线性代数行列式习题+问题详解
线性代数疑难问题解答

线性代数疑难问题解答第一章 行列式1. 排列21)1( -n n 的逆序数是2)1(-n n ,那么如何来确定它的奇偶性?解答:我们可以看一下这个排列的奇偶性随着n 的变化情况,然后找出规律。
,1=n 2)1(-n n =0,偶排列; ,2=n 12)1(=-n n ,奇排列; ,3=n 32)1(=-n n ,奇排列; ,4=n 62)1(=-n n ,偶排列; ,5=n 102)1(=-n n ,偶排列; ,6=n 152)1(=-n n ,奇排列 可以看出,奇偶性的变化以4为周期,因此我们可以总结如下:当k n 4=或14+=k n 时, 2)1(-n n 是偶数,所以排列是偶排列,当24+=k n 或34+=k n 时, 2)1(-n n 是奇数,所以排列是奇排列.2.行列式定义最基本的有哪些?答:行列式定义最基本的有以下两种: 第一种方式:用递推的方式给出,即 当11)(⨯=a A 时,规定a =A ;当n n ij a ⨯=)(A 时,规定∑∑==+=-=nj ij ij ij ij nj ji A a M a 11)1(A其中ij M 为A 中去掉元素ij a 所在的行和列后得到的1-n 阶行列式,称为A 中元素ij a 的余子式,ij j i ij M A +-=)1(称为ij a 的代数余子式。
第二种方法:对n 阶行列式A 用所有!n 项的代数和给出,即∑-==n np p p t nnn n nna a a a a a a a a a a a A2121212222111211)1(其中n p p p ,,,21 为自然数n ,,2,1 的一个排列,t 为这个排列的逆序数 第一种方式的思想是递推,其实质也是“降阶” ,在实际计算行列式中有着重要的应用。
第二种方式的思想是对二阶、三阶行列式形式的推广,更利于理解行列式的性质。
3.行列式的主要问题是什么?答:行列式的主要问题就是计算行列式的值,其基本方法是运用行列式性质,化简所给行列式而计算之。
第一章 行列式答案详解

第一章行列式习题1.1二阶和三阶行列式1.计算下列二阶行列式.()12112-=4(1)5--=()222111x x x x -++22(1)(1)x x x x =-++-321x x =--【分析】考查二阶行列式的计算公式2.计算下列三阶行列式.()1251312204--1301113113123024204===()2a bcb c a c a b 11()1()011b c b ca b c c a a b c c b a ca b a b b c=++=++----333()3c b a c a b c abc a b c a b b c --=++=-----【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式3.当x 取何值时,3140010x x x¹.【解析】31210214040(24)0241010x x x x x x xxxx x且===-【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式习题1.2排列1.求下列排列的逆序数,并确定它们的奇偶性.()14132;()41324t =,为偶排列()2542316;()5423169t =,为奇排列()3()()246213521n n -L L .()()()(1)2462135212n n n n t +-=L L ,4142443n k k n k k =++⎧⎨=+⎩或时,为奇排列或时,为偶排列【分析】考查逆序数的计算及奇偶排列的概念*2.设排列12n i i i L 的逆序数为k ,求排列121n n i i i i -L 的逆序数.【解析】考虑第m 个数(m=1,2,...,n-1),它与后面n-m 个数的每一个数都有一个“序”,这个序要么是“顺序”,要么是“逆序”。
这样全部的“序”共有:(n-1)+(n-2)+...+2+1=n(n-1)/2个。
12n i i i L 逆序数是k ,那么排列121n n i i i i -L 的逆序是n(n-1)/2-k 【分析】考查逆序概念习题1.3n 阶行列式1.写出四阶行列式中含有因子1123a a 的项.【解析】1123344211233244;a a a a a a a a +-【分析】行列式的定义2.在5阶行列式中,下列各项应取什么符号?()11523314254a a a a a ;()152********,+a a a a a 取“”t =()22132441355a a a a a ;()21324413552,+a a a a a 取“”t =()34153122435a a a a a .()41531224355,a a a a a 取“-”t =【分析】行列式的定义3.设一个n 阶行列式中等于零的元素的个数大于2n n -,试证明该行列式为零.【解析】N 阶行列式共有2n 个元素,等于零的元素的个数大于2n n -,则非零元素个数小于n 个,即一定出现一个0行,则行列式值为0.【分析】行列式的定义4.用行列式的定义计算下列行列式.()1010000200001000n n -L LM M M LML L (23(1)1)112231,11(1)(1)!n n n n n a a a a n τ----=-=- ()2()()1111121211000n n n n a a a a a a --L L MLM M L(1)((1)21)212(1)112(1)1(1)(1)n n n n n n n n n n a a a a a a τ----=-=- 【分析】行列式的定义和主次对角线行列式的结论5.设()11121314212223243132333441424344x a a a a a x a a a f x a a x a a a a a x a --=--,求()f x 中3x 的系数.【解析】根据行列式的定义,3x 系数只能来自于一项11223344()()()()x a x a x a x a ----,即11223344()a a a a -+++【分析】行列式的定义习题1.4n 阶行列式的性质1.用行列式的性质计算下列行列式.()1a x x x x b x xx x c x+++000000a x x x x x x b x xb x x x b x x a x b xc xx c x x x c x x c +=+++=++++2()()()a b x c x x bcx abc ab ac bc x=++-+=+++【分析】各行或各列元素之和相等的行列式+展开定理+三角化方法()22464273271014543443342721621-1321122331299001003279001003270100327190010044310000116100001169001006210029400294c c r r c c c c r r +----===121000011601003272940000000294r r «=-=-【分析】行列式性质+行列式性质+三角化方法()3ab ac aebd cd debf cf ef---1111111111110020204111020002abcdef abcdef abcdef abcdef---=-==-=-【分析】各行或各列元素之和相等的行列式+行列式性质+三角化方法2.将下列行列式化为上三角形行列式,并计算其值.()1111111111111022281111002211110002-==-----【分析】三角化方法的计算()222401120112011204135413505550111221031233123048304832051205102110211----------=-=-=---------112011201120111011101111010102500047001800180031003100025---------=-=-=-=----------【分析】三角化方法的计算3.计算下列行列式.()111100[(1)][(1)]100x a a aa a a a x a x a x a x n a x n a a a x ax x a-=+-=+--L LL L L L M M L M M M L M M M L M L LL 1[(1)]()n x n a x a -=+--10111011120201600022002200220004----=-=-=-----()33312()02()2()0x y x y y x yx yy x y x x y x y x y x y x y xx yxy x yx++-+=+-=+=-+--+--【分析】各行或各列元素之和相等的行列式的计算4.