第3章__周期信号的FS
信号与系统复习题及答案

1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延). 6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 .二、判断下列说法的正误,正确请在括号里打“√",错误请打“×"。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5。
所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
数字信号处理第三章

FS:~x (t)
X (k0 )e jk0t
k
(周期为T0
,Ω0
2
T0
)
对上式进行抽样,得:
(抽样间隔为T,s
2π ) T
~x(nT )
X~(k0 )e jk0nT
n
反 : x(nT ) 1 s / 2 X (e jT )e jnT d
s s / 2
---
时域抽样间隔为T ,
频域的周期为 s
2
T
注:DTFT反变换原式为 x(n) 1 X (e j )e jnd
2
根据关系
T 将变量换为
,并利用s
2
T
即得
x(nT ) 1 s / 2 X (e jT )e jnT d
jnk0T
s k0
又 0T
2
T0
T
0
2
s
2
N
这里 T Ω0 1 ,因此 T0 Ωs N
j 2 k
N 1
j 2 nk
X (e N ) x(nT)e N
n0
1 N 1
j 2 k
j 2 nk
x(nT)
X (e N )e N
N k0
x(nT ) 视作 n 的函数, x(nT ) x(n)
0 -0.5
-1 0
500
1000
1500
2000
2500
500
1000
1500
2000
2500
500
1000
1500
2000
2500
500
1000
1500
2000
2500
§ 3-3 周期序列的离散傅里叶级数 Discrete Fourier Series (DFS)
信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
错误!采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m错误!采样公式)()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
信号与系统第6讲第3章周期信号的傅里叶级数表示

sin(2 k(1/ 4)) k
sin(k k
/ 2)
根据Example3.5的结果,用性质计算傅里叶级数的系数
分析:原函数为x(t),本函数为g(t)
g (t )
x(t
1)
1 2
,周期方波的参数T
4,T1
1,
如果原函数的系数为ak,x(t 1)的系数为bk
bk
a e jk (2 / 4)1 k
在不连续点上,傅里叶级数的收敛趋势-吉伯斯现象
不连续点上收敛于不连续点的平均值 不连续点附近呈现起伏现象,起伏的峰值不随N增加而降低 峰值为不连续点差值的9%
吉伯斯现象的实际意义
不连续信号的傅里叶级数截断近似在接近不连续点有高频起伏 选择足够大的N,可以保证这些起伏的总能量可以忽略
2024/6/10
2024/6/10
信号与系统-第6讲
19
§3.5 连续时间傅里叶级数性质
(4)Example3.8 计算周期冲激串的傅里叶级数系数 根据性质计算周期方波的系数
周期冲激串可表示为x(t) (t kT ) k
ak
1 T
T / 2 (t)e jk 2t /T dt 1
T / 2
T
周期方波为g (t ),它的导数为q(t )
c0为直流分量, c0 2T1 / T
对照前面 例题验证
结果
20
§3.5 连续时间傅里叶级数性质
(5)Example3.9
1.x(t)是实信号
2.x(t)是周期信号,T 4,傅里叶级数系数ak
3.ak 0,k 1
4.傅里叶系数为bk
e
j
k
/
2
a
的信号是奇信号
信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0
∫
∫
t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n
∞
jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2
−
T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
信号与系统第三章习题部分参考答案

(7) (1 − t) f (1 − t) ;
(2) [1 + m f (t)]cosω0 t
(4) (t + 2) f (t); ( ) (6) e− jω0 t df t
dt
(8) f (t)∗ f (t − 3);
t
(9) ∫τ f (τ )dτ −∞
1−t / 2
(11) ∫ f (τ )dτ −∞
2π (sin π t )2 ↔ 2π (1− ⎜w⎜)[ε(w + 2π ) − ε(w − 2π )]
πt
2π
即 (sin π t )2 ↔ (1− ⎜w⎜)[ε(ω + 2π ) − ε(w − 2π )]
πt
2π
(3)双边指数信号
∵ e−a⎜t⎜
↔
2a a2 + w2
(−∞
<
t
<
+∞)
∴ 2a a2 + w2
(13) f (t)∗ Sa(2t) (15) t df (1 − t)
dt
t+5
(10) ∫ f (τ )dτ −∞
(12) df (t) + f (3t ) − 2 e− jt ;
dt
(14) f (t) u(t)
(16) (t − 2) f (t)e j2(t−3)
解:(1) f 2 (t) + f (t) = f (t). f (t) + f (t) ↔ 1 [F (w}* F (w)] + F (w)
又 f (t) = 2 + cos⎜⎛ 2πt ⎟⎞ + 4sin⎜⎛ 5πt ⎟⎞
⎝3⎠
【信号与系统(郑君里)课后答案】第三章习题解答

