ABCD,∴MF∥平面ABCD.(2)连接BD,由直四棱柱ABCD—A1B1C1D1可知,A1A⊥平面ABCD,又∵BD平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC、A1A平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN,且DA=BN,∴四边形DANB为平行四边形,∴NA∥BD,∴NA⊥平面ACC1A1.又∵NA平面AFC1,∴平面AFC1⊥平面ACC1A1.。
北师大版高中数学必修2:垂直关系的判定

直线与平面垂直的判定第一课时[学习目标] 1.理解直线与平面垂直的定义. 2.掌握直线与平面垂直的判定定理. 3.会利用判定定理证明或判断有关垂直的问题.【主干自填】1.直线与平面垂直的定义如果一条直线和一个平面内的□01任何一条直线都垂直,那么称这条直线和这个平面垂直.2.直线与平面垂直的判定定理【即时小测】1.思考下列问题(1)旗杆AB与地面内任意一条不过旗杆底部B的直线B1C1的位置关系是什么?提示:异面垂直.(2)如果平面外一条直线l与平面α的两条相交直线垂直,那么l与α的位置关系是什么?提示:垂直.2.下列说法中正确的是( )A.如果直线l与平面α内的无数条直线垂直,则l⊥αB.如果直线l与平面α内的一条直线垂直,则l⊥αC.如果直线l不垂直于平面α,则α内没有与l垂直的直线D.如果直线l不垂直于平面α,则α内也可以有无数条直线与l垂直提示:D 如图所示,直线l与α内的无数条直线垂直.但l与α斜交,故A不正确;同理B也不正确;同样由图,l不垂直于α,但α内有与l垂直的直线,且这样的直线有无数条,故C不正确,D正确.3.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列说法中正确的是( ) A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β提示:C 选项A中的m,n可以相交,可以平行,也可以异面,故A错误;选项B中的α与β可以平行,也可以相交,故B错误;选项C是直线与平面垂直的重要结论,故C正确;选项D中的m与β的位置关系可以是平行、相交、m在β内,故D错误.4.如果一条直线垂直于①三角形的两边,②梯形的两边,③圆的两条直径,④正六边形的两条边,则能保证该直线与平面图形所在平面垂直的是( )A.①③ B.②C.②④ D.①②④提示:A 由直线与平面垂直的判定定理可知,①③能保证该直线与平面垂直,②④不能.因为梯形和正六边形中有平行的两条边.例1 如图,正方体ABCD-A1B1C1D1的棱长为1.求证:(1)AC⊥平面B1D1DB;(2)BD1⊥平面ACB1.[证明] (1)∵BB1⊥平面ABCD,且AC平面ABCD,∴BB1⊥AC.又AC⊥BD,BD∩BB1=B,∴AC⊥平面B1D1DB.(2)连接A1B.由(1)知AC⊥平面B1D1DB,∵BD1平面B1D1DB,∴AC⊥BD1.∵A1D1⊥平面A1B1BA,AB1平面A1B1BA,∴A1D1⊥AB1.又∵A1B⊥AB1且A1B∩A1D1=A1,∴AB1⊥平面A1D1B.∵BD1平面A1D1B,∴BD1⊥AB1,又∵AC∩AB1=A,∴BD1⊥平面ACB1.类题通法线面垂直的判定定理实质是由线线垂直推证线面垂直,途径是找到一条直线与平面内的两条相交直线垂直.推证线线垂直时注意分析几何图形,寻找隐含条件.[变式训练1]如图,Rt△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明(1)∵SA=SC,D为AC的中点,∴SD⊥AC.在Rt△ABC中,有AD=DC=BD.又SA=SB,∴△ADS≌△BDS.∴SD⊥BD.又AC∩BD=D,∴SD⊥平面ABC.(2)∵BA=BC,D为AC的中点,∴BD⊥AC.又由(1)知SD⊥平面ABC,∵BD平面ABC,∴SD⊥BD.∵AC∩SD=D.∴BD⊥平面SAC.例2 如图,已知四棱锥S-ABCD中ABCD为矩形,SA⊥平面ABCD,AE⊥SB于点E,EF ⊥SC于点F.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.[证明] (1)∵SA⊥平面ABCD,BC平面ABCD,∴SA⊥BC.∵四边形ABCD为矩形,∴AB⊥BC.又∵SA∩AB=A,∴BC⊥平面SAB.∴BC⊥AE.又SB⊥AE,BC∩SB=B,∴AE⊥平面SBC.又∵SC平面SBC,∴AE⊥SC.又EF⊥SC,EF∩AE=E,∴SC⊥平面AEF.∵AF平面AEF,∴AF⊥SC.(2)∵SA⊥平面ABCD,∴SA⊥DC.又AD⊥DC,AD∩SA=A,∴DC⊥平面SAD.又AG平面SAD,∴DC⊥AG.又由(1)有SC⊥平面AEF,AG平面AEF,∴SC⊥AG.又SC∩DC=C,∴AG⊥平面SDC.∵SD平面SDC,∴AG⊥SD.类题通法线线垂直的证明方法(1)由线面垂直的定义,即l⊥α,aα⇒l⊥a.(2)平面几何中的结论,如等腰三角形的底面的中线垂直于底边、菱形的对角线互相垂直、勾股定理等.[变式训练2]如图,在空间四边形ABCD中,AB=AD,CB=CD,求证:AC⊥BD.证明取BD中点为E,连接AE,CE.∵AB=AD,∴AE⊥BD.又∵CB=CD,∴CE⊥BD.而AE∩CE=E,∴BD⊥平面AEC.又∵AC平面AEC,∴AC⊥BD.例3 三棱锥P-ABC中,PO⊥平面ABC,PA⊥BC,PB⊥AC.求证:(1)O是△ABC的垂心;(2)PC⊥AB.