2004年考研数学(四)试题
2004年全国硕士研究生入学统一考试数学二试题

2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+ , 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量20cos xtdt α=⎰ ,20tan x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)22lim (1)n n→∞+等于(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >. [](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++[](12)设函数()f u 连续, 区域{}22(,)2D x y xy y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂.(22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.。
2004—2014年考研数学真题“极限”题型精选解析

2004—2014年考研数学真题“极限”题型精选解析注:1)本篇试题选自2004年—2014年数学一、二、三的考研真题,共35题; 2)本篇真题题型:选择题,填空题,解答题; 3)本篇试题包括两部分,第一部分是精选极限真题解析,第二部分是补充极限真题解析(P9);第一部分(精选“极限”真题解析)(共20题)一、选择题1、设lim ,0n n a a a →∞=≠且,则当n 充分大时有( )(A )n a >||2a (B )||||2n a a <(C) 1n a a n>-(D) 1n a a n<+答案:(A),注:2014年数三(1) 解析:方法1:lim 0,lim 0,=2n n n n aa a a a ε→∞→∞=≠∴=>取,则当n 充分大时,3,,22n n n a a a a a a a εεε-<-<-<<<即,故(A )正确。
方法2:lim n n a a →∞=N N n N ε+∴∀>∃∈∀>使,有||n a a ε-<即 ||||||.0,222n n a a a a a a a a a a εεε-<<+≠∴=<<+可取,则- 不论a >0或a <0,都有||2n a a >,选A2、设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要 答案:(B),注:2012年数二(3)解析:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim n n s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。
2004考研数学二试题详细解析-4

(A) (1 , 0).
(B) (0 , 1).
(C) (1 , 2).
(D) (2 , 3).
[A]
【分析】如 f (x)在(a , b)内连续,且极限 lim f (x) 与 lim f (x) 存在,则函数 f (x)
xa
xb
在(a , b)内有界.
【详解】当 x 0 , 1 , 2 时,f (x)连续,而 lim f (x) sin 3 , lim f (x) sin 2 ,
【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. 完全类似的例题见《数学复习指南》P130 例 5.8,《数学题型集粹与练习题集》P70 例 5.4.
(12) 设 n 阶矩阵 A 与 B 等价, 则必须
(A) 当| A | a(a 0) 时, | B | a . (B) 当| A | a(a 0) 时, | B | a .
2
(6) 设随机变量 X 服从参数为 λ 的指数分布, 则 P{X
DX }
1
.
e
【分析】 根据指数分布的分布函数和方差立即得正确答案.
【详解】
由于 DX
1 λ2
,
X 的分布函数为
1 eλx , x 0, F(x)
0, x 0.
故
P{X DX } 1 P{X DX } 1 P{X 1} 1 F (1 ) 1 .
至少存在一点 x0 (a,b) ,使得 f (x0 ) 0 ;
另外,
f (a) lim
xa
f (x) f (a) xa
0 ,由极限的保号性,至少存在一点 x0 (a,b)
使得
f (x0) f (a) x0 a
0 ,即
2004考研数学真题+答案

.
(B) (D)
Cov( X 1 , Y ) 2 .
D( X 1 Y ) n 1 2 . n
2004 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2004 年数学试题答案和评分参考
三、解答题(本题共 9 小题,满分 94 分. 解答应写出文字说明、证明过程或演算步骤) ( 15 )(本题满分 12 分)
1
由高斯公式知
1
2x dydz 2 y dzdx 3( z
3 3
2
1)dxdy 6( x 2 y 2 z)dxdydz
…… 3 分 …… 9 分
1 1 ( z r 2 )rdz = 12 [ r (1 r 2 ) 2 r 3 (1 r 2 )]dr 2 . 0 2 3 3 2 而 2 x dydz 2 y dzdx 3( z 1)dxdy 3dxdy 3 ,
2 设 e a b e , 证明 ln 2 b ln 2 a
ln t 1 ln t ,则 (t ) ,当 t e 时, (t ) 0 ,即 (t ) 单调减少, …… 9 分 t t2 ln ln e 2 2 4 2 从而 ( ) (e ) ,即 …… 12 分 2 2 ,故 ln 2 b ln 2 a 2 (b a) . e e e
解
2 2 取 1 为 xoy 平面上被圆 x y 1 所围部分的下侧, 记 为由 与 1 围成的空
间闭区域,则 I
1
2x dydz 2 y dzdx 3( z
3 3
2
1)dxdy
2 x 3 dydz 2 y 3 dzdx 3( z 2 1)dxdy.
2004考研数四真题及解析

2004年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.(2) 设1ln arctan 22+-=x xxe e e y ,则1x dy dx ==.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则200422B A -=.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界( ) (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则( )(A)0x =必是()g x 的第一类间断点. (B) 0x =必是()g x 的第二类间断点. (C) 0x =必是()g x 的连续点.(D) ()g x 在点0x =处的连续性与a 的取值有关.(9) 设()(1)f x x x =-, 则 ( )(A) 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B) 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C) 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D) 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则 ( )(A) ()F x 在0x =点不连续.(B) ()F x 在(,)-∞+∞内连续,但在0x =点不可导. (C) ()F x 在(,)-∞+∞内可导,且满足)()(x f x F ='.(D) ()F x 在(,)-∞+∞内可导,但不一定满足)()(x f x F ='.(11) 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是( )(A) 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B) 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有( )(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于( ) (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.(14) 设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设(,)f u v f (u , v )具有连续偏导数,且满足(,)(,)u v f u v f u v uv ''+=. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解. (18) (本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何0t >,)(1t S 表示矩形t x t -≤≤,0()y F x ≤≤的面积. 求(I) ()S t = S -)(1t S 的表达式; (II) ()S t 的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(I) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II) 该方程组满足32x x =的全部解. (21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若Tα)0,1,1(1=,T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(I) 求A 的另一特征值和对应的特征向量; (II) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I) 二维随机变量),(Y X 的概率分布;(II) X 与Y 的相关系数 XY ρ; (III) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(内服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(I) 随机变量X 和Y 的联合概率密度;(II) Y 的概率密度; (III) 概率}1{>+Y X P .2004年全国硕士研究生入学统一考试数学四试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1) 若()0g x →,则()0f x →;(2) 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由 0lim()lim lim 10xxx x x e a e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = -4.因此,a = 1,b = -4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出 (5)(cos )sin ,5x e x b xa αα+--=+上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得0(5)(1)lim(cos )sin x x e b x xα→+-=-000(5)(1)(5)limcos lim 1lim 15sin x x x x e x x x xαα→→→+-+=-=-=-4=- 因此,a = 1,b = -4.