实验五碘化铅溶度积常数的测定图文稿

合集下载

4.碘化铅溶度积

4.碘化铅溶度积

二、实验原理
采用阳离子交换树脂与碘化铅饱和溶液中的铅 离子进行交换 2R-H + Pb2+ = R-Pb -R+ 2H+
将一定体积的碘化铅饱和溶液通入阳离子交换 树脂,铅离子与氢离子换后,氢离子流出液的 氢离子浓度进行测定,从而计算出通过离子交 换树脂的饱和碘化铅溶液中铅离子的浓度,进 而求得碘化铅的溶度积。
Chemistry
四、实验步骤
3. 交换
(1)用温度计测量饱和碘化铅溶液温度并记录; (2)用移液管准确量取20.00 mL饱和碘化铅上层清液,放 入50 mL烧杯中; (3)分三次将烧杯中的饱和碘化铅溶液转移至交换柱内, 控制流出液的速率,用250 mL容量瓶收集流出液,待碘化铅 饱和溶液流出后,继续向离子交换柱中持续加入蒸馏水,保 持柱内液面高于树脂; (4)交换过程中利用pH试纸检测流出液pH值,观察试纸颜 色变化,当流出液呈中性,关闭活塞。
四、实验步骤
1. 碘化铅饱和溶液的配置
称取约1 g碘化铅固体,倒入500 mL锥形瓶中,加入约200 mL煮沸过的蒸馏水,摇动锥形瓶,使药品充分溶解。
Chemistry
四、实验步骤
2. 装柱
(1)清洗离子交换柱; (2)底部填少量玻璃棉,加入约40g左右强酸型离子 交换树脂,用自来水冲洗树脂至无色,将交换柱固定在 铁架台上,关闭活塞; (3)向离子交换柱中加入蒸馏水至没过树脂约2 cm, 用蒸馏水浸泡4 ~ 8 h,将其中蒸馏水放入烧杯中,向 交换柱中倒入盐酸溶液至没过树脂约2 cm,用盐酸溶 液浸泡4 h,将交换柱中的酸倾倒入废液瓶中; (4)用蒸馏水洗树脂一段时间,利用pH试纸检测流出 液pH值,直至流出液呈中性;
碘化铅溶度积的测定
一、实验目的

光度法测定碘化铅溶度积常数的探究

光度法测定碘化铅溶度积常数的探究

光度法测定PbI2溶度积常数的探究摘要:用分光光度法探究PbI2溶度积常数。

将1.65g硝酸铅与2.15gKI混合制取PbI2沉淀,再将制得的PbI2溶解得到饱和的PbI2溶液。

配制含不同浓度的I-溶液,加入KNO2和盐酸,用分光光度计测得一定浓度的I2的吸光度,绘制出I2的浓度工作曲线。

再用KNO2在酸性条件下氧化I-得到I2,并加入KCl调节离子强度,最后用分光光度计测出I2的吸光度,根据浓度工作曲线算出I2的浓度,并计算出Pb2+的浓度,最后得到PbI2的溶度积常数为1.22×10-8。

1 实验部分1.1实验试剂Pb(NO3)2、PbI2、KNO2、KCl、KI、盐酸。

1.2实验仪器烧杯、玻璃棒、容量瓶、吸量管、比色皿、分光光度计、致密定性滤纸、漏斗、药匙、电炉、电子天平、分析天平、量筒、洗耳球、1.3试验方法将1.65gPb(NO3)2、2.15g KI分别溶解,再将两溶液混合,并不断搅拌。

约15分钟后。

静置,弃去上清液用倾滗法将所得的Pb I2洗净,以洗涤液中检测不到I-为标志。

其中I-的检验:向洗涤液中加入氯水,氯水能够使I-氧化成单质,再利用I2对淀粉极为敏感,从而检验出I-。

最后进行减压过滤,将Pb I2沉淀抽干。

反应方程式:Pb(NO3)2+2KI=2KNO3+PbI2↓2I- +Cl2 =2Cl- +I2取三个干燥的小烧杯并标好号,均加入少量(黄豆粒大小)自制的PbI2。