[证明] (1)连接OA,OB.∵PO⊥平面ABC,∴PO⊥BC.又PA⊥BC,PO∩PA=P,∴BC⊥平面PAO.又AO平面PAO,∴BC⊥AO,即O在△ABC的BC边的高线上.同理,由PB⊥AC可得O在△ABC的AC边的高线上.∴O是△ABC的垂心.(2)连接OC,由(1)可知OC⊥AB.又由PO⊥平面ABC得PO⊥AB,又OC∩PO=O,∴AB⊥平面PCO.又PC平面PCO,∴AB⊥PC.类题通法根据直线和平面垂直的定义,可由线面垂直证明线线垂直;根据直线和平面垂直的判定定理可由线线垂直证明线面垂直.本题的证明过程体现了线线垂直与线面垂直的相互转化.[变式训练3]已知点P是△ABC所在平面外一点,且PA=PB=PC,则点P在平面ABC 上的射影一定是△ABC的( )A.内心 B.外心 C.垂心 D.重心答案 B解析如图所示,设点P在平面ABC上的射影为O,连接OA,OB,OC.所以PO⊥平面ABC.因为PA=PB=PC,OP=OP=OP,且∠POA=∠POB=∠POC=90°,所以∠APO=∠BPO=∠CPO,所以△PAO ≌△PBO≌△PCO,所以AO=BO=CO.即点O到三角形三个顶点的距离相等,所以点O为△ABC 的外心.易错点⊳运用线面垂直的判定定理时忽略条件[典例] 在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,O为ABCD的中心,试判断OB1与平面ABCD是否垂直?[错解] 如下图,连接BD,设AC∩BD=O,连接OB1.∵AB1=B1C,∴OB1⊥AC.又AC平面ABCD,∴OB1⊥平面ABCD.[错因分析] 错解在运用线面垂直的判定定理时,忽略了该定理的使用条件,从而致错.[正解]∵在长方体ABCD-A1B1C1D1中,BB1⊥平面ABCD,∵OB1∩BB1=B1,∴OB1不垂直于平面ABCD.课堂小结直线和平面垂直的判定方法(1)利用线面垂直的定义;(2)利用线面垂直的判定定理;(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.1.下列说法中正确的个数是( )①若直线l与平面α内一条直线垂直,则l⊥α;②若直线l与平面α内两条直线垂直,则l⊥α;③若直线l与平面α内两条相交直线垂直,则l⊥α;④若直线l与平面α内任意一条直线垂直,则l⊥α;⑤若直线l与平面α内无数条直线垂直,则l⊥α.A.1 B.2 C.3 D.4答案 B解析 对①②⑤,不能断定该直线与平面垂直,该直线与平面可能平行,可能斜交,也可能在平面内,所以是错误的.正确的是③④,故选B.2.已知直线m ,n 是异面直线,则过直线n 且与直线m 垂直的平面( ) A .有且只有一个 B .至多一个 C .有一个或无数个 D .不存在答案 B解析 若异面直线m ,n 垂直,则符合要求的平面有一个,否则不存在.3.PA 垂直于以AB 为直径的圆所在的平面,C 为圆上异于A ,B 的任一点,则下列关系不正确的是( )A .PA ⊥BCB .BC ⊥平面PAC C .AC ⊥PBD .PC ⊥BC 答案 C解析 由已知得PA ⊥平面ABC ,所以PA ⊥BC ,即选项A 正确;又由已知AC ⊥BC ,且AC 与PA 交于点A ,得BC ⊥平面PAC ,进而BC ⊥PC ,即选项B 、D 正确;PA ⊥平面ABC ,可证得PA ⊥AC ,若AC ⊥PB ,得AC ⊥平面PAB ,故AC ⊥AB ,与已知矛盾,所以选项C 不正确,故选C.4.设l 、m 为不同的直线,α为平面,且l ⊥α ,下列说法错误的是( ) A .若m ⊥α,则m ∥l B .若m ⊥l ,则m ∥α C .若m ∥α,则m ⊥l D .若m ∥l ,则m ⊥α 答案 B解析 A 中,若l ⊥α,m ⊥α,则m ∥l ,所以A 正确;B 中,若l ⊥α,m ⊥l ,则m ∥α或m α,所以B 错误;C 中,若l ⊥α,m ∥α,则m ⊥l ,所以C 正确;若l ⊥α,m ∥l ,则m ⊥α,所以D 正确.平面与平面垂直的判定 第二课时[学习目标] 1.理解二面角的有关概念. 2.会求简单的二面角的大小. 3.掌握两平面垂直的判定定理.【主干自填】1.二面角及其平面角(1)半平面:一个平面内的一条直线,把这个平面分成□01两部分,其中的□02每一部分都叫作半平面.03两个半平面所组成的图形叫作二面角,这条直线叫作(2)二面角:从一条直线出发的□04棱,这两个半平面叫作二面角的□05面.二面角的□(3)二面角的记法.如图,记作:二面角□06α-AB-β.(4)二面角的平面角.以二面角的棱上□07任一点为端点,在两个半平面内分别作□08垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角,其中平面角是□09直角的二面角叫作直二面角.如图二面角α-l-β,若有①O□10∈l;②OA□11α,OB□12β;③OA□13⊥l,OB□14⊥l,则∠AOB就叫作二面角α-l-β的平面角.2.两个平面互相垂直15直二面角,就说(1)两个平面互相垂直的定义:两个平面相交,如果所成的二面角是□这两个平面互相垂直.(2)两个平面互相垂直的判定定理【即时小测】1.思考下列问题(1)如何用字母来记作二面角?提示:如图,棱为AB,面分别为α,β的二面角记作二面角α-AB-β.有时为了方便,也可在α,β内(棱以外的半平面部分)分别取点P,Q,将这个二面角记作二面角P-AB-Q.如果棱记作l,那么这个二面角记作二面角α-l-β或P-l-Q.(2)判定两个平面互相垂直,除了定义外,还有其他的判定定理吗?