(2)【答案】211e e -+. 【详解】因为()()()222222111ln ln 12ln 1ln 11222x x xx x x e e e x e x e e ⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦+ 由 1ln arctan 22+-=x x xe e e y ,得 )1ln(21arctan 2++-=xx e x e y ,所以 222222222()1()1211112112111x x x x x xx x x x x xe e e e e e y e e e e e e '''=-+=-+=-+++++++,所以22222221111111111x x x x x x dye e e e e dxe e e e e ==⎛⎫-=-+=-+= ⎪+++++⎝⎭.(3)【答案】12- 【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-.(4)【答案】⎪⎪⎪⎭⎫ ⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,为对角阵,故有422100100()010*********A A E --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪⎝⎭⎝⎭所以 211B P APP AP --=11()P A PP AP --=12,,P A P -=L200412004B P A P -=()50114P A P -=11P EP P P --==E =所以 200422B A -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭300030001⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(5)【答案】T)0,0,1( 【详解】方法1:设12132122233132331a a A a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,是正交矩阵,故的每个行(列)向量都是单位向量 所以有 22121311a a ++=,22213111a a ++=,得121321310,0.a a a a ====故 2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,又由正交矩阵的定义T AA E =知A 是可逆矩阵,且1TA A -=. 则b Ax =,有唯一解.1x A b -=T A b =2232233310011000000a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦方法2:同方法1,求得111=a 的正交阵为2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 是正交阵,由正交矩阵的性质可知,11A =-或不等于零,故A 22231122233233323310(1)0a a a a a a a a +==-222332330a a a a =≠,即有222332330a a a a ≠,则原方程b Ax =为1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩ 解得1231,0x x x ===,即方程组有唯一解. (其中,由222332330a a a a ≠及齐次线性方程组0Ax =只有零解的充要条件是0A ≠,可知,方程组22223332233300a x a x a x a x +=⎧⎨+=⎩ 只有零解,故230x x ==. 进而1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩的解为1231,0x x x ===.)(6) 【答案】e1 【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ≠ 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(-1 , 0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A).(8)【答案】 (D) 【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim ()lim ()x x u g x f u f u x x→→→∞= = = a ,又(0)0g =,所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D).(9) 【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.(10)【答案】 (B)【详解】先求分段函数()f x 的变限积分⎰=xdt t f x F 0)()(,再讨论函数()F x 的连续性与可导性即可.方法1:关于具有跳跃间断点的函数的变限积分,有下述定理:设()f x 在[,]a b 上除点(),c a b ∈ 外连续,且x c =为()f x 的跳跃间断点,又设()()xcF x f t dt =⎰,则(1)()F x 在[],a b 上必连续;(2))()(x f x F =',当[],x a b ∈ ,但x c ≠;(3)()F c '必不存在,并且()(),()()F c f c F c f c +-+-''= =直接利用上述结论,这里的0c =,即可得出选项(B)正确. 方法2:当0x <时,x dt x F x-=-=⎰0)1()(;当0x >时,x dt x F x==⎰01)(,当0x =时,(0)0F =. 即()F x x =,显然,()F x 在(,)-∞+∞内连续,排除选项(A),又0(0)lim 10x x F x ++→-'==-,0(0)lim 10x x F x --→--'==--,所以在0x =点不可导. 故选 (B).(11)【答案】(D) 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项(B)正确,故选(D).(12)【答案】(D ) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D).方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D).(13) 【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一 图二Oxy()f x{}P X u αα=Oxy{}P X x <=12α- ()f x如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n Λ独立同分布,所以必有:2, (,)0, i j i jCov X X i j σ⎧==⎨≠⎩又 222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n =21nσ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算. 可以看本题(C),(D)选项. 因为X 与Y 独立时,有()()()D X Y D X D Y ±=+. 所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n n σσ++-+=+++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- 所以本题选 (A)三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.22201cos lim()sin x x x x →- 通分222220sin cos lim sin x x x x x x →-sin x x :等价22240sin cos lim x x x x x →- 22401sin 24lim x x x x →-=洛()22041sin 24lim x x x x→'⎛⎫- ⎪⎝⎭'3012sin 42lim 4x x x x →-= 洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x :等2202(2)lim 6x x x →43=.(16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:()()()()21,cos ,sin r r Df x y d f r r rdr βθαθσθθ=⎰⎰⎰⎰122D x y d σ+化为极坐标:221{(,)|4}{(,)|02,0D x y x y x y θπ=+≤=≤≤所以122D x y d σ+222220cos sin d r r rdr πθθθ=+⎰⎰2220d r dr πθ=⎰⎰;222D x y d σ+化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以222D x y d σ+32cos 222222cos sin d r r rdr πθπθθθ-=+⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d 22cos 33322020033r rd d θπππθθ-=-⎰⎰332288cos 233d ππθπθ-=⋅-⎰()32228821sin sin 33d πππθθ=⋅+-⎰332288sin 2sin 333ππθπθ⎛⎫=⋅+- ⎪⎝⎭16822333π⎛⎫=+-+ ⎪⎝⎭)23(916932316-=-=ππ 区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以22()Dx y y d σ+⎰⎰22DDx y d yd σσ=++⎰⎰16(32)9π=-. 方法2:22()Dx y y d σ++⎰⎰22DDx y d yd σσ=++⎰⎰22D 20x y d σ=++⎰⎰上半极坐标变换22222002cos 22[]d r dr d r dr πππθθθ-+⎰⎰⎰⎰2233202cos 2[]233r r d ππθπθ-=⋅+⎰32888cos 2333d πππθθ⎛⎫=++ ⎪⎝⎭⎰()2288161sin sin 333d ππππθθ=++-⎰ 321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-.(17)【详解】求复合函数的偏导数,求一阶线性微分方程的解 方法1:由2()(,)xy x ef x x -=,两边对x 求导有,222122(,)(,)(,)x x x y e f x x e f x x e f x x ---'''=-++()22122(,)(,)(,)x x e f x x e f x x f x x --''=-++()2122(,)(,)x y e f x x f x x -''=-++已知uv v u f v u f v u='+'),(),(,即12(,)(,)f u v f u v uv ''+=,则212(,)(,)f x x f x x x ''+=. 因此,()y x 满足下述一阶微分方程为 x e x y y 222-=+'.