计算下列行列式()112311110010010na a a a L L LM M M LM L ,其中0,2,3,,.i a i n ¹=L 122123211111000110000nn n n a a a a a a a a a a a ---ç==---ççL L L L L LM M M LML 【分析】箭型行列式计算()212111111111111na a a +++L LM M M LML ,其中0,1,2,,.i a i n ¹=L 111121211212211111111100000100000n n n nna aa a a a a a a a a a a a a a a a a +++++-ç===++++çç-L LL L L L L M M M LMM M M L M L L 【分析】利用性质变换为箭型行列式计算5.证明()33by az bz ax bx ayx y z bx ayby az bz ax a b zx y bz ax bx ay by azyzx++++++=++++.【证明】左边by az bz ax bx ayby bz ax bx ay azbz ax bx aybx ayby az bz ax bx by az bz ax ay by az bz axbz ax bx ay by az bz bx ay by az ax bx ay by az+++++++=+++=++++++++++++y bz ax bx ay zbz ax bx ayb x by az bz ax a y by az bz axzbx ay by azx bx ay by az ++++=+++++++++22y bz ax bx zax bx ay y bz ax x z x bx ay b x by az bz a yazbz ax b x by azz a yz bz ax zbx ay by x ay by az z bx ay y xy by az++++=+++=+++++++()223333y bz x z x ay y z x z x y x y z b x byz a y z ax b xy z a yz x a b zx y z bx y x y az z xyxyzy zx=+=+=+【分析】拆项性质+行列式性质6.证明121211221100001000000001n n n n nn n x x x a x a x a x a xa a a a a -------=++++-L L L L M M M L M M LL .【证明】11c n n nD xD a 展开-=+()22121n n n n n n x xD a a x D a x a ----=++=++()3232123232312312121n n n n n n n n n n n n n nx D a x a x a x D a x a x a x a a x a a x a x a x a ----------=+++==+++=++++=++++L L L L 【分析】展开定理+递推发习题1.5行列式的展开1.求行列式30453221--中元素2和2-的代数余子式.【解析】2的代数余子式:313104(1)003A +=-=;2-的代数余子式:323234(1)2953A +-=-=【分析】余子式、代数余子式的概念2.用降阶法计算下列行列式【分析】拉普拉斯展开定理()211122200000000000000=0000000111111231n n na a a a a a a a a nn ------+L L LL MM M L M M MM M L M M L L LL12(1)(1)n nn a a a =+- 【分析】行列式性质+展开定理3.计算下面行列式222244441111a b c d a b c d a b c d .【解析】4D 中各列元素均缺少3次方幂的元素,在4D 中添加3次方幂的一行元素,则产生5阶范德蒙行列式,再适当添加一列得:22222333334444411111()ab c d x f x a b c d x a b c d x a b c d x =按最后一列展开,得2341525354555()f x A xA x A x A x A =++++,因为()()()()0f a f b f c f d ====,所以,,,a b c d 为()f x 的四个根,则()()()()()f x k x a x b x c x d =----由根与系数关系有4555Aa b c d A +++=-,而4545(1)A D D +=-=-,55()()()()()()A b a c a d a c b d b d c =------,则()()()()()()()D a b c d b a c a d a c b d b d c =+++------.【分析】克莱姆法则+展开定理4.已知四阶行列式D 中第1行的元素分别为1,2,0,4-,第3行的元素的余子式依次为6,,19,2x ,试求x 的值.【解析】313233346,,19,2A A x A A ==-==-,由展开定理得:162()019(4)(2)0x ⨯+⨯-+⨯+-⨯-=,解得7x =【分析】代数余子式、余子式+展开定理求11121314及11213141.【解析】1112131411111111016110500164241313042463524130635A A A A -----+++===----------1201048428(1)(1)46136313+--=-=--=---11213141112131411521110513131413M M M M A A A A ---+++=-+-=----152142412000424812812081291210912-----==-=-=------【分析】代数余子式、余子式+展开定理的逆运用习题1.6克莱姆法则1.用克莱姆法则求解下列方程组的解12341234123412342326223832242328x x x x x x x x x x x x x x x x ì++-=ïïïï---=ïíï+-+=ïïï-++=-ïî.【解析】1234324,324,648,324,648D D D D D ====-=-,则12341,2,1,2x x x x ===-=-【分析】克莱姆法则2.设1a ,2a ,3a 互不相同,证明方程组123112233222112233000x x x a x a x a x a x a x a x ì++=ïïï++=íïï++=ïïî只有零解.【解析】系数行列式时范德蒙行列式,因为1a ,2a ,3a 互不相同,则系数行列式非零;再由克莱姆法则可知,该齐次方程组只有零解.【分析】克莱姆法则3.当l 为何值时,齐次线性方程组123122334000x x x x x x x l l ì++=ïïï-+=íïï+=ïïî()1只有零解;()2有非零解.当11λλ≠≠-且时,只有零解;当=1=1λλ-或时,有非零解【分析】克莱姆法则自测题1.填空题(每小题10分,共20分)()1行列式103100204199200395301300600=___2000____.()2已知11111111111111D x---=---,则D 中x 的系数是___4-____.2.计算下列行列式:(每小题15分,共30分)()11(1)(1)(2)220000(1)(1)000000n n n n c nn n D αβαββααββα---==-+-展开()212312323411341(1)3452145221211121n n n n n D n n n +==--(1)(1)1231111101111111101111(1)(1)2211110111111111111n n n n n n nnn n n n n n n n-⨯------++==----(1)(2)1122(1)(1)100100(1)(1)(1)(1)(1)221001000n n n n n n n nn n n n n n n ------⨯-++=⋅-=⋅-⋅-⋅(1)12(1)(1)2n n n n n n --+=-⋅⋅(本题15分)已知2231122D yx=,且1112133M M M +-=,1112131A A A ++=,其中ij M 是D 中元素ij a 的余子式,(1)i j ij ij A M +=-,试求D 的值.【解析】1112133235M M M x y +-=⇒-=111213114A A A y x ++=⇒=⇒=则行列式的值为14.(本题15分)解线性方程组231234231234231234231234x ax a x a x e x bx b x b x ex cx c x c x e x dx d x d x e⎧+++=⎪+++=⎪⎨+++=⎪⎪+++=⎩,其中,,,a b c d 互异.【解析】系数行列式非零,由克莱姆法则可知1234,0,0,0x e x x x ====5.(本题20分)证明:11000100,010001n n a b ab a b ab a b a b a b a ba b++++-=¹+-+L L L M M M L M M L .【解析】上课做为例题已讲过。