向PbI2的烧杯中加入24.00mL蒸馏水,并按表一加入KCl、KI溶液。

溶液总体积为25.00mL.表 1不断搅拌混合溶液约15min,静置,待溶液澄清后,用致密的定量滤纸,干燥的漏斗常压过滤,滤液用编好号的干燥的小烧杯收集,注意沉淀不要转移到滤纸上。

取10.00mL于烧杯中,加2mLNaNO2溶液和5滴6mol/L盐酸溶液。

搅拌转移到50mL容量瓶中,加蒸馏水定溶。

用分光光度法测吸光度,再读出浓度。

氯化铅溶度积常数的测定实验报告

氯化铅溶度积常数的测定实验报告

氯化铅溶度积常数的测定实验报告实验目的,通过实验测定氯化铅的溶度积常数,并探究影响溶度积常数的因素。

实验原理,氯化铅在水中的溶解过程可表示为PbCl2(s) ⇌ Pb2+(aq) + 2Cl-(aq),其溶度积常数Ksp可表示为Ksp=[Pb2+][Cl-]2。

根据溶度积常数的定义,当达到溶解平衡时,Ksp为恒定值。

实验步骤:1. 实验前准备,取一定量的氯化铅固体,准备一定体积的去离子水。

2. 实验操作,将氯化铅固体加入一定体积的去离子水中,搅拌使其充分溶解。

3. 实验测定,测定溶液中Pb2+和Cl-的浓度,计算Ksp值。

4. 数据处理,根据实验测定结果,计算氯化铅的溶度积常数Ksp。

实验结果与分析:经过实验测定,得到氯化铅的溶度积常数Ksp为3.2×10^-5。

根据Ksp的定义,Ksp值越大,溶解度越大,溶液中的离子浓度越高。

因此,实验结果表明氯化铅在水中的溶解度较高。

影响溶度积常数的因素:1. 温度,根据Le Chatelier原理,温度升高会使溶解度增大,Ksp值增大。

2. 离子共存,若有其他离子与氯化铅离子形成沉淀或络合物,则会影响Ksp值的测定。

实验结论:通过实验测定,得到氯化铅的溶度积常数Ksp为3.2×10^-5,实验结果较为准确。

在实验过程中,温度和离子共存等因素对Ksp值的影响需要进一步研究。

实验总结:本实验通过测定氯化铅的溶度积常数,探究了溶度积常数的测定方法和影响因素。

实验结果对于进一步研究溶解平衡和溶度积常数的影响具有一定的参考价值。

实验中遇到的问题及改进措施:在实验过程中,需要注意氯化铅固体的溶解度和浓度的准确测定,以提高实验结果的准确性。

同时,应注意温度的控制和其他离子的影响,以准确测定溶度积常数Ksp。

实验的局限性:本实验中仅测定了氯化铅的溶度积常数Ksp,对于其他溶解平衡和溶度积常数的影响因素仍需进一步研究,以完善实验结果和结论。

通过本实验,我们对氯化铅的溶度积常数有了一定的了解,同时也为进一步研究溶解平衡和溶度积常数的影响因素提供了一定的参考和基础。

氯化铅溶度积常数的测定实验报告

氯化铅溶度积常数的测定实验报告

氯化铅溶度积常数的测定实验报告一、实验目的1、掌握用沉淀重量法测定氯化铅溶度积常数的原理和方法。

2、学习重量分析的基本操作,包括沉淀的生成、过滤、洗涤、干燥和称重。

3、进一步练习分析天平的使用。

二、实验原理氯化铅(PbCl₂)在水溶液中存在溶解平衡:PbCl₂(s) ⇌ Pb²⁺(aq) + 2Cl⁻(aq)其溶度积常数表达式为:Ksp = Pb²⁺Cl⁻²在一定温度下,通过测定饱和氯化铅溶液中铅离子和氯离子的浓度,即可计算出氯化铅的溶度积常数。

本实验采用重量法测定。

向已知体积的饱和氯化铅溶液中加入过量的硝酸银(AgNO₃)溶液,使氯离子完全沉淀为氯化银(AgCl):Cl⁻+ Ag⁺ → AgCl↓将沉淀过滤、洗涤、干燥后称重,根据氯化银的质量计算出氯离子的浓度,进而计算出饱和氯化铅溶液中铅离子的浓度,最终求得氯化铅的溶度积常数。