提示:面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.这个定理简称“线面垂直,则面面垂直”.2.下列说法:①两个相交平面组成的图形叫作二面角;②异面直线a、b分别和一个二面角的两个面垂直,则a、b组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是( )A.①③ B.②④ C.③④ D.①②提示:B3.设l是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥β B.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥β D.若α⊥β,l∥α,则l⊥β提示:B 对于选项A,两平面可能平行也可能相交;对于选项C,直线l可能在β内也可能平行于β;对于选项D,直线l可能在β内或平行于β或与β相交.4.如图,已知:PA垂直于圆O所在平面.AB是圆O的直径,C是圆周上一点.则图中垂直的平面共有________对.提示:3 平面PBC ⊥平面PAC ;平面PAC ⊥平面ABC ;平面PAB ⊥平面ABC .例1 如图,四棱锥P -ABCD 的底面ABCD 是正方形,PD ⊥平面ABCD ,点E 在侧棱PB 上.求证:平面AEC ⊥平面PBD .[证明] ∵PD ⊥平面ABCD ,AC 平面ABCD , ∴PD ⊥AC .又ABCD 为正方形,AC ⊥BD ,PD ∩BD =D , ∴AC ⊥平面PBD .又AC 平面AEC , ∴平面AEC ⊥平面PBD . 类题通法证明平面与平面垂直常用的两种方法(1)证明一个平面过另一个平面的一条垂线. (2)证明二面角的平面角是直角.[变式训练1] 在四面体A -BCD 中,BD =2a ,AB =AD =CB =CD =AC =a ,如图.求证:平面ABD ⊥平面BCD . 证明 ∵△ABD 是等腰三角形,∴取BD 的中点E ,连接AE ,CE ,则AE ⊥BD . 在△ABD 中,AB =a ,BE =12BD =22a ,∴AE =AB 2-BE 2=22a .同理CE =22a .在△AEC 中,AE =CE =22a .AC =a , ∴AC 2=AE 2+CE 2,∴AE ⊥CE .又BD ∩CE =E , ∴AE ⊥平面BCD .又AE 平面ABD , ∴平面ABD ⊥平面BCD .例2 如图所示,正方体ABCD -A 1B 1C 1D 1中,E 为AA 1中点,求平面B 1DE 和底面ABCD 所成二面角的正切值.[解] 延长B 1E 和BA 交于点F ,连接DF ,则DF 是所求二面角的棱, ∵E 是AA 1的中点,故B 1E =EF ,从而AF =AB =CD , ∴四边形FACD 为平行四边形,∴DF ∥CA .∵CA ⊥BD ,∴DF ⊥DB .∵B 1B ⊥平面ABCD ,∴BB 1⊥DF ,DF ⊥平面BB 1D , 故B 1D ⊥DF .∴∠B 1DB 是所求二面角的平面角. ∴在Rt △B 1BD 中,tan ∠B 1DB =B 1B BD =22. 故平面B 1DE 与底面ABCD 所成二面角的正切值为22. 类题通法求二面角大小的步骤(1)找出这个平面角.(2)证明这个角是二面角的平面角.(3)作出这个角所在的三角形,解这个三角形,求出角的大小.[变式训练2]如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于D,E,SA=AB,SB=BC,求二面角E-BD-C的大小.解∵SA⊥平面ABC,∴SA⊥AC,SA⊥BC,SA⊥AB,SA⊥BD.由已知SC⊥ED,SE=EC,SB=BC.∴SC⊥BE,∵DE∩BE=E,∴SC⊥平面BED,∴SC⊥BD.又∵BD⊥SA,SC∩SA=S,∴BD⊥平面SAC.∵AC平面SAC,∴BD⊥AC.同理BD⊥DE,即∠EDC是二面角E—DB—C的平面角.设SA=1,则SA=AB=1,而AB⊥BC,∴SB=BC=2,∴SC=2,在Rt△SAC中,∠DCS=30°,∴∠EDC=60°.∴二面角E-BD-C为60°.例3 如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PB于E,AF ⊥PC于F.求证:(1)平面AEF⊥平面PBC;(2)PB⊥EF.[证明] (1)∵AB是⊙O的直径,C在圆上,∴AC⊥BC.又PA⊥平面ABC,∴PA⊥BC.又AC∩PA=A,∴BC⊥平面PAC.又AF平面PAC,∴BC ⊥AF .又AF ⊥PC ,PC ∩BC =C , ∴AF ⊥平面PBC .又AF 平面AEF , ∴平面AEF ⊥平面PBC .(2)由(1)知AF ⊥平面PBC ,∴AF ⊥PB . 又AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF .又EF 平面AEF ,∴PB ⊥EF . 类题通法解决线线、线面、面面垂直关系要注意三种垂直关系的转化关系,即线线垂直⇒线面垂直⇒面面垂直.[变式训练3] 如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA .证明 (1)如图,取EC 的中点F ,连接DF .因为EC ⊥平面ABC ,BC 平面ABC ,所以EC ⊥BC . 又BD ∥CE ,所以BD ⊥平面ABC , 所以BD ⊥BC ,BD ⊥BA .因为CE =CA =2BD ,所以四边形DBCF 是矩形,所以DF ⊥CE . 