线性代数习题集-重点解析

第一章 行 列 式一、判断题1.行列式如果有两列元素对应成比例,则行列式等于零. ( T .) 2. 213210124121012342=-.( F )(简单的性质)3. 13434121.42042=-( T )(运算值相等) 6. n 阶行列式n D 中元素ij a 的代数余子式ij A 为1n -阶行列式. ( T )7. 312143245328836256=.( F )8. 111213212223313233a a a a a a a a a 122r r + 111213211122122313313233222+++a a a a a a a a a a a a ( F ) 9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( T )10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. ( T ) 二、选择题()1.若12532453r s a a a a a 是5阶行列式中带正号的一项,则,r s 的值为( B 因为是5阶所以r+s=5并且逆序数为偶).A.1,1r s ==B.1,4r s ==C.4,1r s ==D.4,4r s ==2.下列排列是偶排列的是( 逆序数是偶数 )A. 4312B. 51432C. 45312D. 6543213.若行列式210120312x --=-, 则x =( 有一列或行相同则为零 ).A.–2B. 2C. -1D. 16.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D ).A .-3B .-1C .1D .37.设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解(系数行列式不为0),则,a b 必须满足( d )..0,0A a b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3.0,2D a b ≠≠ 8. 215152521112223030223-=---是按( B )展开的.A .第2列B .第2行C .第1列D .第1行9.设111211212ni iin n n nna a a D a a a a a a =则下式中( B 一种字母i 或j 是之和,,有两种是和为零 )是正确的.1122.0i i i i in in A a A a A a A +++= 1122.0i j i j ni nj B a A a A a A +++=1122.i i i i in ni C a A a A a A D +++= 1122.i j i j ni nj D D a A a A a A =+++三、填空题2. 四阶行列式中的一项14322341a a a a 应取的符号是___正____. 8.非零元素只有1n -行的n 阶行列式的值等于____0_____.9. 1231231238,a a a b b b c c c =则123123123222c c c b b b a a a ---=_____16___.(因为1和3 行对调了) 10.n 阶行列式nD 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是ij A =___(1)i j ij M +-_,n D 按第j 列展开的n D =__1122j j j j nj nj a A a A a A +++(2)2605232112131412-; (步骤很重要)(再复杂的也这样转换)解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r .(2)y x z x z y z y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;(ab 系数提出来--从左到右) 证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(展开列列想减)证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a .六.用克拉默法则解方程(先求系数矩阵D 的值,再求D1,D2...... )1. 12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩; 2.121232343454556156056056051x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪+=⎩.七. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解(系数行列式必为零)?第二章 矩 阵一、判断题1.若A 是23⨯矩阵,B 是32⨯矩阵,则AB 是22⨯矩阵. ( T )2.若,AB O =且,A O ≠则.=B O ( F )3. 12103425X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的解110122534X -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. ( F 逆矩阵在左边则T) 4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( T )6. 若,A B 为同阶可逆矩阵,则11()kA kA --=. ( F )7. 42042069126232110110⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭. ( F )8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( T )9.设,A B 为同阶方阵,则 A B A B +=+. ( F )10.设 ,A B 为n 阶可逆矩阵,则 111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.( T ) 二、选择题1. 若,A B 为n 阶矩阵,则下式中( D )是正确的.22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有2.若,s n n l A B ⨯⨯,则下列运算有意义的是( A )..T T A B A .B BA .+C A B .+T D A B3.若,m n s t A B ⨯⨯,做乘积AB 则必须满足( C )..=A m t .=B m s .=C n s .=D n t5.设2阶矩阵a b A c d ⎛⎫=⎪⎝⎭,则*=A ( A )A .⎪⎪⎭⎫ ⎝⎛--a c b dB .⎪⎪⎭⎫ ⎝⎛--a b c dC .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛--a b c d 6. 矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 7. 设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( 因为6-7=-1 ).A .⎪⎭⎫ ⎝⎛--3172 B .⎪⎭⎫ ⎝⎛3172 C .⎪⎭⎫ ⎝⎛--3172 D .⎪⎭⎫ ⎝⎛21738. n 阶矩阵A 行列式为,A 则kA 的行列式为( B ).A. kA B. n k A C. k A D. -k A9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有( C )..==A A B E .=B A E .=B B E .,D A B 互为逆矩阵10.设A 是任意阶矩阵,则( C )是对称阵..(+)T T A A A .+T B A A .T C AA .T T D A AA三、填空题 _.4.⎪⎪⎪⎭⎫ ⎝⎛321(1,2,3)=__得3行3列的矩阵________. 5.n 1111⎪⎪⎭⎫⎝⎛=______11112222n n n n ----⎛⎫⎪⎝⎭____. 9.设A=⎪⎪⎭⎫ ⎝⎛d c b a ,且det(A)=ad-bc≠0,则A -1=___1d b ad bc c a -⎛⎫⎪--⎝⎭__ . 10. 设 ,A B 为n 阶可逆矩阵,则 1O A B O -⎛⎫= ⎪⎝⎭ __11.--⎛⎫⎪⎝⎭O B AO A B 互换了 四、计算题9. 设A 为3阶矩阵, , 求-1(2)-5A A *.