三、实验仪器和试剂1、仪器分析天平、漏斗、滤纸、玻璃棒、烧杯、移液管(25 mL、50 mL)、容量瓶(250 mL)、恒温槽。

2、试剂氯化铅固体、硝酸银溶液(01000 mol/L)、硝酸溶液(1 mol/L)。

四、实验步骤1、制备饱和氯化铅溶液在干净的烧杯中加入适量的氯化铅固体,加入去离子水,搅拌并加热至溶液接近沸腾,保持一段时间使溶液达到饱和。

冷却至室温后,将上层清液用玻璃砂芯漏斗过滤至干燥的容量瓶中备用。

2、沉淀的生成与陈化用 25 mL 移液管准确移取 2500 mL 饱和氯化铅溶液至 250 mL 烧杯中,加入 50 mL 去离子水,搅拌均匀。

然后,边搅拌边逐滴加入 5000 mL 01000 mol/L 的硝酸银溶液,生成氯化银沉淀。

继续搅拌 5 分钟,使沉淀反应充分进行,然后将溶液静置陈化 30 分钟。

3、沉淀的过滤与洗涤用倾斜法将沉淀上层清液通过预先处理好的滤纸过滤至另一个干净的烧杯中。

然后,用少量去离子水将沉淀冲洗到漏斗中,继续用去离子水洗涤沉淀,直至滤液中用 1 mol/L 硝酸溶液检验无氯离子为止(取少量滤液,滴加硝酸溶液,无白色沉淀生成)。

荧光探针法测定碘化铅溶度积常数

荧光探针法测定碘化铅溶度积常数

的 配合物 D M A B T S — H g ( Ⅱ) , 阻 断 了 电子 转 移 。 D M A B T S —H g ( Ⅱ) 的配 位常数 为 7 . 4 8 x t 0 , 除I 一 外, D M A B T S对 H g 的识 别不受 其它 阳 、 阴离子 干扰 。 [ 4 1 I 一 干扰识别是 因为 I 一 会 取代 D M A B T S 一
降低 ;当 D M A B T S和 H g 的质 量 比 为 1 : 1 . 5
时. 荧 光 完 全 猝 灭 。 这 是 因为 两 者 形 成 了 稳 定
报道 。荧光 探针法是一 种测定难溶 电解质溶度 积 的全新 方法 。用它 测定 P b I : 的溶度 积 常数 ,
可 以直 接 检 测 P b I 饱 和溶 液 中 I 一 浓度 , 不 必象 用 分光光度 法那样 必须先将 I 一 氧 化成 I ,也 不
作者简介 : 俞芸 , 女, 福建长汀人 , 龙岩学院化 学与材料 学院教授 , 主要研 究方向: 有机发 光化合物 的合成 、 荧光分析 。
基金 项 目: 2 0 1 2年福建省级大学生创新创业训练计划项 目( 6 8 2 ) 。
1 4
ቤተ መጻሕፍቲ ባይዱ光探针法测定碘化铅溶度积 常数
a = [ P b ] ( 过量) + 要
当P b I 饱 和溶 液 中 I -  ̄
Ks p a xb
H g z + 储 备 液 , 以 水 稀 释 至 刻 度 ,摇 匀 , 得 D M A B T S — H g ( I I ) 配合 物标准溶 液 ( p H = 5 , 浓度
C= 1 . 0 0 ×1 0 — 5 m o l / L ) 。 在 h e x = 3 2 0 n m、激 发 /

碘化铅溶度积常数的测定 doc

碘化铅溶度积常数的测定 doc

碘化铅溶度积常数的测定一、实验目的(1)了解分光光度计测定难溶盐溶度积常数的原理和方法;(2)学习单光束单波长分光光度计的使用方法;(3)学习标准曲线法测定物质浓度。

二、实验原理本实验碘化铅的溶度积测量采用分光光度计测定。

碘化铅在饱和溶液中存在下列平衡: Pb 2+ +I - == PbI 2(s)ca (a-b)/2 a-bc-(a-b)/2 b初始浓度(mol/L)反应浓度(mol/L)平衡浓度(mol/L)K sp =[Pb 2+][I -]2从上述关系看出,获得陈定溶解平衡时碘离子浓度,再根据上述定量关系得到平衡时铅离子浓度,最后由溶度积常数表达式得到室温下碘化铅的溶度积,由于碘离子在可见光区无吸收,因此首先将沉淀溶解平衡体系中碘离子与亚硝酸钾反应得到碘单质。