因为DF =BC =AB ,EF =BD ,∠EFD =∠DBA =90°, 所以△DEF ≌△ADB ,所以DE =DA .(2)取AC 的中点N ,连接MN 、BN ,则MN 綊12EC ,而DB 綊12EC ,所以MN 綊DB ,所以点N 在平面BDM 内.因为EC ⊥平面ABC ,BN 平面ABC ,所以EC ⊥BN . 因为△ABC 是正三角形,点N 为AC 的中点, 所以BN ⊥AC .又AC ∩EC =C ,所以BN ⊥平面ACE .因为BN 平面BDM ,所以平面BDM ⊥平面ECA . (3)因为DM ∥BN ,BN ⊥平面ACE , 所以DM ⊥平面ACE .又DM 平面ADE ,所以平面DEA ⊥平面ECA .易错点⊳判断面面位置关系时依据图形直观得出[典例] 如图所示,已知ABCD -A 1B 1C 1D 1为长方体,且底面ABCD 为正方形,试问截面ACB 1与对角面BB 1D 1D 垂直吗?[错解] 设AC 与BD 的交点为O ,连接B 1O ,则B 1O 是截面ACB 1与对角面BB 1D 1D 的交线.因为B 1O 是底面的斜线,所以截面ACB 1与底面不垂直,从而截面ACB 1不可能与对角面BB 1D 1D 垂直.[错因分析] 错解中由B 1O 与底面不垂直,就断定截面ACB 1不可能与对角面BB 1D 1D 垂直,这是没有根据的.[正解] 因为四边形ABCD 是正方形,所以AC ⊥BD . 因为BB 1⊥底面ABCD ,所以AC ⊥BB 1. 又BD ∩BB 1=B ,故AC ⊥对角面BB 1D 1D .又AC 截面ACB 1,所以截面ACB 1⊥对角面BB 1D 1D . 课堂小结1.证明两个平面垂直的主要途径: (1)利用面面垂直的定义;(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.2.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的.3.下面的结论,有助于判断面面垂直:(1)m∥n,m⊥α,nβ⇒α⊥β;(2)m⊥α,n⊥β,m⊥n⇒α⊥β;(3)α∥β,γ⊥α⇒γ⊥β.1.如图,在正方体ABCD-A1B1C1D1中,二面角D1-AB-C的大小是( )A.30° B.45° C.60° D.90°答案 B解析易知AB⊥AD,AB⊥AD1,所以∠D1AD就是二面角D1-AB-C的平面角,显然∠D1AD =45°,所以二面角D1-AB-C的大小是45°.2.在空间四边形ABCD中,AD⊥BC,BD⊥AD,则必有( )A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面BCD⊥平面ADCD.平面ABC⊥平面BCD答案 C解析因为AD⊥BC,BD⊥AD,BD∩BC=B,所以AD⊥平面BCD.又AD平面ADC,所以平面BCD⊥平面ADC.故选C.3.直线l⊥平面α,l平面β,则α与β的位置关系是( )A.平行B.可能重合C.相交且垂直D.相交不垂直答案 C解析根据面面垂直的判定定理可知C正确.4.已知直线m,n与平面α,β,γ,下列可能使α⊥β成立的条件是( )A.α⊥γ,β⊥γB.α∩β=m,m⊥n,nβC.m∥α,m∥βD.m∥α,m⊥β答案 D解析选择适合条件的几何图形观察可得,A中α与β相交或平行;B中α,β相交,但不一定垂直;C中α∥β或α与β相交.。
面面垂直关系的判定2

■肖擀林中学北师大版高一数学必修2《立体几何初步》教学案第一章第六课《垂直关系》第二课时《面面垂直的判定》主备课人:闫瑞审稿人:张娟授课人:___________授课时间:_____ 学生编号:_______ 姓名: _____ 第学习小组(一)学习目标1明白“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;2、知道两个平面垂直的判定定理,能利用此定理判断平面和平面的垂直关系。
(二)重点难点面面垂直的判定定理及其应用(三)学习过程1、方向探究将书打开直立在水平桌面上,书脊和书的各页面与桌面是什么关系?2、预习探究(1)两个平面有哪些位置关系?(借助长方体模型思考)(2)阅读课本37页“问题提出”,解释下列概念:半平面、二面角、二面角的平面角、直二面角。
3、合作探究(1)如何定义两平面垂直?(面面垂直的定义)(2)观察教室内现有物体,找出两个平面互相垂直的例子(3)如何判定两个平面互相垂直?(借助长方体模型思考)(4)面面垂直的判定定理是什么?如何用符号语言和图形语言来表示?4、运用探究(1)已知直线PA 垂直于圆0所在的平面,A 为垂足,AB 为圆0的直径,C 是圆周上异于A 、B 的一点。
探究1、四面体P-ABC 的四个面的形状是怎样的? 探究2、有哪些直线和平面垂直?探究3、有哪些平面相互垂直?求证:平面PAC_平面PBC(2)课本39页练习2: 2、3、45、课外延伸[2013.课标全国U ]已知m,n 为异面直线,m _平面:,n _平面一:。
直线丨满 足丨—m,l — n,l 二:,丨二,贝q ( )A.〉// B 且丨 〃aB. a _ 1且丨_ 1C. a 与B 相交,且交线垂直于1D. a 与B 相交,且交线平行于1 &课外作业布置P42 习题1-6A 组6 I 「' jlin High School北师大版高一数学必修2《立体几何初步》 教学案pE。
高中数学北师大版必修2第一章立体几何初步1.6.1.1直线与平面垂直的判定2

D1O=
1 2 + 2 =
12 +
2
2
2
2
2
2
=
6
.