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.10.设(1,2,1),28,A diag A BA BA E *=-=- 求.B解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1=-8(AA *-2A )-1=-8(|A |E -2A )-1=-8(-2E -2A )-1=4(E +A )-1=4[diag(2,-1,2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).11.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭, 求8A |及4A .解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A 五、证明题1. 设,A B 为n 阶矩阵,且A 为对称矩阵,证明TB AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.2.设,A B 为n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =.证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .第三章 矩阵的初等变换与线性方程组一、选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是( B )(A) r n = (B) r n <(C) r n ≥ (D) r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是(D )(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则( C )(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( B ) (A) 1211212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+5.设A 为m n ⨯矩阵,则下列结论正确的是( D )(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解 (D) 若AX b =有无穷多解 ,则0AX =有非零解6.线性方程组123123123123047101x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ( C )(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只有零解 二、判断题1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。
《线性代数》同济大学版 课后习题答案详解

|2A1|(2)3|A1|8|A|18216
17设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*
证明由 得A*|A|A1所以当A可逆时有
|A*||A|n|A1||A|n10
从而A*也可逆
因为A*|A|A1所以
(A*)1|A|1A
又 所以
(A*)1|A|1A|A|1|A|(A1)*(A1)*
5设 问
(1)ABBA吗?
解ABBA
因为 所以ABBA
(2)(AB)2A22ABB2吗?
解(AB)2A22ABB2
因为
但
所以(AB)2A22ABB2
(3)(AB)(AB)A2B2吗?
解(AB)(AB)A2B2
因为
而
故(AB)(AB)A2B2
6举反列说明下列命题是错误的
(1)若A20则A0
解取 则A20但A0
解 令
则
故
29设n阶矩阵A及s阶矩阵B都可逆求
(1)
解设 则
由此得
所以
(2)
解设 则
由此得
所以
30求下列矩阵的逆阵
(1)
解设 则
于是
(2)
解设 则
第三章 矩阵的初等变换与线性方程组
1把下列矩阵化为行最简形矩阵
(1)
解 (下一步r2(2)r1r3(3)r1)
~ (下一步r2(1)r3(2))
~ (下一步r3r2)
(3)
解 (下一步r12r4r22r4r33r4)
~ (下一步r23r1r32r1)
~ (下一步r216r4r316r2)
~
~
矩阵的秩为3 是一个最高阶非零子式
10设A、B都是mn矩阵证明A~B的充分必要条件是R(A)R(B)
线性代数习题册行列式-习题详解.doc

行列式的概念一、选择题1. 下列选项中错误的是 ( )a b c d (B)a b d b (A)da b ; c dc ;caa 3cb 3d a b a ba b (C)cdc ; (D)c dc.dd答案: D2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行列式的值().(A) 保持不变; (B) 可以变成任何值;(C) 保持不为零; (D)保持相同的正负号.答案: C二、填空题1.log a b 1 =.1log b a解析: log ab1 log a b log b a1 1 1 0 .1 log b acos sin2.36=.sincos 3 6cos sin解析:3 6 cos cos sin sin cos0sin cos 3 63 6 23 62x 1 33. 函数 f (x)x x 1 中, x 3 的系数为;21 x2x 1 1g( x)x x x 中, x 3的系数为.12x答案: -2 ; -2.阶行列式 D n中的n最小值是.答案: 1.1 2 35.三阶行列式0 2 4 中第2行第1列元素的代数余子式3 1 1等于.答案: 5.6.若 2x 8 0 ,则x= .1 2答案: 2.7. 在n 阶行列式 D a ij 中,当 i<j 时,aij 0(i, j 1,2, L ,n) ,则D= .答案: a11 a22 a nn.a b 0b a 0 0.1 0 1a b 0( 1ab )解析: b a 0 ( a2 b2 ) 01 0 1b a故 a 0, b 0 .三、解答题1.用行列式的定义计算 .0 1 0 11 0 1 0(1)1 0;0 00 0 1 11 1 0 1 0 1 解:原式 =1 ( 1)1 20 0 0 1 ( 1)1 4 0 1 00 1 0 0 0 18. 设a, b 为实数,则当a=, b=时,0 0 1 0 1解:由对角线法则,得 D 111 2 , D 21 0 0 111 2a b 0 0 若 D 1 D 2 , 则 于是1或 1.0 c d 0(2)四、证明题0 0 e.f1. (略)g h 0行列式的性质c d 0 0 d 0原式 = a 0 efb 0 ef一、选择题h 0 0g 0 0x 0 1 2 3 2e f0 f 0 f1.设行列式 D 10 x 1 0 , D 2 1 5 3 , 若 D 1 D 2 ,10 x3 1 1=a cdbdh g= adfhbdfg则 x 的取值为 ( ).(A)2 ,-1 ; (B)1 , -1 ;(C)0 ,2;(D)0,1.0 1 3 1 1答案: B2. 设行列式 D 10 1 0 ,D 2 2 3 2 , 若 D 1 D 2 ,a 11 a 12 a 1311 5 32.若 Da 21a 22a233 ,求 的值 .a31a32a332a11 5a13 a12 a13则 D1 2a21 5a23 a22 a23=().2a31 5a33 a32 a33(A)30;(B) -30 ;(C)6 ;(D)-6.答案: C二、填空题1.若三阶行列式 D 的第一行元素分别是1,2,0, 第三行元素的余子式分别是8,x,19,则 x =.解析: 1 8 2x 0 19 0, x 4 .2016 2018=.2.201620142016 2018 2 2 2 2 解析:2016 2014 2016 0 4 .2014 2a b c3. 行列式D b a c ,则 A11 A21 A31= .d b c1 b c解析: A11 A21 A31 1 a c 0 .1 b c5x 1 2 34. 行列式D42 1 x 3x x 2的展开式中, x 4的系数31 2 1 3x为; x3 的系数为.5x 1 2 3 5x 1 2 32 1 x3 x x 2 3解析: D 4x 2 3 2 1 x 3x1 2 1 3x 1 2 1 3x5x 1 2 30 x1 8 125 5 52 1 x 31 2 1 3x含 x4, x3的项仅有主对角线上元素之积项,故x 4, x3的系数分别为 15, -3.三、解答题1. 