【信号与系统(郑君⾥)课后答案】第三章习题解答3-1 解题过程:(1)三⾓形式的傅⽴叶级数(Fourier Series ,以下简称 FS )f ( t ) = a ++∞cos ( n ω t) + b sin ( n ω t ) a 0 ∑ n 1n 1 n =1式中ω1 =2π,n 为正整数,T 1 为信号周期T 11 t +T(a )直流分量a 0 = 0 ∫ 1 f ( t ) dtT1 t2 t +T(b )余弦分量的幅度a n = 0∫ 1f ( t ) cos ( n ω1t ) dtT1 t 02 t +T(c )正弦分量的幅度b n = 0 ∫ 1f ( t ) sin ( n ω1t ) dtT 1 t(2)指数形式的傅⽴叶级数+∞f ( t ) = ∑ F ( n ω1 )e jn ω1tn == F ( n ω1 ) = 1 ∫t 0 +T 1f ( t ) e ? jn ω1t dt T 1 t 0F n =1( a n ? jb n ) F ? n = 1 ( a n + jb n ) 2 2由图 3-1 可知, f ( t ) 为奇函数,因⽽a 0 = a n = 0 4 Tb n = T ∫02= 2Eπ n4TE2EEf (t ) sin ( n ω t ) dt =sin ( n ω t ) dt = cos ( n ω t = 1 ? cos ( n π2T 1 ∫0 2 1 n t 1 n ) 1n = 2, 4,n = 1, 3,所以,三⾓形式的 FS 为2 E1 12π f ( t ) =sin ( ω1t ) +sin ( 3ω1t ) +sin ( 5ω1t ) +ω1 =π 3 5Tn = 0, ±2, ±4,F n = ? jb n jE=2 n = 0,± 1, ±3,n π1所以,指数形式的 FS 为f ( t ) = ? jE π ej ω1t+ πjE e ? j ω1t ? 3jE π e j 3ω1t + 3jEπ e ? j 3ω1t +3-15 分析:半波余弦脉冲的表达式 f ( t ) =πτ E cos t u t+ τ 2求 f ( t ) 的傅⽴叶变换有如下两种⽅法。
信号与系统知识要点