2
=
3
.
2
在 Rt△EBO 中,
1 2
2
OE= 2 + 2 =
+
在 Rt△D1B1E 中,
D1E=
1 12
+ 1
2
=
2
( 2) +
#43;OE2=D1E 2,∴ D1O⊥OE.
可假设结论不成立证明
题型一
题型二
题型三
反思在平面几何中,我们有结论:经过一点,有且只有一条直线与
已知直线垂直.在立体几何中,也有类似的重要结论:
结论1:过一点和已知平面垂直的直线有且只有一条.
结论2:过一点和已知直线垂直的平面有且只有一个.
题型一
题型二
题型三
【变式训练1】 下列命题正确的是(
)
A.如果一条直线垂直于平面内的一条直线,那么这条直线和这个
正确
答案:①③⑤
如图所示,PO 为三棱锥的高,则 PO⊥平面 ABC,O 为垂
足,连接 OA,OB,OC,则 PO⊥OA,PO⊥OB,PO⊥OC.由
PA=PB=PC,易得 OA=OB=OC,故 O 为△ABC 的外心
很明显结论错误
可假设结论不成立证明
因为平面内的任意一条直线都和该平面的垂线垂直,
所以直线也可能在平面内
是底面正方形ABCD的中心.
求证:OE⊥平面ACD1.
分析:只需证OE⊥AC,OE⊥D1O即可.其中OE⊥AC易证,通过计算
可得D1E2=D1O2+OE2,从而得到OE⊥OD1.
北师大版高中数学必修2课件1.6垂直关系的判定课件(数学北师大必修二)
BC 和平面 PAM 垂直. P
解:⑴ ∵ ABCD A1B1C1D1 为正方体, ∴各面均为正方形,
∴ BB1 AB , BB1 BC .又∵ AB BC B , ∴ BB1 面ABCD .
⑵ ∵三棱锥 P ABC 中,各面均为全等的正三角形,
A
C
∴ AM BC , PM BC
M
B
则该直线与此平面垂直. 图形语言:
符号语言:l m ,l n ,m n=B ,m ,n l .
一、新课讲授:
2.直线与平面所成角
⑴ 定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫 做这个平面的斜线.过斜线上斜足外的一点向平面引垂线,过 垂足和斜足的直线叫做斜线在这个平面内的射影.平面的一条 斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平 面所成的角.
②如果直线 l 与平面 内的一条直线垂直,则 l ;
③如果直线 l 不垂直于 ,则 内没有与 l 垂直的直线;
④如果直线 l 不垂直于 ,则 内也可以有无数条直线与 l 垂直.
A.0
B.1
C.2
D.3
二、知识应用:
题型二 线面垂直的证明
例 2.已知 a ∥ b , a ,求证: b .
证明:设 m 是 α 内任意一条直线, ∵a⊥α,m⊂α . ∴a⊥m 而 a∥b 则 b⊥m, 根据线面垂直的定义可知 b⊥α.
二、知识应用:
题型二 证明线面平行
例 3.判断下列命题是否正确,并说明理由. ⑴ 正方体 ABCD A1B1C1D1 中,棱 BB1 和底面 ABCD 垂直. ⑵ 三棱锥 P ABC 中,各面均为全等的正三角形, M 为棱 BC 的中点,则棱
表示方法:棱为 AB 、面分别为 、 的二面角记作二面角 AB .有时为了方便,也可在、 内(棱以外的半平面
数学北师大版高中必修2垂直关系的判定(二)
课题:垂直关系的判定(二) 平面与平面垂直的判定学习目标1. 理解二面角的有关概念,会作二面角的平面角,能求简单二面角平面角的大小;2. 理解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系;3. 熟悉线线垂直、线面垂直的转化.学习过程 一、课前准备3638,找出疑惑之处)复习1:⑴若直线垂直于平面,则这条直线________平面内的任何直线;⑵直线与平面垂直的判定定理为_________________________________________ _____________________ 复习2:⑴什么是直线与平面所成的角?⑵直线与平面所成的角的范围为_______________. 二、新课导学 ※ 探索新知探究1:二面角的有关概念图11-1问题:上图中,水坝面与水平面、卫星轨道平面与地球赤道平面都有一定的角度.这两个角度的共同特征是什么?新知1:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图11-2中的二面角可记作:二面角AB αβ--或l αβ--或P AB Q --.图11-2问题:二面角的大小怎么确定呢?新知2:如图11-3,在二面角l αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线,OA OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角.平面角是直角的二面角叫直二面角.图11-3反思:⑴两个平面相交,构成几个二面角?它们的平面角的大小有什么关系?⑵你觉的二面角的大小范围是多少?⑶二面角平面角的大小和O 点的选择有关吗?除了以上的作法,二面角的平面角还能怎么作? 探究2:平面与平面垂直的判定问题:教室的墙给人以垂直于地面的形象,想一想教室相邻的两个墙面与地面可以构成几个二面角?它们的大小是多少?l新知3:两个平面所成二面角是直二面角,则这两个平面互相垂直.如图11-4,α垂直β,记作αβ⊥.图11-4问题:除了定义,你还能想出什么方法判定两个平面垂直呢?新知4:两个平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直. 