计算下列行列式 .1 2 3 42 3 4 1 (1);3 4 1 2 4 1 2 3解:各行加到第一行,得10 10 10 10 1 1 1 1 2 3 4 1 2 3 4 1 原式 =4 1 2 104 1 2 3 3 41 2 3 4 1 2 31 1 1 1 1 1 1 10 1 2 1 0 1 2 1 = 101 2 1 100 4 160 .0 0 0 03210 041 1 1 1 11 234 52 2 22(2) 12 3 4 5 ;3 3 3 3 1 2 345 4444 1 234 5解:原式 =(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.1 4 9 16 4 9 16 25 ;(3)16 25 3691625 36491 4 9 16 1 4 9 16 3 5 7 9 3 5 7 9 原式 =7 9 11 2 2 2 0 .5 2 7 9 11 132 2 2 20 y 0 xx 0 y 0;(4)x 0 yy 0 x 0x y 0 x 0 y 原式 = y 0 0 y x 0 x 0y x 0 y 0 x= y 2 xy x 2 x y ( x 2 y 2 ) 2 . y x y x1 x yz(5) 1 y zx ;1 z xy1 x yz原式 = 0 y x z( y x)0 z x y( z x)=1 z( y x)( z x) ( x y )( y z )( z) .y x11 0 1 0 00 2 1 0 0(6) 3 1 0 0 0 ;0 0 0 2 10 0 0 0 21 0 1 01 0 1 1 0 10 2 1 04 0 2 1 4 0 2 1原式 = 21 0 033 1 0 0 1 30 0 0 2=2 14 20 .1 31 x1 1 1 11 1 x2 1 1;(7)1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x1解:原式 = 1 x2 0 0 1 0 x3 0 1 0 0 x41x1 x1 x1x1 x1 x1 x1x3x2 x4= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.1 5 1 31 1 3 4,计算 A41 A42 A43 A44的值.2. 设D1 2 312 23 4其中 A4 j ( j 1,2,3,4) 是 D 的代数余子式.1 5 1 3解: A41 A42A431 1 3 4A441 26 .1 31 1 1 13 5 2 13. 已知D1 1 0 1 M11M21M31M41.1 3 1, 求12 4 1 1解: M 11M21M31M41=1 M11( 1)M 21 1 M 31 ( 1)M 411 52 11 1 0 1=3 1=0.1 11 4 1 14. 计算下列n 阶行列式.2 1 1 1 1 1 1 (1) 1 2 1 ;y x y y解:原式 = x (n 1) y y y x y1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x y y yy x y y (2) y y x y ;y y y xy y y x1 1 1 10 x y 0 0= x (n 1) y 0 0 x y 00 0 0 x y= x (n 1) y ( x y) n 1.0 1 1 11 x1 0 0(3) 1 0 x2 0 ( x i 0,i 1,2, ,n) .1 0 0 x nn1111i 1 x i解:原式 =0 x 1 0 0 00 x 2 0x n=x 1 x 2x n (n1) .i 1x i四、证明题11 1= (b a)(c a)112ab a 2c 2ac a 2b= (b a)(c a)(c 2 b 2ac ab)= (b a)(ca)(c b)( a b c) =0,由于 a , b , c 是互异的实数,故要上式成立,当且仅当 a+b+c=0.abcd2. 证明a a+ba b c c a b c da 4a 2ab 3a 2b 4a 3b 2cd a3a b 6a 3b c 10a 6b 3c d1. 设 a , b , c 是互异的实数,证明a b c 0 的充分必要条 a bc da 3b 3c 3r 4r 30 a a ba b c件是 a+b+c=0.证明:左边r 3 r 2a2a b3a2bc11 1 1r 2r 10 a 3a b 6a 3b c证明: ab c a b a c a a bc d a bc da3b 3c 3a 3b 3 a 3c 3 a 3r 3 0 a a b a b c0 a a b a b cr 44r 3 r 21 0 0ar 4r 3a ab ac a2a b 0 2a b =a 3 c 3 a 30 0a3a b0 0ab 3=右边克莱姆法则一、选择题x1 x2 x3 1,1.方程组x1 x2 x3 1, ,有唯一解,则( ).x1 x2 x3 1(A) 1且 2 ;(B) 1 且 2 ;(C) 1且 2 ;(D) 1 且 2 .1 1解析:由克莱姆法则,当 1 1 (2 )( 1) 2 0 ,即1 11且 2 ,选B.ax z 0,2. 当a ()时,方程组2x ax z 0, 只有零解.ax 2 y z 0(A) -1 ;(B) 0 ;(C) -2 ; (D) 2.解析:由克莱姆法则,a 0 1 0 0 1当 2 a 1 2 a a 1 2(a 2) 0a 2 1 0 2 1即a 2 ,选D.三、解答题1.用克莱姆法则下列解方程组 .x 2 y z 2,(1) x 2 y 2z 3,2x y z 3;1 2 1解: D 1 2 2 3 0 ,2 1 1由克莱姆法则知,此方程组有唯一解,22 1D13 2 2 3 ,31 11 2 1 1 2 2D 2 1 3 2 6 , D 3 1 3 3 9 ,2 3 1 2 3 3因此方程组的解为D1 D 22 , z D 33 .x 1, yDD Dx1 2 x2 x3 x4 1,2x1 3x2 x3 2x4 3, (2)3x2 2x3 x4 ..x1 2, 2x1 4x2 3x3 3x4 21 2 1 1解: D 2 3 1 24 01 32 12 43 3由克莱姆法则知,此方程组有唯一解,1 2 1 1 1 1 1 13 3 1 28 , D 22 3 1 2D13 2 1 1 2 22 ,2 12 43 3 2 2 3 31 2 1 1 1 2 1 12 3 3 2D 42 3 1 32 .D33 22 ,1 32 21 12 4 23 24 3 2因此方程组的解为D12 , x2D 2 1 D 3 1 D 4 1x1D, x3D, x4D.D 2 2 22x1 2x2 x3 0,2. 判断线性方程组x1 2x2 4 x3 0, 是否有非零解5x1 8x2 2x3 02 2 1 1 2 4解:因为系数行列式 D 1 2 4 2 2 15 8 2 5 8 21 2 4 1 2 4= 0 6 9 0 6 9 30 0 ,0 18 22 0 0 5所以,方程组只有零解.x1 kx2 x3 0,3. 已知齐次线性方程组kx1 x2 x3 0, 有非零解,求k 的值.2x1 x2 x3 0解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即1 k 1 1 k 1k 1 1 0 1 k 2 1 k2 1 1 0 1 2k 3= 3(1 k 2 ) (1 k)(1 2k)= (1 k)( 4 k ) 0解得, k=-1 或 k=4.2x1 4x2 ( 1) x3 0 4. 当取何值时,齐次线性方程组 ( 3) x1 x2 2x3 0 有非x1 (1 ) x2 x3 0 零解解:由齐次线性方程组有非零解的条件可知,2 4 13 1 2 0 ,解得0,2,3 .1 1 1第一章综合练习一、判断题1. n 阶行列式D n中的 n 最小为2.( ╳ )2. 在 n 阶行列式D a ij 中元素 a ij (i, j 1,2, L) 均为整数,则D必为整数 .( √ )a 11 0a 14a22a23a 14 a 23a 32 a 41 .(╳3.a32a33a 11a22 a 33 a44a410 0a44)二、选择题1. 若 D 13x 1 x 2x 11 1x 1, D 2x,则 D 1 与 D 2 的大12小关系是 ( ).(A) D 1D 2 ; (B) D 1 D 2 ; (C) D 1 D 2 ; (D) 随 x 值变化而变化 . 答案: Ca bcos20 sin 40 =.1.cos40sin 20解析:cos20 sin 40 cos20 cos40sin 20cos401cos60.2 2. 若 x 2y 2 x x , 则 x+y =. 1 1yy解析:由 x2y 2 xx ,得 x 2 y 21 1 y y即 ( xy) 2 0 ,从而 x+y =0.sin 20 sin 402xy2. 行列式 (a,b,c, d 1,1,2 ) 的所有可能值中, 最大 c d的是 ( ).(A) 0 ; (B)2 ; (C)4 ; (D)6.