分解质因数1)
分解质因数(一)(含详细解析)

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-3-4.分解质因数(一)200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。
【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。
分解质因数的方法

分解质因数的方法
分解质因数是把一个合数分解成若干个质因数的乘积的形式。
常用的方法有相乘法和短除法。
相乘法是写成几个质数相乘的形式,实际运算时可采用逐步分解的方式。
如:16=2×2×2×2。
运算时可逐步分解写成:16=4×4=2×2×2×2,或16=2×8=2×2×2×2。
短除法是从最小的质数除起,一直除到结果为质数为止。
分解质因数的算式叫短除法。
此外,把每个数分别分解质因数,再把各数中的全部公有质因数提取出来相乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数:24=2×2×2×3,60=2×2×3×5。
由此可知,24和60的最大公约数为2×2×3=12。
1~100分解质因数

1~100分解质因数
首先,我们可以列出1~100的所有数字,并对它们进行质因数分解。
这将需要一些时间,但是可以通过编程来实现。
质因数分解是将一个数分解成几个质数相乘的形式。
例如,将60分解质因数,可以得到60=2235,因此60的质因数分解是2^2 3 5。
其次,我们可以观察1~100之间的数字,然后找出它们的质因数。
一些常见的质数包括2、3、5、7、11、13、17、19、23、29、31等。
通过观察这些质数的倍数,我们可以找到1~100之间的数字的质因数。
另外,我们还可以利用数论中的一些定理和方法来分解1~100之间的数字的质因数。
例如,可以利用欧拉筛法、试除法等数论方法来找出1~100之间的数字的质因数。
总之,分解1~100之间的数字的质因数是一个复杂的任务,需要耗费一定的时间和精力。
但通过合适的方法和工具,我们可以找出1~100之间的数字的质因数分解。
分解质因数的方法

分解质因数的方法分解质因数是数学中常见的一个概念,它是指将一个数分解成若干个质数的乘积的过程。
分解质因数在数学运算中有着重要的作用,它不仅可以帮助我们简化计算,还可以帮助我们更好地理解数的性质。
接下来,我们将介绍分解质因数的方法,希望能够对大家有所帮助。
首先,我们来看一下如何分解一个合数的质因数。
合数是指除了1和它本身以外还有其他因数的数,而质数是指只有1和它本身两个因数的数。
分解质因数的方法可以通过不断地进行试除来实现。
具体步骤如下:1. 首先,我们找出这个数的最小质因数,然后用这个质因数去除这个数,得到的商再进行同样的操作,直到商为1为止。
2. 将每一步得到的质因数按照从小到大的顺序写出来,这样就得到了这个数的质因数分解式。
举个例子来说明一下,比如我们要分解质因数的数是60,那么我们可以按照上述的步骤来进行操作。
首先,60可以被2整除,得到30;30又可以被2整除,得到15;15可以被3整除,得到5;最后,5是一个质数,所以分解质因数的结果就是2235。
除了上述的方法外,我们还可以利用因数分解树来进行分解质因数。
因数分解树是一种图形化的表示方法,可以帮助我们更清晰地了解一个数的质因数分解式。
具体步骤如下:1. 首先,我们将要分解的数写在树的顶端。
2. 然后,我们找出这个数的一个质因数,并将它写在树的下方。
3. 接着,我们用这个质因数去除原数,得到的商写在质因数的下方。
4. 重复以上的步骤,直到无法再分解为止。
通过因数分解树,我们可以清晰地看到一个数的质因数分解式,而且可以避免遗漏或重复因数的情况。
在实际应用中,分解质因数的方法可以帮助我们解决一些数学问题,比如求最大公约数、最小公倍数等。
而且,分解质因数还可以帮助我们简化分数、化简根式等。
因此,掌握好分解质因数的方法对于我们的数学学习和实际应用都是非常重要的。
总的来说,分解质因数是数学中的一个重要概念,它可以帮助我们更好地理解数的性质,简化计算,解决一些数学问题。
小学奥数 分解质因数(一).学生版

1. 能够利用短除法分解2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理知识点拨教学目标5-3-4.分解质因数(一)312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解 111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数【例 1】 分解质因数20034= 。
【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【例 3】 两个连续奇数的乘积是111555,这两个奇数之和是多少?例题精讲【例 4】今年是2010年,从今年起年份数正好为三个连续正整数乘积的第一个年份是。
分解质因数的方法

分解质因数的方法
质因数分解是将一个数分解为几个质数相乘的形式。
下面给出分解质因数的方法步骤:
1. 首先,我们从最小的质数开始,即2开始尝试能否整除给定的数。
2. 如果能够整除,则整除后的商作为新的数,继续用2去尝试能否整除。
3. 如果不能整除,则尝试下一个比当前数大的质数。
4. 重复以上步骤,直到商等于1为止。
5. 将每次成功整除的质数写成连乘的形式,即为该数的质因数分解。
举个例子,对于数字30的质因数分解,可以按照上述步骤依次尝试2、3、5,得到30=2×3×5。
通过以上步骤,就可以得到任意数的质因数分解形式。
小学奥数5-3-4 分解质因数(一).专项练习及答案解析

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。
【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】3⨯⨯⨯23753【例2】三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数【难度】1星【题型】填空【解析】210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。
分解质因数(1)