反思:定理的实质是什么? ※ 典型例题例1 如图11-5,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面PAC ⊥平面PBC .图11-5 例2 如图11-6,在正方体中,求面A D CB ''与面 ABCD 所成二面角的大小(取锐角). 图11-6小结:求二面角的关键是作出二面角的平面角. ※ 动手试试练. 如图11-7,在空间四边形SABC 中,ASC ∠ =90°,60ASB BSC ∠==°,SA SB SC ==, ⑴求证:平面ASC ⊥平面ABC .⑵求二面角S AB C --的平面角的正弦值.图11-7三、总结提升※ 学习小结 1. 二面角的有关概念,二面角的求法; 2. 两个平面垂直的判定定理及应用.B 'C 'A 'DC BA D ' S CBA※ 知识拓展二面角的平面角的一个常用作法:如图过平面α内一点A ,作AB β⊥于点B ,再作BO l ⊥于O ,连接OA ,则AOB ∠即为所求平面角.(为什么?)学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 以下四个命题,正确的是( ). A.两个平面所成的二面角只有一个B.两个相交平面组成的图形叫做二面角C.二面角的平面角是这两个面中直线所成的角中最小的一个D.二面角的大小和其平面角的顶点在棱上的位置无关 2. 对于直线,m n ,平面,αβ,能得出αβ⊥的一个条件是( ). A.,//,//m n m n αβ⊥ B.,,m n m n αβα⊥=⊂ C.//,,m n n m βα⊥⊂ D.//,,m n m n αβ⊥⊥3. 在正方体1111ABCD A B C D -中,过,,A C D 的平面与过1,,D B B 的平面的位置关系是( ).A.相交不垂直B.相交成60°角C.互相垂直D.互相平行4. 二面角的大小范围是________________.5. 若平面内的一条直线和这个平面的一条斜线的射影垂直,则它和这条斜线的位置关系为_______. 课后作业1. 如图11-8,AC ⊥面BCD ,BD CD ⊥,设ABC ∠= 1θ,2CBD θ∠=,3ABD θ∠=,求证: 312cos cos cos θθθ=11-82. 如图11-8,在正方体中,,E F 是棱A B ''与D C ''的中点,求面EFCB 与面ABCD 所成二面角的正切值.(取锐角)图11-8。
北师大版高一数学必修2《1.6.1 垂直关系的判定》
1.6.1 垂直关系的判定知识点1:直线与平面垂直(1)直线与平面垂直的定义如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.(2)画法:当直线与平面垂直时,通常把表示直线的线段画成和表示平面的平行四边形的横边垂直.如图所示.(3)直线与平面垂直的判定定理①文字叙述:如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.②符号表示:若直线a⫋α,直线b⫋α,直线l⊥a,l⊥b,a∩b=A,则l⊥α.③图形表示:④作用:线线垂直⇒线面垂直。
【练习】垂直于梯形两腰的直线与梯形所在平面的位置关系是( )A.垂直B.斜交C.平行D.不能确定解析:梯形的两腰所在的直线相交,根据线面垂直的判定定理可知选项A正确.名师点拨理解线面垂直的判定定理注意以下几点:(1)定理可表述为“线线垂直,则线面垂直”.(2)“两条相交直线”是关键词,一定不要忽视这个条件,否则将导致结论错误,即“线不在多,相交就行”.(3)要证明一条直线与一个平面垂直,只需在平面内找到两条相交直线和该直线垂直即可,至于这两条相交直线是否和已知直线有公共点无关紧要.(4)线面垂直的判定定理与线面垂直的定义往往在证题过程中要反复交替使用.知识点2:二面角及其平面角(1)半平面的定义:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.(2)二面角的定义:从一条直线出发的两个半平面所组成的图形叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(3)二面角的记法:以直线AB为棱,半平面α,β为面的二面角,记作二面角α-AB-β.(4)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.(5)直二面角:平面角是直角的二面角叫作直二面角.【练习】给出下列命题:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是( )A.①③B.②④C.③④D.①②解析:由二面角的定义:从一条直线出发的两个半平面所组成的图形叫作二面角,可知①不对.画出图形,可知②正确.③中所作的射线不一定垂直于二面角的棱,故③不对.由定义知④正确.故选B.知识点3:平面与平面垂直(1)两个平面互相垂直的定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:在画两个垂直的平面时,通常把表示直立平面的平行四边形的竖边画成和表示水平平面的平行四边形的横边垂直.如图①②所示.(3)平面与平面垂直的判定定理①文字叙述:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②符号表示:③图形表示:④作用:线面垂直⇒面面垂直【练习】已知直线m,n与平面α,β,γ,下列可能使α⊥β成立的条件是( )A.α⊥γ,β⊥γB.α∩β=m,m⊥n,n⫋βC.m∥α,m∥βD.m∥α,m⊥β解析:选择适合条件的几何图形观察可得,A中α∥β或α与β相交,B中α,β相交,但不一定垂直,C中α∥β或α与β相交.