由一阶线性微分方程()()dyP x y Q x dx+=通解公式:()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()222,x P x Q x x e -= =,代入上式得:2222()dx dxx y e x e e dx C --⎰⎰=+⎰2222()x x x e x e e dx C --=+⎰22()xex dx C -=+⎰323xx eC -⎛⎫=+ ⎪⎝⎭(C 为任意常数). 方法2:由2()(,)xy x ef x x -=有 2(,)()x f x x e y x = (1)已知(,)f u v 满足 (,)(,)u v f u v f u v uv ''+= (2)这是一个偏微分方程,当,u x v x ==时(2)式变为212(,)(,)f x x f x x x ''+=2(,)df x x x dx= 以(1)代入,有 22(())xe y x x '=,即2222()()xxe y x e y x x '+=, 化简得 22()2()xy x y x x e -'+=,由通解公式得x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18)【详解】(I) 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; (II) 由R PQ =,得dR dP ()d PQ dP =dQ Q P dP =+(1)P dQ Q Q dP =+(1)20PQ P-=+-(1)d Q E =-要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】当0x >时,0x -<,所以()()22()x x F x ee F x ---===,同理:当0x <时,x->,所以()()22()x xF x e e F x---===,所以()y F x=是关于y轴对称的偶函数.又2lim()lim0xx xF x e-→+∞→+∞==,2lim()lim0xx xF x e→-∞→-∞==,所以x轴与曲线()y F x=围成一无界区域,面积S可用广义积分表示.()y F x=图形如下:(I) ()S F x dx+∞-∞=⎰()F x偶函数22xe dx+∞-⎰2(2)xe d x+∞-=--⎰201xe+∞-=-= )(1tS表示矩形t x t-≤≤,0()y F x≤≤的面积,所以ttetS212)(-=,因此21()()12tS t S S t te-=-=-,(0,)t∈+∞.(II) 由于tettS2)21(2)(---=',令()0S t'=,得()S t的唯一驻点为21=t,又()S t''()22(12)tt e-'=--222448t t te e te---=+-28(1)tt e-=-,04)21(>=''eS,所以eS11)21(-=为极小值,它也是最小值.(20)【详解】已知T)1,1,1,1(--是该方程组的一个解,故可将T)1,1,1,1(--代入方程组,有110,21120,3(2)(4)41,λμλμ-+-=⎧⎪-++=⎨⎪-+++-=⎩解得μλ=.代入原方程,并对方程组的增广矩阵A施以初等行变换, 得1102112032441Aλλλλ⎛⎫⎪= ⎪⎪++⎝⎭1101(-2),(-3)0121200230224211λλλλλλ⎛⎫⎪--⎪⎪--⎝⎭u u u u u u u u u u u u u u u u r行乘分别加到,行110110(-1)012120001311 3013110121200λλλλλλλλ⎛⎫⎛⎫⨯ ⎪ ⎪--⎪ ⎪⎪ ⎪--⎝⎭⎝⎭u u u u u u u u u r u u u u u u u r2行2,3行加到行互换1102(21)013113002(21)2121λλλλλλ⎛⎫⨯- ⎪⎪ ⎪---⎝⎭u u u u u u u u u u u u u u r 行加到行 ()I 当21≠λ时,有 A 3(21)λ÷-u u u u u u u u u u u u u u r 行 1100131100211λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,故43)()(<==A r A r . 定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<;(3)无解:()1()r A r A ⇔+=,故方程组有无穷多解.所以,该方程组有无穷多解,对应的齐次线性方程组同解方程组为1234234343020x x x x x x x x x λλ+++=⎧⎪++=⎨⎪+=⎩ 由于此方程组的系数矩阵的秩为3,则基础解系的个数为43n r -=-=1,故有1个自由未知量.选2x 为自由未知量,取21x =-,得方程组的基础解系为Tη)2,1,1,2(--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0k ηξ+(k 为任意常数).当21=λ时,有 11110220131100000A ⎛⎫ ⎪⎪→ ⎪ ⎪⎪⎝⎭, 可知,42)()(<==A r A r ,所以该方程组有无穷多解,对应的齐次线性方程组的同解方程组为12342341102230x x x x x x x ⎧+++=⎪⎨⎪++=⎩ 则基础解系的个数为42n r -=-=2,故有2个自由未知量.选34,x x 为自由未知量,将两组值:(1,0),(0,2)代入,得方程组的基础解系为Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--(21,k k 为任意常数).()II 当21≠λ时,方程组的通解为 0(1,0,0,1)(2,1,1,2)(21,,,21)T T T k k k k k k ξξη=+=-+--=---+若32x x =,即k k =-得0k =,故原方程组满足条件32x x =的全部解为(1,0,0,1)T-.当21=λ时,方程组的通解为 0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--=121212(1,32,,21)Tk k k k k k ----+若32x x =,即 12132k k k --=,得212k k =-,代入通解,得满足条件32x x =的全部解为1(3,1,14)(1,0,0,1)T Tk -+-(21)【分析】由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】()I A 的秩为2,于是0||=A ,所以|0|0E A A ⋅-==,因此A 的另一特征值03=λ.特征值的性质:若i λ是矩阵A 的k 重特征值,则矩阵A 属于的线性无关的特征向量的个数不超过k 个又621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量个数2≤. 因此123,,ααα必线性相关.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关的两个特征向量.定理:实对称矩阵对应与不同特征值的特征向量是正交的.设03=λ所对应的特征向量为Tx x x α),,(321=,所以,01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x则基础解系的个数为32n r -=-=1,故有1个自由未知量. 选2x 为自由未知量,取21x =得方程组的基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).()II 令矩阵),,(21αααP =,求1P -121100111010011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭M M M 1211001(1)2012110011001-⎛⎫ ⎪⨯--- ⎪ ⎪⎝⎭MM u u u u u u u u u u u u u u u u u u u r M 行加到行 12110012012110003111-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u u u r M 行加到行1211000121100011/31/31/3-⎛⎫ ⎪÷-- ⎪ ⎪-⎝⎭M M u u u u u u u r M 3行3 1211000101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪⎪-⎝⎭M M u u u u u u u u u u u u u u u u r M 3行(-2)+2行10001120101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪ ⎪-⎝⎭M Mu u u u u u u u u u u u u u u u u u u u u u u u u u u u u r M 3行,2行依次加到1行, 1000112(1)0101/31/32/30011/31/31/3-⎛⎫ ⎪⨯-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u r M 行则 1P -=011112333111333⎛⎫ ⎪- ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以 1066-⎪⎪⎪⎭⎫⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661********⎪⎪⎪⎭⎫ ⎝⎛--=422242224.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。
2004年考研数学一真题(含解析)

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知x x xe e f -=')(,且f(1)=0, 则f(x)=__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt txx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可.【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为 .20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221xc x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有 AB AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0c o s 2t a n lim cos tan limlim 22002=⋅==+++→→→⎰⎰xxx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx x x dtt dtt x x xx x tan 221sin lim tan sin limlim 230302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41x x x ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(l i m)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01l i m l i m ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B T T =,于是有TB 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有2(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ,故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则 24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'ee e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又dxdv v dt dx dx dv dt dv =⋅=, 由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx-=0,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为 02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dtdxv x t t m kt t t =-====-===,得 ,021k m v C C =-= 于是 ).1()(0t m ke kmv t x --= 当+∞→t 时,).