在采用工作曲线法,得到沉淀溶解平衡体系中碘离子浓度。

三、仪器与试剂1. 仪器烧杯、玻璃棒、容量瓶、移液管、分光光度计、致密定性滤纸、漏斗、量筒、洗耳球、镜头纸、橡皮塞、滴管2. 试剂Pb(NO 3)2、KNO 2、KI 、盐酸(6摩尔每升)。

四、实验步骤1.浓度标准曲线的绘制在5支干燥试管中分别用移液管移入1.00mL,1.50Ml,2.00mL,2.50mL,3.00mL 碘化钾(0.0035mol/L )溶液,再依此移入2.00mL 亚硝酸钾(0.020mol/mL )溶液,3mL 水分别滴加1滴盐酸(6mol/L)。

摇匀后,以水为参比液,在520nm波长下测定其吸光度。

以吸光度为纵坐标,以碘离子浓度为横坐标,绘制碘离子标准曲线。

2.制备碘化铅饱和溶液1 5.00 3.00 2.002 5.00 4.00 1.003 5.00 5.00 0.003(1)取3支干燥的大试管,按表用量加入0.015mol/L硝酸铅溶液、0.035mol/L碘化钾、水,使试管中溶液的总体积为10mL。

(2)加完试剂后,充分摇荡试管20min,然后将试管静置3~5分钟。

氯化铅溶度积常数的测定实验报告

氯化铅溶度积常数的测定实验报告

一、实验目的1. 了解溶度积常数的概念及其测定方法。

2. 掌握氯化铅溶度积常数的测定原理和操作步骤。

3. 培养实验操作技能,提高实验数据分析能力。

二、实验原理溶度积常数(Ksp)是难溶电解质在饱和溶液中达到沉淀溶解平衡时,各离子浓度幂的乘积。

对于氯化铅(PbCl2)而言,其溶度积常数为Ksp = [Pb2+][Cl-]2。

本实验采用直接电位法测定氯化铅溶度积常数。

通过测定饱和溶液中Pb2+和Cl-的浓度,计算溶度积常数。

三、实验仪器与试剂1. 仪器:电化学工作站、电极、烧杯、移液管、容量瓶、玻璃棒等。

2. 试剂:氯化铅(PbCl2)固体、硝酸、盐酸、去离子水等。

四、实验步骤1. 配制氯化铅饱和溶液:称取一定质量的氯化铅固体,溶解于去离子水中,定容至一定体积,配制成一定浓度的氯化铅溶液。

2. 测定饱和溶液中Pb2+和Cl-的浓度:(1)分别移取一定体积的饱和溶液于两个烧杯中;(2)向第一个烧杯中加入一定量的硝酸,使PbCl2沉淀完全;(3)向第二个烧杯中加入一定量的盐酸,使PbCl2沉淀完全;(4)过滤,分别测定两个烧杯中溶液的Pb2+和Cl-浓度。

3. 计算溶度积常数:根据实验数据,计算饱和溶液中Pb2+和Cl-的浓度,代入溶度积常数表达式Ksp = [Pb2+][Cl-]2,计算氯化铅的溶度积常数。

五、实验结果与讨论1. 实验数据| 溶液 | Pb2+浓度(mol/L) | Cl-浓度(mol/L) || ---- | ----------------- | ---------------- || 饱和溶液 | 0.0012 | 0.0048 |2. 计算溶度积常数Ksp = [Pb2+][Cl-]2 = 0.0012 × (0.0048)2 = 2.82 × 10^-63. 结果讨论根据实验结果,氯化铅的溶度积常数为2.82 × 10^-6,与文献值(2.82 × 10^-5)基本吻合,说明本实验方法可行。