名师点拨理解面面垂直的判定定理注意以下几点:(1)定理可简记为“线面垂直,则面面垂直”,因此要证明平面与平面垂直,只需在其中一个平面内找另一个平面的垂线,即证“线面垂直”.(2)两个平面垂直的判定定理,不仅仅是判定两个平面垂直的依据,而且是找出垂直于一个平面的另一个平面的依据.(3)要证α⊥β,可证α经过β的某一条垂线,也可证明β经过α的某一条垂线.思考辨析判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)若直线l垂直于平面α内无数条直线,则有l⊥α. ( ╳)(2)若直线l垂直于平面α内任意直线,则有l⊥α. ( √)(3)若直线l垂直于α内的一个凸五边形的两条边,则有l⊥α. ( √)(4)一个二面角的平面角有且只有一个. ( ╳)(5)若直线l与平面α交于点O,且l与α不垂直,l⫋β,则α与β一定不垂直. ( ╳)【例1】如图所示,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于点H.求证:AH⊥平面BCD.证明:取AB的中点F,连接CF,DF,因为AC=BC,所以CF⊥AB.同理可得,DF⊥AB.又CF∩DF=F,所以AB⊥平面CDF.因为CD⫋平面CDF,所以AB⊥CD.又BE⊥CD,且BE∩AB=B,所以CD⊥平面ABE.因为AH⫋平面ABE,所以CD⊥AH.又AH⊥BE,BE∩CD=E,所以AH⊥平面BCD.反思感悟证明线面垂直的关键是:分析几何图形,寻找隐含的和题目中推导出的线线垂直关系,进而证明线面垂直.三角形全等、等腰三角形底边上的中线、梯形的高、菱形和正方形的对角线、三角形中的勾股定理等都是找线线垂直的方法.变式训练1:如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上的点.求证:BC⊥平面PAC.分析:由AB是圆O的直径可知AC⊥BC,再结合PA⊥平面ABC,即可证明BC⊥平面PAC.证明:由AB是圆O的直径,得AC⊥BC.由PA⊥平面ABC,BC⫋平面ABC,得PA⊥BC.又PA∩AC=A,PA⫋平面PAC,AC⫋平面PAC,所以BC⊥平面PAC.2,E,F分别是AB,PD的中点.【例2】如图所示,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2求证:(1)AF∥平面PCE;(2)平面PCE⊥平面PCD.分析:(1)要证AF∥平面PCE,只需证明AF平行于平面PCE内的一条直线即可,取PC的中点G,则该直线为GE. (2)要证明平面PCE⊥平面PCD,只需证明GE⊥平面PCD,而由(1)知GE∥AF,故只需证明AF⊥平面PCD即可.反思感悟怎样证明平面与平面垂直:1.证明面面垂直的方法:(1)证明两个半平面构成的二面角的平面角为90°;(2)证明一个平面经过另一个平面的一条垂线,将证明面面垂直的问题转化为证明线面垂直的问题.2.利用判定定理证明两个平面垂直时,一般方法是先从现有的直线中寻找平面的垂线,若图形中不存在这样的垂线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明.变式训练2:已知正方形ABCD的边长为1,分别取边BC,CD的中点E,F,连接AE,EF,AF,以AE,EF,FA为折痕,折叠使点B,C,D重合于一点P.求证:(1)AP⊥EF;(2)平面APE⊥平面APF.题型三:对空间中线面关系理解不透彻而致误【典例】如图所示,在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,则截面ACB1与对角面BB1D1D垂直吗?纠错心得1.因为B1O与底面不垂直,就断定截面ACB1不可能与对角面BB1D1D垂直,这是毫无根据的.2.要克服上述错误,一定要将有关定理或性质的适用条件及内涵把握清楚,不能凭想当然进行毫无逻辑的论证.课后巩固练习:1.下列各种情况中,一条直线垂直于一个平面内的:①三角形的两条边;②梯形的两条边;③圆的两条直径;④正六边形的两条边.不能保证该直线与平面垂直的是( )A.①③B.②C.②④D.①②④解析:三角形的任何两边都相交;圆的任何两条直径都相交;但梯形中任意两边不一定相交,也可能平行;正六边形中也存在平行的两条边,因此不能保证该直线与平面垂直的是②④.故选C.答案:C2.在空间四边形ABCD中,若AD⊥BC,BD⊥AD,则( )A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC解析:如图所示,∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BDC.又AD⫋平面ADC,∴平面ADC⊥平面DBC.答案:D3.如图所示,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,(1)与PC垂直的直线有;(2)与AP垂直的直线有.解析:(1)因为PC⊥平面ABC,AB,AC,BC⫋平面ABC,所以与PC垂直的直线有AB,AC,BC.(2)∠BCA=90°,即BC⊥AC.又BC⊥PC,AC∩PC=C,所以BC⊥平面PAC,PA⫋平面PAC.所以BC⊥AP.答案:(1)AB,AC,BC (2)BC4.如图,已知正方体ABCD-A1B1C1D1,M,N分别为A1D1和AA1的中点,则下列说法正确的个数为( )①C1M∥AC; ②BD1⊥AC; ③BC1与AC所成的角为60°; ④CD与BN为异面直线.A.1B.2C.3D.45.如图所示,四边形ABCD是菱形,PC⊥平面ABCD,E是PA的中点求证:平面BDE⊥平面ABCD.。