(05.1)(0km km v t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx ydydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d zz y x d x d y z d z d x y d y d zx ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r 而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.1000012002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→nn n a n a B可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为T n ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an n n n a a A .当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A 00002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为T n ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ 当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于第 - 21 - 页 共 21 页- 21 - 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β(II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=ni i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
2004考研数一真题答案及详细解析

一、填空题(1)【答案】 y =x −1【详解】方法 1:因为直线 x +y =1的斜率k 1 − =1,所以与其垂直的直线的斜率k 2 满足121k k =-,所以21k -=-,即21k =,曲线l n y x =上与直线1=+y x 垂直的切线方程的斜率为1,即11)(ln =='='xx y ,得1x =,把1x =代入l n y x =,得切点坐标为)0,1(,根据点斜式公式得所求切线方程为:)1(10-⋅=-x y ,即1-=x y 方法2:本题也可先设切点为)l n ,(00x x ,曲线l n y x =过此切点的导数为11=='=x y x x ,得10=x ,所以切点为()00(,ln )1,0x x =,由此可知所求切线方程为)1(10-⋅=-x y ,即1-=x y .(2)【答案】2)(ln 21x 【详解】先求出)(x f '的表达式,再积分即可.方法1:令t e x=,则t x l n =,1xet -=,于是有t t t f ln )(=',即.ln )(xx x f ='两边积分得2ln 1()ln ln (ln )2xf x dx xd x x C x ===+⎰⎰.利用初始条件(1)0f =,代入上式:21(1)(ln1)02f C C =+==,即0C =,故所求函数为()f x =2)(ln 21x .方法2:由l n xx e =,所以xx x ee f -=')(l n ln xx xx e e ee-=⋅=,所以.ln )(x x x f ='下同.(3)【答案】23【详解】利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分.2004 年全国硕士研究生入学统一考试数学一试题解析L 为正向圆周222=+y x 在第一象限中的部分,用参数式可表示为.20:,s in 2,cos 2πθθθ→⎩⎨⎧==y x 于是2Lx dy ydx -=⎰202cos 2sin 22sin 2cos d d πθθθθ⎡⎤-⎣⎦⎰20[2cos 2cos 22sin 2sin ]d πθθθθθ=⋅+⋅⎰()22222220[2cos 4sin ][2cos sin 2sin ]d d ππθθθθθθθ=+=++⎰⎰222220[22sin ]22sin d d d πππθθθθθ=+=+⎰⎰⎰()220021cos 2d ππθθθ=+-⎰222000131cos 22sin 2222d πππππθθθθ=+-=-⎰()3133sin sin 002222ππππ=--=-=(4)【答案】221x c x c y +=【详解】欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.令te x =,有1ln ,dt t x dx x ==,则1dy dy dt dy dx dt dx x dt=⋅=,221d y d dy dx dx x dt ⎛⎫= ⎪⎝⎭()211dy d dy d uv vdu udv x dt x dx dt ⎛⎫=+ -+ ⎪⎝⎭211dy d dy dt x dt x dt dt dx ⎛⎫=-+⋅⎪⎝⎭2222222111dy d y d y dy x dt x dt x dt dt ⎛⎫=-+=- ⎪⎝⎭代入原方程:222211420d y dy dyx x y x dt dt x dt⎛⎫⋅-+⋅+= ⎪⎝⎭,整理得02322=++y dt dy dt y d ,此式为二阶齐次线性微分方程,对应的特征方程为2320r r ++=,所以特征根为:121,2r r =- =- ,12r r ≠ ,所以02322=++y dt dydty d 的通解为1221212r t r t t ty c e c e c e c e --=+=+又因为te x =,所以2211,tt ee x x --= =,代入上式得212122.t t c cy c e c e x x--=+=+(5)【答案】91【详解】方法1:已知等式两边同时右乘A ,得**2ABA A BA A A =+,由伴随矩阵的运算规律:**A A AA A E ==,有2A B A B A A =+,而210120001A =3321(1)12+=-2211=⨯-⨯3=,于是有A B A B +=63,移项、合并有A B E A =-)63(,再两边取行列式,由方阵乘积的行列式的性质:矩阵乘积的行列式等于矩阵行列式的积,有(36)363A E B A E B A -=-==,而36A E -21010031206010001001⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦630600030360060300003006003⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3303(1)(3)(3)3330+=--=-⨯⨯27=,故所求行列式为B 33627A A E ==-19=方法2:由题设条件**2ABA BA E =+,得**2ABA BA -=*(2)A E BA E-=由方阵乘积行的列式的性质:矩阵乘积的行列式等于矩阵行列式的积,故两边取行列式,有**(2)21A E BA A EB A E -=-==其中210120001A =3321(1)12+=-2211=⨯-⨯3=;由伴随矩阵行列式的公式:若A 是n 阶矩阵,则1n A A-*=.所以,312A A A -*===9;又0102100001A E -=1210(1)01+=-=1.故1192B A E A*==-.(6)【答案】e1【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{D X X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题(7)【答案】(B)【详解】方法1:202200tan tan 2lim limlim 0cos cos x xx x x tdt x xxt dtβα+++→→→⋅= =⎰⎰洛必达,则β是α的高阶无穷小,根据题设,排在后面的是前一个的高阶无穷小,所以可排除(C),(D)选项,又23230001sin sin 2lim lim lim 2tan tan xx x x x x t dtx x xtdtγβ+++→→→⋅= ⎰⎰洛必达201lim4x x x +→=∞等价无穷小替换,可见γ是比β低阶的无穷小量,故应选(B).方法2:用kx (当0x →时)去比较.221000cos cos limlimlim ,xkkk x x x t dt x xxkxα+++-→→→=⎰洛欲使上式极限存在但不为0,应取1k =,有220lim cos cos lim lim 1lim x x x x t txxxα++++→→→→===,所以(当+→0x 时)α与x 同阶.211300000tan tan 222lim limlim lim lim xk k k k k x x x x x tdtx x x x x x kx kx kx β+++++---→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取3k =,有3320002tan 2tan 2lim lim lim 333x x x x x x x x β+++-→→→===,所以(当+→0x 时)β与3x 同阶.31313222211100000sin sin lim lim lim lim lim ,222xk kk k k x x x x x t dtx x x x xx x kx kx kx γ+++++-----→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取2k =,有221001lim lim 224x x xx x γ++-→→==⋅,所以(当+→0x 时)γ与2x 同阶.因此,后面一个是前面一个的高阶小的次序是,,αγβ,选(B).(8)【答案】(C)【详解】函数()f x 只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B).由导数的定义,知0)0()(lim)0(0>-='→xf x f f x 根据极限的保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f .