分解质因数(1)例1 张师傅和王师傅的年龄是两个相邻的自然数,他们的乘积是2352,你知道他们的年龄吗?练习:有两个连续自然数的乘积是8372,求这两个数。
例2 三个质数的和是80,这三个数的积最大是多少?练习:三个不同质数之和是86,这三个数的积最大是多少?例3 小淘气文具用品商店出售羽毛球2元一个,由于一个星期后一个也没有售出,老板决定降到半价左右出售,结果全部卖完,共卖的64.90元,你能算出商店原来有多少个羽毛球吗?练习:得卡购物中心卖一款童装,原价100元一套,儿童节期间八折左右出售(单价为整元数),两天全部卖完,共收入8769元。
这款童装的优惠价是多少元?一共卖了多少套?例4 一个三位数除5100,余数是95,这个三位数最大是多少?练习:一个两位数除310余37,求所有适合的两位数的和是多少?班级姓名例5 将下列八个数14、33、35、30、75、39、143、169分成两组,使每组4个数的乘积相等。
练习:把40、44、45、63、65、78、99、105这八个数平均分成两组,使每组四个数的乘积相等。
例6 自然数A(A不为0)乘以2376,所得的积正好是自然数B的平方,求A最小是多少?练习:1236与自然数A相乘,所得的积正好是某个非零自然数的平方。
求A最小是多少?例7 植树节期间,实验小学五年一班同学在老师的带领下上山植树,学生恰好平均分成三组,师生每人植树的棵树一样多,一共植了175棵。
那么,平均每人植树多少棵?练习:3月12日是植树节,老师带领同学们排成两路人数相等的纵队去植树,已知老师和每个同学植树的棵树相等,一共植树111棵,有多少同学去植树?长方体和正方体(1)例1 一个密封的长方体容器长4分米,宽2分米,高3分米,内装2.4分米深的水,将容器竖立后水深多少分米?练习:一个密封的长方体水箱,长10分米,宽8分米,高6分米,内装3分米深的水,若将长方体的长的边竖立起来,水深会是多少分米?例2 把一个正方体和一个同它等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来长方体的表面积增加了50平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√2√1
22
2√2 31√
23
32√
√√24 33 √
2√5 34 √√
√26 35 √√
√27
36
√28 37√
29
38 √
√√30 39 √
40
41 √4√√2 43 √44 √4√5 √46 47 √48 √√49 √50
练习:1、 检查下面各数的约数的个数,指出哪些是质数, 哪些不是质数,哪些是合数,分别填在指定的圈里。
2 5 32
6 × 10 2 × 3 × ×2 5
60 6 × 10
6
60=6×10
60=2×3×2×5
从上面的例子看出,每个合数都可以写成几个 质数相乘的形式。其中每个质数都是这个合数的因 数,叫做这个合数的质因数。
把一个合数用质因数相乘的形式表示出来, 叫做分解质因数。
为了简便,通常用短除法来分解质因数。 例如:
(4)合数有:4 6 8 9 10 12 14 15 16 18 20
想一想Байду номын сангаас
下面的说法对吗?说出理由。
(1)两个质数的和一定是偶数。
(x )
(2)最小的质数是奇数。
(x )
(3)一个自然数,不是奇数就是偶数 ( )
谢谢再再再见见见再再
谢谢
见见
2012年4月22日
26 3
6=2×3
2 28 2 14
7
28=2×2×7
2 60 2 30
3 15 5
60=2×2×3×5
把一个合数分解质因数,先用一个 能整除这个合数的质数(通常从最小的 开始)去除,得出的商如果是质数,就 把除数和商写成相乘的形式;得出的商 如果是合数,就照上面的方法继续除下 去,直到得出的商是质数为止,然后把 各个除数和最后的商写成连乘的形式。
做一做
把24分解质因数。
﹂﹂﹂ 2 24
2 12 26
3
24=2×2×2×3
练一练:
1、 下面是2到50的数。先划掉2的倍数,再依次划掉3、5、7、的倍
数(但2、3、5、7本身不划掉)。剩下的数都是什么数?
√
123
11 √1√2 13
√4
√1√4
5
√1√5
√√61√6
7 8 √9 1√0
17 1√√8 19 √√20
答: 6 28 60 是合数
观察思考
1、上面复习(3)中5、23、31等质数能写成两
个数相乘的形式吗?
( 1 )×(5 )=5(1 )×( 23)=23 (1)×(31)=31
2、上面复习(3)中6、28、60等合数能写成两个数相
乘的形式吗?有几种写几种。
1 60
1 28
1 2
×
6 3
=6 4 ×
7 =28
2 14
2 30 3 × 20 =60 4 15 5 12 6 10
比较 上面的等式,把质数和合数写成的 两个数相乘的形式,有什么不同?
一个质数只能写成1和它本身相乘的形式,不能写成 比它本身小的两个数相乘的形式;而合数除了可以 写成 1和它本身相乘的形式以外,还可以写成比它 本身小的两个数相乘的形式。因为一个合数,除了1
27 37 41 51 57 69 83 87
质数
合数
37 41 83
27 51 57 69 87
2、在自然数1——20中: (1)奇数有: 1 3 5 7 9 11 13 17 19 (2)偶数有:2 4 6 8 10 12 14 16 18 20 (3)质数有: 2 3 5 7 11 13 17 19
四年级下册
分解质因数
通许县哈佛学校
赵淑敏
一、复习
1、用彩条摆出20以内的质数
23
5
7
11
13
17
19 2、请说出什么叫合数?什么叫质数?
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
一个数,如是只有1和它本身两个约数,这样的数叫做质数(或素数)。
3、判断下面哪几个数是合数?
5 6 23 28 31 60
和它本身以外,还有别的约数。
说 明
为了方便,把6写成比它本小的两个数 相乘的形式,也可用下面的写法,也可 用彩条表示:
6 23
32
例3
32
6、28和60可以写成哪几个质数相乘的形式?
6 2 × 3 6=2×3
74
28 4 ×7
28=4×7
72 2
28 4× 7 2× 2×
28=2×2×7
10 7
60