答案: D3. 已知x2 0,x y 1,则 y = .1 1 11x 2 x y 解析:由1 10,1 , 得 x =2, x-y =1, 从而 y =11 1三、填空题13 54.若a2b2c2a2 A2b2 B2c2 C 2,则 C 2化简后的结果24 6等于.解析: C21 32 .2 42x x 1 25. 设f ( x) 1 x 1 14 的系数为; x3的3 2 x,则 x11 1 1 x系数为.解析:当 f ( x)的主对角线的 4 个元素相乘才能得出x 4,系数3为 2;含x的项只能是a12 , a21, a33 , a44的乘积,系数为-1.1 2 3 4 51 1 12 26. 设D 3 2 1 4 6 ,2 2 2 1 14 3 2 10则 (1) A31A32 A33= ; (2)A34A35 ;( 3)A51 A52 A53 A54 A55 .解析: A31A32A33 2( A34 A35 ) 02(A31A32 A33 ) ( A34 A35 ) 0于是A31 A32 A33 0 , A34 A35 0 .1 2 3 4 51 1 12 2A51A52A53A54A55 3 2 1 4 62 2 2 1 11 1 1 1 11 2 3 4 51 1 12 23 2 14 60 .3 3 3 3 31 1 1 1 1即 A51A52A53A54A550 .四、解答题1.计算下列行列式 .x1 y1 x1 y2 x1 y3 x1 y4(1) x2 y1 x2 y2 x2 y3 x2 y4 ;x3 y1 x3 y2 x3 y3 x3 y4x4 y1 x4 y2 x4 y3 x4 y4x1 y1 y2 y1 y3 y1 y4 y1x2 y1 y2 y1 y3 y1 y4 y1 解:原式 =x3 y1 y2 y1 y3 y1 y4 y1x4 y1 y2 y1 y3 y1 y4 y1x1 y1 y2 y1 y3 y1 y4 y1x2 x1 0 0 0 =x1 0 00 .x3 0x4 x1 0 0 01 x1 1 1 11 1 x2 1 1(2) ;1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x11 x2 0 0解:原式 =0 x3 011 0 0 x41x1 x1 x1x1 x1 x1x1x3 x4x2= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.0 0 0 1 0 0 0 2 0 0(3)2005 0 0 .0 02006 0 0 0 00 0 0 0 20072006 2005解:原式 = 2007 ( 1) 2 2006! = 2007!1 2 3 4 52 2 2 1 12. 已知D 3 1 2 4 527 ,1 1 12 24 3 15 0求 (1) A41A42 A43;(2)A44A45.解: 1 A41 1 A42 1 A43 2( A44 A45 ) 272( A41 A42 A43 ) ( A44 A45 ) 0得 A41A42A439 , A44A4518 .3.计算下列 n 阶行列式.1 1 12 2 2 2n(1) D n 3 32 3n;n n 2 n n解:(利用范德蒙行列式计算)1 1 1D n D n T1 2 nn! 3 32 3n1 2n 1 n n 1n!(2 1)(3 1) ( n 1)(3 2)(4 2) (n 2) n ( n 1)n!(n 1)!( n 2)! 2! .2 1 1(2) 1 2 1 ;1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x1 m x2 x nx1 x2 m x n(3) D nx1 x2 x n m解:将第 2 列,L,第n列分别加到第一列,并提取第一列的公因子,得x1 x2 x n m x2 x nD nx1 x2 x n m x2 m x nx1 x2 x n m x2 x n m1 x2 x n( x1 x2 x n1 x2 m x nm)1 x2 x n m1 0 0( x1 x 2 x n1 m 0m)1 0 m( x1 x2 x n m)( m) n1b1 b2 b3 b n 1 b na1 a2 0 0 0 (4) D n 0 a2 a3 0 00 0 0 a n 1 a n(其中 a i 0,i 1,2, , n )a1 a2 0 0 解: D n ( 1)1 n b n0 a2 0 00 0 0 an 1b1 b2 b n 2 b n 1a1 a2 0 0 a n 0 a2 0 00 0 a n 2 an 1a1 a2 a n b nanDn 1a na1 a2 nb i.a na ii 1三、证明题1. 试证:如果n次多项式f ( x) a0 a1 x a n x n对 n+1 个不同的 x 值都是零,则此多项式恒等于零.( 提示:用范德蒙行列式证明)。
线性代数课后习题答案全解.pdf

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102−−−;解 381141102−−−=2×(−4)×3+0×(−1)×(−1)+1×1×8 −0×1×3−2×(−1)×8−1×(−4)×(−1) =−24+8+16−4=−4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba −bbb −aaa −ccc =3abc −a 3−b 3−c 3. (3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2−ac 2−ba 2−cb =(a −b )(b −c )(c −a ). 2(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx −y 3−(x +y )3−x =3xy (x +y )−y 3 3−3x 2 y −x 3−y 3−x =−2(x 3 3+y 3 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:).(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n −1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(−n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个)(6)1 3 ⋅ ⋅ ⋅ (2n −1) (2n ) (2n −2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n −1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n −2) (n −1个) 3. 写出四阶行列式中含有因子a 11a 23 解 含因子a 的项. 11a 23(−1)的项的一般形式为t a 11a 23a 3r a 4s 其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. ,所以含因子a 11a 23 (−1)的项分别是t a 11a 23a 32a 44=(−1)1a 11a 23a 32a 44=−a 11a 23a 32a 44 (−1), t a 11a 23a 34a 42=(−1)2a 11a 23a 34a 42=a 11a 23a 34a 42 4. 计算下列各行列式:.(1)71100251020214214; 解 71100251020214214010014231020211021473234−−−−−======c c c c 34)1(143102211014+−×−−−= 143102211014−−=01417172001099323211=−++======c c c c .(2)2605232112131412−; 解 2605232112131412−26053212213041224−−=====c c 041203212213041224−−=====r r 0000003212213041214=−−=====r r . (3)efcf bf de cd bd aeac ab −−−;解 ef cf bf de cd bd ae ac ab −−−ec b e c b ec b adf −−−=abcdef adfbce 4111111111=−−−=.(4)dc b a 100110011001−−−. 