即当)0,(δ-∈x 时,0x <,有()(0)f x f <;而当),0(δ∈x 时,0x >有()(0)f x f >.(9)【答案】(B)【详解】对于敛散性的判定问题,若不便直接推证,往往可通过反例排除找到正确选项.方法1:排除法.取()()11ln 1n a n n =++,则n n na ∞→lim =0,又()()1111ln 11pn p n n p ∞= >⎧⎨++ ≤⎩∑收敛,当发散,当,所以()()1111ln 1n n n a n n ∞∞===++∑∑发散,排除A ,D ;又取n n a n 1=,因为p 级数1111p n p n p ∞= >⎧⎨ ≤⎩∑收敛,当发散,当,则级数111n n n a n n ∞∞===∑∑收敛,但221lim lim lim n n n n n a n n n n→∞→∞→∞=⋅==∞,排除(C),故应选(B).方法2:证明(B)正确.l im 0n n na λ→∞=≠,即l im 1nn a nλ→∞=.因为11n n∞=∑发散,由比较判别法的极限形式知,1nn a∞=∑也发散,故应选(B)..(10)【答案】(B)【详解】在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x :⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f 否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.方法1:交换积分次序,使得只有外面这道积分限中才有t ,其他地方不出现t由⎰⎰=t tydx x f dy t F 1)()(知:1y x ty t <<⎧⎨<<⎩,交换积分次序11x t y x <<⎧⎨<<⎩,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdxx x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有)2()2(f F =',故应选(B).方法2:设()()x f x 'Φ=,于是1()()t t yF t dy f x dx =⎰⎰11()()t t t tyydy x dx dy d x '=Φ=Φ⎰⎰⎰⎰1[()()]t t y dy =Φ-Φ⎰1()(1)()tt t y dy=Φ--Φ⎰所以()()(1)()()()(1),F t t t t t f t t ''=Φ-+Φ-Φ=-所以(2)(2)F f '=,选(B).(11)【答案】(D)【详解】由题设,将A 的第1列与第2列交换,即12010100001AE A B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,将B 的第2列加到第3列,即100010100011011100011100.001001001001B A A AQ ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故011100001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应选(D).(12)【答案】(A)【详解】方法1:由矩阵秩的重要公式:若A 为n m ⨯矩阵,B 为n p ⨯矩阵,如果0A B =,则()()r A r B n+≤设A 为n m ⨯矩阵,B 为s n ⨯矩阵,由0A B =知,()()r A r B n +≤,其中n 是矩阵A 的列数,也是B 的行数因A 为非零矩阵,故()1r A ≥,因()()r A r B n +≤,从而()1r B n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知B 的行向量组线性相关.因B 为非零矩阵,故()1r B ≥,因()()r A r B n +≤,从而()1r A n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知A 的列向量组线性相关.故应选(A).方法2:设A 为n m ⨯矩阵,B 为s n ⨯矩阵,将B 按列分块,由0A B =得,[]12,,,0,0,1,2,,.s i AB A A i s ββββ==== 因B 是非零矩阵,故存在0i β≠,使得0i A β=.即齐次线性方程组0A x =有非零解.由齐次线性方程组0A x =有非零解的充要条件()r A n <,知()r A n <.所以A 的列向量组线性相关.又()0T T T AB B A ==,将TA 按列分块,得12[,,,]0,0,1,2,,.T T T T T TT T m i B A B B i m αααα==== 因A 是非零矩阵,故存在0T i α≠,使得0TT i Bα=,即齐次线性方程组0Bx =有非零解.由齐次线性方程组0Bx =有非零解的充要条件,知TB 的列向量组线性相关,由TB 是由B 行列互换得到的,从而B 的行向量组线性相关,故应选(A).方法3:设(),i j m n A a ⨯=()i j n s B b ⨯=,将A 按列分块,记()12n A A A A =由0A B =⇒()11121212221212s s n n n ns b b b b bb A A A b b b ⎛⎫⎪⎪ ⎪⋅⋅⋅⎪⎝⎭()111111,,0n n s ns n b A b A b A b A =++++= (1)由于0B ≠,所以至少有一个0i j b ≠(1,1i n j s ≤≤≤≤),又由(1)知,11220j j i j i nj n b A b A b A b A +++++= ,所以12,,,m A A A 线性相关.即A 的列向量组线性相关.(向量组线性相关的定义:如果对m 个向量12,,,nm R ααα∈ ,有m 个不全为零的数12,,,m k k k R ∈,使11220m m k k k ααα++=成立,则称12,,,m ααα 线性相关.)又将B 按行分块,记12n B BB B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,同样,0A B =⇒11121121222212n n m m mn n a a a B a a a B a a a B ⎛⎫⎛⎫⎪⎪⎪⎪ ⎪⎪⋅⋅⋅⎪⎪⎝⎭⎝⎭ 111122121122221122n n n n m m mn n a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪=⎪ ⎪ ⎪+++⎝⎭ 0=由于0A ≠,则至少存在一个0i j a ≠(1,1i m j n ≤≤≤≤),使11220i i i j j in n a B a B a B a B ++++= ,由向量组线性相关的定义知,12,,,m B B B 线性相关,即B 的行向量组线性相关,故应选(A).方法4:用排除法.取满足题设条件的,A B .取001000,10010001A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有00100100,10001AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A 的行向量组,列向量组均线性相关,但B 的列向量组线性无关,故(B),(D)不成立.又取110100,00000100A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有1101000000100AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,A 的行向量组线性无关,B 的列向量组线性相关,故(C)不成立.由排除法知应选(A).(13)【答案】C【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>.或直接利用图形求解.方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C).方法2:Oxy()f x {}P X u αα>=图1图2如图1所示题设条件.图2显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n 独立同分布,所以必有:2, (,)0, i j i jCov X X i jσ⎧==⎨≠⎩又222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑Oxy{}P X x α<=12α-()f x下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n=21n σ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算.可以看本题(C),(D)选项.因为X 与Y 独立时,有()()()D X Y D X D Y ±=+.所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n nσσ++-+=+++=+ =222233σσn n n n n +=+,222222111)1()111()(σσnn n n X n X n X n n D Y X D n -+-=----=- =.222222σσn n n n n -=-所以本题选(A)三、解答题(15)【详解】根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.方法1:因为函数()2l n f x x =在()2[,],a b e e ⊂上连续,且在(),a b 内可导,所以满足拉格朗日中值定理的条件,对函数()2ln f x x =在[,]a b 上应用拉格朗日中值定理,得()()()22222ln ln ln ln ,b a b a b a e a b e ξξξξ'-=-=- <<<<下证:22ln 4eξξ>.设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ,当t e >时,1ln 1ln 0t e -<-=,即,0)(<'t ϕ所以)(t ϕ单调减少,又因为2e ξ<,所以)()(2e ϕξϕ>,即2222ln ln e e e =>ξξ,得22ln 4eξξ>故)(4ln ln 222a b ea b ->-.方法2:利用单调性,设x ex x 224ln )(-=ϕ,证()x ϕ在区间()2,e e 内严格单调增即可.24ln 2)(e x x x -='ϕ,(222222ln 444()20e e e e e eϕ'=-=-=,)2ln 12)(x x x -=''ϕ,当x e >时,1ln 1ln 0x e -<-=,,0)(<''x ϕ故)(x ϕ'单调减少,从而当2e x e <<时,2()()0x e ϕϕ''>=,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即a e a b e b 22224ln 4ln ->-,故)(4ln ln 222a b ea b ->-.方法3:设2224()ln ln ()x x a x a eϕ=---,则2ln 4()2x x x e ϕ'=-,21ln ()2x x x ϕ-''=,⇒x e >时,1ln 1ln 0x e -<-=,得()0x ϕ''<,⇒()x ϕ'在2(,)e e 上单调减少,从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=,⇒()x ϕ在2(,)e e 上单调增加.从而当2e a x b e <<≤<时,()()0x a ϕϕ>=.⇒()0b ϕ>,即2224ln ln ()b a b a e ->-.