碘化铅溶度积常数的测定实验报告

碘化铅溶度积常数的测定实验报告

碘化铅溶度积常数的测定实验报告碘化铅溶度积常数的测定实验报告引言:碘化铅是一种重要的无机化合物,在化学实验中常用于制备其他化合物或进行定性和定量分析。

而测定其溶度积常数则是了解其溶解特性和溶解度的重要手段。

本实验旨在通过测定碘化铅在不同温度下的溶解度,进而计算得到其溶度积常数。

实验设计:实验采用了饱和溶液法来测定碘化铅的溶度积常数。

首先,制备一系列不同浓度的碘化铅溶液,然后测定其溶解度,并根据溶解度数据计算溶度积常数。

实验过程中,控制溶液的温度变化,以观察温度对溶解度和溶度积常数的影响。

实验步骤:1. 准备工作:清洗玻璃仪器,准备所需试剂和仪器。

2. 制备一系列不同浓度的碘化铅溶液:根据所需浓度,称取适量的碘化铅固体,加入一定量的溶剂(如水),充分搅拌直至固体完全溶解。

3. 测定溶解度:取一定量的碘化铅溶液,加热至一定温度,用玻璃棒搅拌,直至达到饱和状态。

记录溶解度数据。

4. 计算溶度积常数:根据饱和溶解度数据和溶剂的体积,计算溶度积常数。

实验结果与讨论:实验结果表明,随着温度的升高,碘化铅的溶解度也随之增加。

这与溶解过程中的热力学原理相符。

根据实验数据,可以计算得到碘化铅的溶度积常数。

通过对实验结果的分析,我们可以得出以下结论:1. 温度对碘化铅的溶解度有显著影响:随着温度的升高,溶解度增加,说明碘化铅在高温下更容易溶解。

2. 溶解度与溶度积常数的关系:溶解度与溶度积常数成正比,即溶度积常数越大,溶解度越高。

3. 实验误差的影响:实验中可能存在一些误差,如称量误差、温度控制不准确等,这些误差会对实验结果产生一定影响。

结论:通过本实验的测定,我们成功得到了碘化铅的溶度积常数,并观察到温度对其溶解度的影响。

这对于进一步研究碘化铅的溶解特性和应用具有一定的意义。

同时,本实验也提醒我们在实验过程中要注意控制误差,确保实验结果的准确性。

参考文献:[1] Smith, J. D., Johnson, M. E., & Brown, J. M. (2006). Solubility product of lead iodide. Journal of Chemical Education, 83(8), 1172.[2] Zaman, M. S., & Hossain, M. M. (2017). Solubility product constant of lead iodide in different solvents at different temperatures. Journal of Chemical Education, 94(10), 1410-1415.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五碘化铅溶度积常
数的测定
集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
实验五碘化铅溶度积常数的测定
一.实验目的
1.了解用分光光度计测定溶度积常数的原理和方法
2.学习分光光度计的使用方法。

二.实验原理
碘化铅是难溶电解质,在其饱和溶液中,存在下列沉淀—溶解平衡
PbI
2
(s) === Pb2+(ag) + 2I-(ag)
PbI
2
的溶度积常数表达式为:
Ksp Q(PbI
2
)==[c(pb2+)/c Q]·[c(I-)/c Q]2在一定温度下,如果测定出PbI2饱和溶液中的c(I-)和c(Pb2+),
则可以求得Ksp Q(PbI
2

若将已知浓度的Pb(NO
3)
2
溶液和KI溶液按不同体积混合,生成的
PbI
2
沉淀与溶液达到平衡,通过测定溶液中的c(I-),再根据系统的初始组
成及测定反应中的Pb2+于I-的化学计量关系可以计算出溶液中的c
(Pb2+)。

由此可求得PbI
2
的溶度积。

实验先用分光光度法测定溶液中c(I-)。

尽管I-是无色的,但可在酸
性条件下用KNO
3
将I-氧化为I2(保持I2浓度在其饱和浓度以下)。

I2在水溶液中呈橙黄色。

用分光光度计在525nm波长下,测定由各饱和溶液配制的I2溶液的吸光度A,然后由标准吸收曲线查出c(I-),则可计算出饱和溶液中的c(I-)。

三.实验内容
3.绘制 A-c(I-)标准曲线图
四.思考题
1.配制pbI2饱和溶液时,为什么要充分摇荡。

答:为使pb(NO
3)
2
和KI充分反应
2.如果使用湿的小试管配制比色溶液,对实验结果将产生什么影响?
3.
答:溶液浓度会被稀释,使测得的溶液吸光度变小,从而影响计算结果。

相关文档
最新文档