解d c b a 100110011001−−−dc b aab ar r 10011001101021−−−++===== d c a ab 101101)1)(1(12−−+−−=+01011123−+−++=====cd c ada ab dc ccdad ab +−+−−=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a −b )3 证明;1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c −−−−−−=====ab a b a b a ab 22)1(22213−−−−−=+21))((a b a a b a b +−−==(a −b )3 (2) . y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2, c 2−c 1 得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b −−−−−−−−−=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++−−−= ))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++−++−−−−−−= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++−−−−−= =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−− =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+−=, 命题成立. 假设对于(n −1)阶行列式命题成立, 即 D n −1=x n −1+a 1 x n −2+ ⋅ ⋅ ⋅ +a n −2x +a n −1则D , n 按第一列展开, 有 11100 100 01)1(11−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−+=+−x x a xD D n n n n =xD n −1+a n =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n 因此, 对于n 阶行列式命题成立. .6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90°、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(−−==, D 3 证明 因为D =det(a =D .ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=−⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−− )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(−−+−+⋅⋅⋅++−=−=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=− )1(11112)1(2D D n n T n n 2)1(2)1()1()1(−−−=−=. D D D D D n n n n n n n n =−=−−=−=−−−−)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k (1)为k 阶行列式): aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(−×−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=n n n aa a )1()1(2 )1(−×−⋅⋅⋅⋅−+n n n a a an n n n n a a a+⋅⋅⋅−⋅−=−−+)2)(2(1)1()1(=a n −a n −2=a n −2(a 2−1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(−1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n −−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−+=0000 0 000 00 )1(=[x +(n −1)a ](x −a )n −1 (3). 111 1 )( )1()( )1(1111⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−⋅⋅⋅−=−−−+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1−⋅⋅⋅−−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=−−−++此行列式为范德蒙德行列式.∏≥>≥++++−−+−−=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++−−−=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+−++−⋅−⋅−=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+−=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn −−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+. 再按最后一行展开得递推公式D 2n =a n d n D 2n −2−b n c n D 2n −2, 即D 2n =(a n d n −b n c n )D 2n −2于是 . ∏=−=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D −==,所以 ∏=−=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij 解 a =|i −j |; ij =|i −j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅−=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213−⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−+⋅⋅⋅+=====n n n n n c c c c =(−1)n −1(n −1)2n −2 (6).nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=====−−100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 −−−−−−+−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=−−−−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1) =+++−=−−−−=+−+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111−=−−−−=D , 142112105132412211151−=−−−−−−=D , 284112035122412111512−=−−−−−=D , 426110135232422115113−=−−−−=D , 14202132132212151114=−−−−−=D , 所以 111==D D x , 222==D Dx , 333==DD x , 144−==D D x .(2)=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 15075100165100065100065000611==D , 114551010651000650000601000152−==D , 703511650000601000051001653==D , 39551601000051000651010654−==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452−=x , 6657033=x , 6653954−=x , 6652124=x .9. 问λ, µ取何值时, 齐次线性方程组 =++=++=++0200321321321x x x x x x x x x µµλ有非零解?解 系数行列式为µλµµµλ−==1211111D .令D =0, 得 µ=0或λ=1.