(16)【详解】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.方法1:由题设,飞机质量9000m kg =,着陆时的水平速度h k m v /7000=.从飞机接触跑道开始计时,设t 时刻飞机的滑行距离为()x t ,速度为()v t ,则0)0(,)0(0==x v v .根据牛顿第二定律,得kv dt dv m -=.又dx dv v dt dx dx dv dt dv =⋅=.由以上两式得dv k m dx -=,积分得.)(C v kmt x +-=由于0)0(,)0(0==x v v ,所以0(0)0.mx v C k=-+=故得0v k m C =,从而)).(()(0t v v kmt x -=当0)(→t v 时,).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.方法2:根据牛顿第二定律,得kv dtdvm-=,分离变量:dv k dt v m =-,两端积分得:1ln kv t C m=-+,通解:t mk C ev -=,代入初始条件00v vt ==,解得0v C =,故.)(0t mk ev t v -=飞机在跑道上滑行得距离相当于滑行到0v →,对应地t →+∞.于是由d x vdt =,有00() 1.05().k k t t mmmv mv x v t dt v edt e km kk+∞--+∞+∞===-==⎰⎰或由()0kt mdx v t v e dt-==,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→方法3:由kv dt dv m -=,dx v dt =,化为x 对t 的求导,得dt dxk dtx d m -=22,变形为022=+dtdxm k dt x d ,0(0)(0),(0)0v x v x '===其特征方程为02=+λλm k ,解之得mk-==21,0λλ,故.21t m ke C C x -+=由2000000,kt m t t t t kC dxx v e v dt m-=======-=,得,021km v C C =-=于是).1()(0t m k e kmv t x --=当+∞→t 时,).(05.1)(0km k mv t x =→所以,飞机滑行的最长距离为1.05km .(17)【详解】这是常规题,加、减曲面片高斯公式法,转换投影法,逐个投影法都可用.方法1:加、减曲面片高斯公式.取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdyzdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233133212223(1)x dydz y dzdx z dxdy I I ∑-++-=-⎰⎰由高斯公式:设空间闭区域Ω是由分段光滑的闭曲面∑所围成,函数()()(),,,,,,,,P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有P Q R Pdydz Qdzdx Rdxd y dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 这里3322,2,3(1)P x Q y R z = == -,2226,6,6P QR x y z x y z∂∂∂===∂∂∂,所以2216()I x y z dvΩ=++⎰⎰⎰利用柱面坐标:c os sin ,01,02,x r y r r dv rdrd dz z z θθθπθ=⎧⎪= ≤≤ ≤≤ =⎨⎪=⎩,有:2216()I x y z dxdydz Ω=++⎰⎰⎰=r dzr z dr d r )(620101022⎰⎰⎰-+πθ()()221221123200011212122r r z r r z dr rr r drππ--⎛⎫=+=+- ⎪⎝⎭⎰⎰()13246011124346r r r π⎛⎫- ⎪=-⋅+- ⎪⎝⎭11226ππ=⋅=记D 为1∑在x oy 平面上的投影域(){}22,1D x y xy =+≤,则0z =,0d z =,又1∑为220(1)z x y =+≤的下侧,从而:()13322223(1)301DI x dydz y dzdx z dxdy dxdy ∑=++-=--⎰⎰⎰⎰33Ddxdy π==⎰⎰(其中Ddxdy ⎰⎰为半径为1圆的面积,所以11Ddxdy ππ=⋅=⎰⎰)故1223.I I I πππ=-=-=-方法2:用转换投影法:若(),z z x y =,z 对,x y 具有一阶连续偏导数,则,z zdzdx dxdy dydz dxdy x y∂∂=-=-∂∂.曲面22221:1,(1),2,2z zz x y x y x y x y∂∂=--+≤=-=-∂∂∑,由转换投影公式332223(1)I x dydz y dzdx z dxdy∑=++-⎰⎰332[2()2()3(1)]z zx y z dxdy x y∑∂∂=-+-+-∂∂⎰⎰44222[443(1)3]Dx y x y dxdy=++---⎰⎰利用极坐标变换:c os ,01,02,sin x r r dxdy rdrd y r θθπθθ=⎧ ≤≤ ≤≤ =⎨=⎩,所以214444220[4cos 4sin 3(1)3]I d r r r rdrπθθθ=++--⎰⎰215454530[4cos 4sin 3(2)]d r r r r drπθθθ=++-⎰⎰24404413(cos sin )6622d πθθθ=++-⎰()2222222004cos sin 2cos sin 6d d ππθθθθθθ⎡⎤=+--⎢⎥⎣⎦⎰⎰2220412cos sin 26d πθθθπ⎡⎤=--⎣⎦⎰22220041cos sin 2263d d ππθθθθπ=--⎰⎰()20411cos 4236d ππθθπ=---⎰22004112cos 4sin 433624d πππππθθπθ=---=--⎰0ππ=--=-或244044(cos sin )66d πθθθ+⎰直接利用公式44220031cos sin 422d d πππθθθθ==⋅⋅⎰⎰及224444220cos 4cos 4sin sin d d d d ππππθθθθθθθθ===⎰⎰⎰⎰则244044431(cos sin )24666422d ππθθθπ+=⋅⋅⋅⋅⋅=⎰所以,原式2πππ=-=-(18)【分析】利用零点定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.零点定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,那么在开区间(),a b 内至少存在一点ξ,使()0f ξ=;单调性:设函数()f x 在闭区间[],a b 上连续,在(),a b 内可导,如果在(),a b 内()0f x '>,那么函数()f x 在[],a b 上单调增加;比较审敛法:设1nn u∞=∑和1nn v∞=∑都是正项级数,且n n u v ≤,若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛.【证明】记()1nn f x x nx =+-,则()n f x 是连续函数,由01)0(<-=n f ,0)1(>=n f n ,对照连续函数的零点定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x 当0x >时,0)(1>+='-n nxx f n n ,可见)(x f n 在),0[+∞上单调增加,故方程01=-+nx x n 存在惟一正实数根.n x 由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,函数y x α=单调增,所以αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.(19)【分析】根据极值点存在的充分条件:设函数(,)z f x y =在点()00,x y 的某领域内连续且有一阶及二阶连续偏导数,又0000(,)0,(,)0x y f x y f x y = =,令000000(,),(,),(,)xx xy yy f x y A f x y B f x y C = = =,则(,)z f x y =在()00,x y 处是否取得极值的条件如下:(1)20A C B ->时具有极值,且当0A <时有极大值,当0A >时有极小值;(2)20A C B -<时没有极值;(3)20A C B -=时,可能有极值,也可能没有极值,需另外讨论.所以对照极值点存在的充分性定理,先求出一阶偏导,再令其为零确定极值点,接下来求函数二阶偏导,确定是极大值还是极小值,并求出相应的极值.求二元隐函数的极值与求二元显函数的极值的有关定理是一样,差异仅在于求驻点及极值的充分条件时,用到隐函数求偏导数.【详解】因为0182106222=+--+-z y z y xy x ,所以两边对x 求导:02262=∂∂-∂∂--xz z x z yy x ,①两边对y 求导:0222206=∂∂-∂∂--+-yzz y z yz y x .②根据极值点存在的充分条件,令00zx z y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得303100x y x y z -=⎧⎨-+-=⎩,故⎩⎨⎧==.,3y z y x 将上式代入0182106222=+--+-z y z y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 对照极值点存在的充分条件,为判别两点是否为极值点,再①分别对,x y 求偏导数,②分别对,x y 求偏导数①式对x 求导:02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,②式对x 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--y x zz x z y z y x z y x z ①式对y 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z ②式对y 求导:02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,将⎪⎩⎪⎨⎧===3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz代入,于是61)3,3,9(22=∂∂=x z A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-B AC ,又061>=A ,从而点(9,3)是(,)z x y 的极小值点,极小值为(9,3)3z =.类似地,将⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z x z 代入,于是22(9,3,3)16z A x ---∂==-∂,2(9,3,3)12zB x y---∂==∂∂,22(9,3,3)53z C y ---∂==-∂,可知03612>=-B AC ,又061<-=A ,从而点(-9,-3)是(,)z x y 的极大值点,极大值为(9,3)3z --=-.