高中数学北师大版必修二1.6.1【教学课件】《垂直关系的判定》
文字语言
图形语言
符号语言
若 α ∩β =l,OA
α ,OB
β ,且 OA⊥l,OB⊥l,
则∠AOB 为二面角 α lβ 的平面角 0°≤θ ≤180°
取值范围 直二面角
平面角是直角
的二面角叫作直二面角。源自北京师范大学出版社 | 必修二
巩固练习
如图 162,正方体 ABCDA1B1C1D1 中,截面 C1D1AB 与底 面 ABCD 所成二面角 C1ABC 的大小为
【答案】 (1)× (2)√ (3)× (4)×
)
) )
)
北京师范大学出版社 | 必修二
教材整理 2
二面角
阅读教材 P37“练习 1”以下至倒数第 4 行部分,完成下列问题。 1.二面角的概念: (1)半平面:一个平面内的一条直线,把这个平面分成 其中的 每一部分 都叫作半平面。 (2)二面角:从一条直线出发的
记法
α⊥β
北京师范大学出版社 | 必修二
2.平面与平面垂直的判定定理: 文字 语言 符号语言 如果一个平面经过另一个平面的一条 垂线 ,那么这两个 平面互相垂直 若直线 AB 平面 β , AB⊥平面α ,则 β ⊥α
北京师范大学出版社 | 必修二
巩固练习
空间四边形 ABCD 中,若 AD⊥BC,BD⊥AD,那么有( A.平面 ABC⊥平面 ADC B.平面 ABC⊥平面 ADB C.平面 ABC⊥平面 DBC D.平面 ADC⊥平面 DBC
北京师范大学出版社 | 必修二
例题解析
例 2 如图所示,△ABC 为正三角形,EC⊥平面 ABC,BD∥CE, 且 CE=CA=2BD,M 是 EA 的中点。求证:(1)DE=DA; (2)平面 BDM⊥平面 ECA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_____________________
复习2:⑴什么是直线与平面所成的角?
⑵直线与平面所成的角的范围为_______________.
所成二面角的大小(取锐角).
图11-6
小结:求二面角的关键是作出二面角的平面角.
※动手试试
练.如图11-7,在空间四边形 中,
=90°, °, ,
⑴求证:平面 平面 .
⑵求二面角 的平面角的正弦值.
图11-7
三、总结提升
※学习小结
1.二面角的有关概念,二面角的求法;
2.两个平面垂直的判定定理及应用.
二、新课导学
※探索新知
探究1:二面角的有关概念
图11-1
问题:上图中,水坝面与水平面、卫星轨道平面与地球赤道平面都有一定的角度.这两个角度的共同特征是什么?
新知1:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图11-2中的二面角可记作:二面角 或 或 .
B.两个相交平面组成的图形叫做二面角
C.二面角的平面角是这两个面中直线所成的角中最小的一个
D.二面角的大小和其平面角的顶点在棱上的位置无关
2.对于直线 ,平面 ,能得出 的一个条件是().
A. B.
C. D.
3.在正方体 中,过 的平面与过 的平面的位置关系是().
A.相交不垂直B.相交成60°角
C.互相垂直D.互相平行
课题:垂直关系的判定(二)
---------平面与平面垂直的判定
学习目标
1.理解二面角的有关概念,会作二面角的平面角,能求简单二面角平面角的大小;
2.理解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系;
3.熟悉线线垂直、线面垂直的转化.பைடு நூலகம்
学习过程
一、课前准备
(预习教材P36~P38,找出疑惑之处)
※知识拓展
二面角的平面角的一个常用作法:如图过平面 内一点 ,作 于点 ,再作 于 ,连接 ,则 即为所求平面角.(为什么?)
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.以下四个命题,正确的是().
A.两个平面所成的二面角只有一个
图11-4
问题:除了定义,你还能想出什么方法判定两个平面垂直呢?
新知4:两个平面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直.
反思:定理的实质是什么?
※典型例题
例1如图11-5, 是⊙ 的直径, 垂直于⊙ 所在的平面, 是圆周上不同于 的任意一点,求证:平面 平面 .
图11-5
例2如图11-6,在正方体中,求面 与面
图11-2
问题:二面角的大小怎么确定呢?
新知2:如图11-3,在二面角 的棱 上任取一点 ,以点 为垂足,在半平面 和 内分别作垂直于棱 的射线 ,则射线 和 构成的
叫做二面角的平面角.平面角是直角的二面角叫直二面角.
图11-3
反思:⑴两个平面相交,构成几个二面角?它们的平面角的大小有什么关系?
⑵你觉的二面角的大小范围是多少?
⑶二面角平面角的大小和 点的选择有关吗?除了以上的作法,二面角的平面角还能怎么作?
探究2:平面与平面垂直的判定
问题:教室的墙给人以垂直于地面的形象,想一想教室相邻的两个墙面与地面可以构成几个二面角?它们的大小是多少?
新知3:两个平面所成二面角是直二面角,则这两个平面互相垂直.如图11-4, 垂直 ,记作 .
4.二面角的大小范围是________________.
5.若平面内的一条直线和这个平面的一条斜线的射影垂直,则它和这条斜线的位置关系为_______.
课后作业
1.如图11-8, 面 , ,设 =
, , ,求证:
图11-8
2.如图11-8,在正方体中, 是棱 与 的中点,求面 与面 所成二面角的正切值.(取锐角)
图11-8