《信号与系统》知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量:2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑⎰∞∞-=t t f E d )(2def(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
例如:ε(t )是功率信号; t ε(t )3、典型信号① 指数信号: ()at f t Ke =,a ∈R② 正弦信号: ()sin()f t K t ωθ=+tt4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c)尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N1 1 2 N k N
图:N1=2, N=10,20,40
3.5 连续时间傅立叶级数性质
x(t ) ak
FS
3.5.1 线性 FS FS ak y(t ) bk 若x(t),y(t)周期均为T, x(t ) FS Aak Bbk Ck 则:Z (t ) Ax(t ) By(t )
物理意义: 总平均功率=所有谐波的平均功率之和
3.6 离散时间福立叶级数性质 3.6.1 相乘
FS x[n] ak FS x [ n ] y [ n ] d k al bk l FS y[n] bk l N
周期卷积 • 计算
3.6.2 一次差分 x[n]-x[n-1]
k
结论:若连续(离散)时间LTI系统的输入 x(t)= ak es t x[n]= ak zk n k k 则 s t n a H ( z ) z a H ( s ) e k k k y(t)= k y[n]= k k k s,z可以是任意复数 j j s= ,z= e 时,即分别以 j n j t e 为基函数 e ——傅立叶分析
3.2 LTI系统对复指数信号的响应
复指数信号 e z 的重要性质 : LTI系统对其的响应是同样的复指数信号 ,增 加幅度因子:即 e st →H(s) e st n z →H(z) z n n e st z ——LTI系统的特征函数 复振幅因子H(s),H(z) ——系统的特征值
st
n
2
三角形式的傅立叶级数(实周期信号)
x(t ) c0 (an cos(n0t ) bn sin(n0t ))
n 1
1 c0 T0 2 an T0 2 bn T0
t0 T0
t0 t0 T0
x(t )dt x(t ) cos(n0t )dt x(t ) sin(n0t )dt
0
jk 2T t
k 0, 1, 2
2 T
其线性组合: jk t x(t ) ak e jk t ak e k k 2 也是周期的,基波周期 T 0 k 1 的两项基波频率为 0 ——基波分量或 一次谐波分量 k N 的两项基波频率为 N0 ——N次谐波分 量 上式即为周期信号的傅立叶级数表示
证明:LTI系统h(t).输入x(t)= e st y(t)= h( )x(t )d = h( )es (t ) d = est h( )e s d
H(s)= h( )e s d 若收敛, st 则y(t)=H(s) e 对离散LTI 系统 , n k h [ k ] z H(z)= ,y[n]=H(z) z
0 2 N
k N
k N
k N
两边同乘 e 在N项上求和 …… 利用正交性 e
n N
n jr 2N
n jk 2N
N 0
k 0, N , 2 N 其余k
n jr 2 N
ar
1 N
n N
x[n]e
x[n] ak e jk0 n ak e jk N n k N k N n jk 2N jk0 n 1 1 N x[n]e ak N x[n]e n N n N
2
3.94 3.95
没有收敛问题 物理意义:周期信号可以分解为成谐波关 系的复指数信号的线性组合 ak ---频谱系数,共有N个,常为复数 反映x[n]中每一个谐波分量的相对大小 综合公式、分析公式
例:求 x[n] sin 0n 的频谱系数 2 解:仅当 整数或整数的比时, 0 x[n]是周期的。分两种情况: 2 (1)基波频率 0 N …… a1 21j a1 21j 一个周期内其余 ak 0 2 N (2) …… M 0 aM 21j a M 21j 一个周期内其余 ak 0
k
回顾第二章,系统的零状态响应: y(t ) x(t ) h(t ) x()h(t )d
y[n] x[n] h[n]
启示:如果 任意(或者是非常广泛的)信号都能分解 为某基本信号的线性组合 系统对基本信号的响应简单易求 则可方便地求出系统对任意输入信号的响应 ——解决方法之一:卷积法求系统响应 ?是否有其他的信号可作为基本信号 答: e j t e st e j n z n
k k
若x(t)为实偶信号? 若x(t)为实奇信号 ?
* ak ak ak
ak 纯虚数,奇
3.5.7 连续时间周期信号的帕斯瓦尔定理
1 T
T
x(t ) dt
2 T
2
k
ak
2
2
1 T
T
ak e
jk0t 2
1 dt T ak dt ak
——k次谐波的平均功率
0
jn0 t
n
T
0
T
连续时间周期信号傅立叶级数
物理意义:周期信号可以分解为成谐波关 系的复指数信号的线性组合 ak 傅立叶级数系数/频谱系数,常为复数 反映 x(t ) 中每一个谐波分量的相对大小 1 直流分量 a0 T x(t )dt
T
jk T t jk0t 1 1 ak T x(t )e dt T x(t )e dt T T jk 2T t jk0t ak e x(t ) ak e k k
t0 t0 T0
t0
3.3.3 傅立叶级数收敛的条件 两种表示: A. 一个周期内能量有限的信号,即
k
T
x(t ) dt
2
满足此条件,信号 x(t)与其傅立叶级数表示
ak e j0t
在能量上没有差别
B. 狄里赫利条件:
条件1:在任何周期内,x(t)绝对可积,即 条件2:在任意有限区间内,x(t)具有有限个 起伏变化. 条件3:在x(t)的任何有限区间内,只有有限 个不连续点,且在不连续点上函数值有限 满足这组条件的信号x(t),在连续点上x(t)的 值等于其傅立叶级数表示,而在不连续点上, 傅立叶级数收敛于不连续点两边值的平均值
0 0
3.5.4 时域尺度变换 周期改变:x(t)周期为T, 则 x( t ) ( 为正实数)周期为 T FS FS x(t ) ak x(t ) ak 傅立叶系数没有改变,但傅立叶级数表示改 变,因基波频率改变
x( t )
k
ae
k
jk (0 ) t
~
3.4 离散时间周期信号的傅立叶级数表示 与连续时间信号的区别:离散---有限项级数, 连续---无穷级数 3.4.1 成谐波关系的复指数信号的线性组合 2 周期信号:x[n]=x[n+N].基波频率 0 N 考虑 k [n] e jk n e jk ( ) n k 0, 1, 2 (1)谐波信号 (2)只有N个信号是不同的
例:
N1
0 N1 N
求频谱系数 解: ak
1 N
n N1
N1
e
n jk 2 N
在0…N-1一个周期中,
k0
k0
ak
ak
1 N
2 N1 1 N
1 e
(2 N 1) jk 2N 1
1 e
jk 2N
e
( N ) jk 2N 1
1 N
sin[2 k ] sin[ ]
第三章 周期信号的 傅立叶级数表示
3.1 引言
回顾第一章,由单位冲激的组合性质→ 信号可分解为单位冲激信号的加权积分或 加权和 x(t ) x(t ) (t ) x()(t )d
x[n] x[n] [n] x[k ][n k ]
3.5.5 相乘 若x(t)、y(t)周期都为T,且 则乘积的周期仍为T,且有:
FS x(t ) y(t ) hk
x(t ) ak
FS
FS y(t ) bk
l
ab
l k l
(卷积)
3.5.6 共轭及共轭对称性 FS x ( t ) ak 若 FS * * x ( t ) a k 则 (用综合公式证明) 对实信号 ? a a*
T
x (t ) dt
例 x(t)=
a1 1 2j
sin 0t 求 ak
a1 1 2j
-1/2j -1 0 1
1/2j k
k 1, ak 0
1 x(t ) 0
-T
例:周期方波,在一个周期内
t T1 T T1 t 2
T 2 T1 T1
T=4T1
3.3.4 傅立叶级数的近似
用有限项的线性组合组合来表示原信号
x(t )
~ jk0t a e k M ~
Hale Waihona Puke 按均方误差最小准则,得k M
1 ak T
~
T
x(t )e jk0t dt
傅立叶级数系数与无限项组合的系数相同, 且与所取项数目无关
吉布森现象- x(t ) 存在“超量”,且与项数无 ~ 关 x(t ) 项数M越大, 越接近原信号:上升沿和下 降沿越来越陡,峰值位置越接近原信号的不 连续点——含有更多的高频分量
-1
1
2
1 2
解:回忆3.3节例
T 2
……
T
k 0,
a0
1 T
T 1