(20)【详解】方法1:对方程组的系数矩阵A 作初等行变换,有11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦1()(2,)i i i n ⨯-+= 行行111120000a a a B na a +⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦对||B 是否为零进行讨论:当0a =时,()1r A n =<,由齐次方程组有非零解的判别定理:设A 是m n ⨯矩阵,齐次方程组0A x =有非零解的充要条件是()r A n <.故此方程组有非零解,把0a =代入原方程组,得其同解方程组为,021=+++n x x x ()*此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,得基础解系,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)12,3i i n ⨯-+= 行()(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ ,可知2)1(+-=n n a 时,n n A r <-=1)(,由齐次方程组有非零解的判别定理,知方程组也有非零解,把2)1(+-=n n a 代入原方程组,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.方法2:计算方程组的系数行列式:11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦00011110002222000a a a n n n n ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵加法a E =+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111aE Q ∆ +,下面求矩阵Q 的特征值:11112222E Q n n n n λλλλ---------=---- 11112001(-)(2,3,,)00i i i n n λλλλλ-----⨯+=- 行行(1)1112()1000(2,3,,)000n n i i i n λλλ+----⨯+=列列1(1)2n n n λλ-+⎛⎫=- ⎪⎝⎭则Q 的特征值2)1(,0,,0+n n ,由性质:若A x x λ=,则()(),m m kA x k x A x x λλ==,因此对任意多项式()f x ,()()f A x f x λ=,即()f λ是()f A 的特征值.故,A 的特征值为(1),,,2n n a a a ++,由特征值的乘积等于矩阵行列式的值,得A 行列式.)2)1((1-++=n a n n a A 由齐次方程组有非零解的判别定理:设A 是n 阶矩阵,齐次方程组0Ax =有非零解的充要条件是0=A .可知,当0=A ,即0a =或2)1(+-=n n a 时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有11112222A n n n n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1)(2,)i i i n ⨯-+= 行(行1111000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,.故方程组的同解方程组为,021=+++n x x x 此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,由此得基础解系为,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)1(2,3)i i n ⨯-+= 行(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,即00002100001n ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦ ,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.(21)【详解】A 的特征多项式为12314315E A aλλλλ---=----2(2)021114315aλλλλ---⨯-+----行()行1101(2)14315a λλλ------提出行公因数1101(1)2(2)03315a λλλ-⨯-+-----行行11012(2)033015a λλλ-+-----行行33(2)15a λλλ-=----(2)[(3)(5)3(1)]a λλλ=---++2(2)(8183).a λλλ=--++已知A 有一个二重特征值,有两种情况,(1)2=λ就是二重特征值,(2)若2=λ不是二重根,则28183a λλ-++是一个完全平方(1)若2=λ是特征方程的二重根,则有,03181622=++-a 解得2a =-.由E A λ-2(2)(8183(2))λλλ=--++⨯-2(2)(812)λλλ=--+2(2)(6)0λλ=--=求得A 的特征值为2,2,6,由1232123123E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥--⎣⎦1231(-1)2,000113000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行倍加到行行的倍加到行,知()21E A -=秩,故2=λ对应的线性无关的特征向量的个数为312n r -=-=,等于2=λ的重数.由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,从而A 可相似对角化.(2)若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得.32-=a 当32-=a 时,由E A λ-=22(2)(8183())3λλλ=--++⨯-2(2)(816)λλλ=--+2(2)(4)0λλ=--=知A 的特征值为2,4,4,由32341032113E A ⎡⎤⎢⎥-⎢⎥-=⎢⎥⎢⎥--⎢⎥⎣⎦1133⨯+ 行行323103000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦知()42E A -=秩,故4=λ对应的线性无关的特征向量有321n r -=-=,不等于4=λ的重数,则由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,知A 不可相似对角化.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.先确定(,)X Y 的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(,)X Y 的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I)由于1()()(|)12P AB P A P B A ==,所以,61)()()(==B A P AB P B P利用条件概率公式和事件间简单的运算关系,有121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-====21()()()3P A P B P AB =--+=(或32121611211}0,0{=---===Y X P ),故(,)X Y 的概率分布为Y X1032121161121(II),X Y 的概率分布分别为213{0}{0,1}{0,0},3124P X P X Y P X Y ====+===+=111{1}{1,1}{1,0},6124P X P X Y P X Y ====+===+=111{1}{0,1}{1,1},12126P Y P X Y P X Y ====+===+=215{0}{0,0}{1,0}.366P Y P X Y P X Y ====+===+=所以,X Y 的概率分布为X 01Y 01P4341P6561由01-分布的数学期望和方差公式,则61,41==EY EX ,1334416DX =⨯=,1566DY =⨯536=,{}{}{}()00111,1E XY P XY P XY P X Y =⋅=+⋅====112=,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY (23)【分析】本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.似然函数的定义:121()(,,,;)(;)nn ii L f x x x f x θθθ===∏ 【详解】X 的概率密度为11,,(;) 1.0,x f x xx βββ+⎧>⎪=⎨≤⎪⎩(I)矩估计.由数学期望的定义:1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x x f EX ,用样本均值估计期望有E X X =,令X =-1ββ,解得1-=X Xβ,所以参数β的矩估计量为.1ˆ-=X X β其中11nii X X n ==∑(II)最大似然估计.设12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ当),,2,1(1n i x i =>时,0)(>βL ,()L β与l n ()L β在相同的β点取得最大值;所以等式两边取自然对数,得1ln ()ln (1)ln ni i L n x βββ==-+∑,两边对β求导,得∑=-=n i i x nd L d 1ln )(ln βββ,令0)(l n =ββd L d ,可得∑==ni ixn1ln β,解得β的最大似然估计值为: 1ln nii nxβ==∑。
2004年考研数学试题详解及评分参考

(C) b ,a ,g . (D) b ,g ,a .
【答】 应选 (B).
【解】 由a ¢ = cos x2 , b ¢ = 2x tan x : 2x2, g ¢ = 1 sin( 2x
x )3
:
1 2
x
(
x
®
0+
),可见
lim b = lim b ¢ = 0 , lim g = lim g ¢ = 0 ,即 b 比g 高阶,g 比 b 高阶. 故选 (B).
证明 ln 2 b - ln 2
a
>
4 e2
(b - a) .
证法1:设j(x)
=
ln2
x-
4 e2
x ,则j¢(x)
=
2
ln x x
-
4 e2
,j¢¢(x)
=
2
1
- ln x2
x
,
……5
分
所以当 x > e 时,j ¢¢(x) < 0, 故j ¢(x) 单调减少,
从而当 e < x < e2 时,j ¢(x) > j ¢(e2 ) =
xdy - 2 ydx - xdy - 2 ydx - xdy - 2 ydx = 3dxdy - 0 - 0 = 3p / 2 .
L+ L1 + L2
L1
L2
D
【解法二】
易见
L
的参数方程为
ïì x
í ïî
y
= =
2 cos t 2 sin t
,
(其中 t 从 0
到p 2
),代入被积函数,有
p
p
ò ò ò xdy - 2 ydx = 2 (2 cos2 t + 4sin2 t)dt = 2 2 (1+ sin2 t)dt = 3p / 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(23)设随机变量 X 在区间 (0,1) 内服从均匀分布,在 X = x(0 < x < 1) 的条件下,随
机变量Y 在区间 (0, x) 上服从均匀分布,求
(I) 随机变量 X 和Y 的联合概率密度; (II) Y 的概率密度; (III) 概率 P{X + Y > 1}.
(A) u α .
2
(B)
u
1−
α
.
2
(C) u1−α .
2
(D) u1−α .
(14) 设随机变量 X1, X 2 ,⋯, X n (n > 1) 独立同分布,且其方差为 σ 2 > 0. ,令
∑ Y
=
1 n
n i=1
Xi
,则(
)
(A)
Cov(
X1,Y
)
=
σ2 n
.
(C)
D( X 1
+Y)
=
n
+ n
2004 年数学四试题
一、填空题.
(1)
若
lim
x→0
sin x ex − a
(cos
x
−
b)
=
5
,则
a
=
,b =
.
(2) 设 y = arctan ex − ln
e2x e2x +1
,则
dy dx
x =1
=
.
∫ (3)
设
f
(x)
=
⎧ ⎪
xe
x
2
⎨
⎪− 1
, ,
1 −
2 x≥
≤ 1
x
<
1 2
,则
2
1 f (x −1)dx =
(11) 设 f ′(x) 在[a,b]上连续,且 f ′(a) > 0, f ′(b) < 0 ,则下列结论中错误的是( )
(A) 至少存在一点 x0 ∈ (a,b) ,使得 f (x0) > f (a) . (B) 至少存在一点 x0 ∈ (a,b) ,使得 f (x0) > f (b) . (C) 至少存在一点 x0 ∈ (a,b) ,使得 f ′(x0) = 0 . (D) 至少存在一点 x0 ∈ (a,b) ,使得 f (x0) = 0. (12) 设 n 阶矩阵 A 与 B 等价, 则必有( ) (A) 当| A |= a(a ≠ 0) 时, | B |= a . (B) 当| A |= a(a ≠ 0) 时, | B |= −a .
∫0
f (t)dt ,则
(
)
(A) F (x) 在 x = 0 点不连续.
(B) F (x) 在 (−∞, +∞) 内连续,但在 x = 0 点不可导.
(C) F (x) 在 (−∞, +∞) 内可导,且满足 F′(x) = f (x) .
(D) F (x) 在 (−∞, +∞) 内可导,但不一定满足 F′(x) = f (x) .
(17)设 f (u , v)具有连续偏导数,且满足 fu′(u, v) + fv′(u, v) = uv . 求 y(x) = e−2x f (x, x) 所满足的一阶微分方程,并求其通解.
(18)设某商品的需求函数为 Q = 100 − 5P ,其中价格 P ∈ (0, 20) , Q 为需求量.
(D) g(x) 在点 x = 0 处的连续性与 a 的取值有关.
(9) 设 f (x) = x(1− x) , 则 ( )
(A) x = 0 是 f (x) 的极值点, 但 (0, 0) 不是曲线 y = f (x) 的拐点.
(B) x = 0 不是 f (x) 的极值点, 但 (0, 0) 是曲线 y = f (x) 的拐点.
之间的面积.
对任何
t > 0 , S1(t) 表示矩形 −t ≤ x ≤ t , 0 ≤ y ≤ F (x) 的面积. 求
(I) S(t) = S − S1(t) 的表达式;
(II) S(t) 的最小值.
⎧ x1 (20)设线性方程组 ⎪⎨2x1
⎪⎩3x1
+ λx2 + x2 + (2 + λ)x2
(I) 求需求量对价格的弹性 Ed ( Ed > 0);
(II)
推导 dR dP
= Q(1 − Ed ) (其中 R 为收益),并用弹性 Ed 说明价格在何范围内变化
时,降低价格反而使收益增加.
(19)设
F
(
x)
=
⎪⎧ e2x ⎪⎩⎨e − 2 x
,x≤0 ,x>0
,
S
表示夹在
x
轴与曲线
y
=
F
(
x)
2
.ቤተ መጻሕፍቲ ባይዱ
⎩
2
⎛0 −1 0 ⎞
⎜ (4) 设 A = ⎜1 0
0
⎟ ⎟
,
B
=
P−1 AP,其中
P
为三阶可逆矩阵,
则
⎜⎝0 0 −1⎟⎠
B2004 − 2A2 =
.
( ) (5) 设 A = aij 3×3 是实正交矩阵,且 a11 = 1, b = (1,0,0)T ,则线性方程组 Ax = b 的
解是
(22)设 A , B 为两个随机事件,且 P( A) = 1 , P(B | A) = 1 , P( A | B) = 1 , 令
4
3
2
⎧1, A发生,
⎧1, B发生,
X
=
⎩⎨0,
,Y A不发生,
=
⎩⎨0,
B不发生.
求:(I) 二维随机变量 (X ,Y ) 的概率分布;
(II) X 与 Y 的相关系数 ρXY ; (III) Z = X 2 + Y 2 的概率分布.
(C) 当| A |≠ 0 时, | B |= 0 .
(D) 当| A |= 0 时, | B |= 0 .
(13) 设 随 机 变 量 X 服 从 正 态 分 布 N (0,1) , 对 给 定 的 α ∈ (0,1) , 数 uα 满 足
P{X > uα } = α ,
若 P{| X |< x} = α , 则 x 等于( )
.
(6) 设随机变量 X 服从参数为 λ 的指数分布, 则 P{X > DX } =
.
二、选择题.
(7)
函数
f (x) =
| x | sin(x − 2) x(x − 1)(x − 2)2
在下列哪个区间内有界(
)
(A) (−1 , 0). (B) (0 , 1).
(C) (1 , 2).
(D) (2 , 3).
(C) x = 0 是 f (x) 的极值点, 且 (0, 0) 是曲线 y = f (x) 的拐点.
(D) x = 0 不是 f (x) 的极值点, (0, 0) 也不是曲线 y = f (x) 的拐点.
⎧ 1, x > 0
(10)
设
f
(
x)
=
⎪ ⎨
0
,
x
=
0
⎪⎩−1 , x < 0
,
F
(
x)
=
x
2σ
2.
(B) Cov( X1,Y ) = σ 2 .
(D)
D( X 1
−
Y)
=
n
+1σ n
2
.
三、解答题.
(15)
求
lim (
x→0
1 sin 2
x
−
cos2 x2
x
)
.
(16) 求 ∫∫( x2 + y2 + y)dσ ,其中 D 是由圆 x2 + y2 = 4
D
和 (x + 1)2 + y2 = 1 所围成的平面区域(如图).
(8)
设 f (x)在 (−∞, +∞) 内有定义,且
lim
f
(
x)
=
a
,
g
(
x)
=
⎪⎧ ⎨
f
(
1 x
)
,
x
≠
0
,则(
)
x→∞
⎪⎩ 0 , x = 0
(A) x = 0 必是 g(x) 的第一类间断点.
(B) x = 0 必是 g(x) 的第二类间断点.
(C) x = 0 必是 g(x) 的连续点.
+ μx3 + x3 + (4 + μ)x3
+ x4 = 0, + 2x4 = 0, ,已知 (1,−1,1,−1)T 是 + 4x4 = 1,
该方程组的一个解,试求 (I)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(II)该方程组满足 x2 = x3 的全部解.
(21)设三阶实对称矩阵 A 的秩为 2, λ1 = λ2 = 6 是 A 的二重特征值.若 α1 = (1,1,0)T , α2 = (2,1,1)T , α3 = (−1,2,−3)T , 都是 A 的属于特征值 6 的特征向量. (I)求 A 的另一特征值和对应的特征向量; (II) 求矩阵 A .