于是, 当µ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组 =−++=+−+=+−−0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ−−+−−=−−−−=101112431111132421D=(1−λ)3 =(1−λ)+(λ−3)−4(1−λ)−2(1−λ)(−3−λ) 3+2(1−λ)2 令D =0, 得+λ−3. λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3 解 由已知:的线性变换.= 221321323513122y y y x x x ,故= −3211221323513122x x x y y y−−−−=321423736947y y y ,−+=−+=+−−=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换++=++−=+=32133212311542322y y y x y y y x y y x ,+−=+=+−=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3 解 由已知的线性变换.−= 221321514232102y y y x x x−− −=321310102013514232102z z z−−−−=321161109412316z z z ,所以有 +−−=+−=++−=3213321232111610941236z z z x z z z x z z z x .3. 设 −−=111111111A ,−−=150421321B , 求3AB −2A 及A T 解 B .−−− −− −−=−1111111112150421321111111111323A AB−−−−= −−− −=2294201722213211111111120926508503,−= −− −−=092650850150421321111111111B A T.4. 计算下列乘积: (1)−127075321134;解 −127075321134 ×+×+××+×−+××+×+×=102775132)2(71112374=49635.(2)123)321(;解123)321(=(1×3+2×2+3×1)=(10).(3))21(312−;解 )21(312−×−××−××−×=23)1(321)1(122)1(2−−−=632142. (4)−−−−20413121013143110412 ; 解−−− −20413121013143110412 −−−=6520876. (5)321332313232212131211321)(x x x a a a a a a a a a x x x ;解321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3321x x x )322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设 =3121A ,=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为=6443AB ,=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2 解 (A +B )吗? 2≠A 2+2AB +B 2 因为.=+5222B A ,=+52225222)(2B A=2914148,但 + +=++43011288611483222B AB A=27151610,所以(A +B )2≠A 2+2AB +B 2 (3)(A +B )(A −B )=A . 2−B 2 解 (A +B )(A −B )≠A 吗? 2−B 2 因为.=+5222B A ,=−1020B A ,==−+906010205222))((B A B A ,而= −=−718243011148322B A ,故(A +B )(A −B )≠A 2−B 2 6. 举反列说明下列命题是错误的:.(1)若A 2 解 取=0, 则A =0;=0010A , 则A 2 (2)若A =0, 但A ≠0. 2 解 取=A , 则A =0或A =E ;=0011A , 则A 2 (3)若AX =AY , 且A ≠0, 则X =Y .=A , 但A ≠0且A ≠E . 解 取=0001A , −=1111X ,=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k 解 . ==12011011012λλλA , ===1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=101λk A k . 8. 设=λλλ001001A , 求A k 解 首先观察. =λλλλλλ0010010010012A=222002012λλλλλ,=⋅=3232323003033λλλλλλA A A ,=⋅=43423434004064λλλλλλA A A ,=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=k A k k k k k k k k k k λλλλλλ0002)1(121−−−−. 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,−=⋅=−−−+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A+++=+−+−−+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:−=−−−k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T 证明 因为A AB 也是对称矩阵.T (B =A , 所以T AB )T =B T (B T A )T =B T A T B =B T 从而B AB ,T 10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .AB 是对称矩阵.证明 充分性: 因为A T =A , B T (AB )=B , 且AB =BA , 所以 T =(BA )T =A T B T 即AB 是对称矩阵.=AB ,必要性: 因为A T =A , B T =B , 且(AB )T AB =(AB )=AB , 所以T =B T A T 11. 求下列矩阵的逆矩阵:=BA .(1)5221; 解=5221A . |A |=1, 故A −1 存在. 因为−−= =1225*22122111A A A A A ,故 *||11A A A =−−−=1225. (2)−θθθθcos sin sin cos ; 解−=θθθθcos sin sin cos A . |A |=1≠0, 故A −1 存在. 因为−= =θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =−−=θθθθcos sin sin cos . (3)−−−145243121; 解−−−=145243121A . |A |=2≠0, 故A −1 存在. 因为−−−−−= =214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =−−−−−−=1716213213012. (4)n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解=n a a a A 0021, 由对角矩阵的性质知=−n a a a A 10011211 . 12. 解下列矩阵方程:(1) −=12643152X ; 解 −=−126431521X − −−=12642153 −=80232. (2) −=−−234311*********X ; 解 1111012112234311−−− −=X−−− −=03323210123431131 −−−=32538122. (3) −= − −101311022141X ;解 11110210132141−− − − −=X− −=210110131142121 =21010366121=04111. (4)−−−= 021102341010100001100001010X . 解 11010100001021102341100001010−−−−− =X −−− =010100001021102341100001010 −−−=201431012. 13. 利用逆矩阵解下列线性方程组:(1) =++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为= 321153522321321x x x , 故 = = −0013211535223211321x x x ,从而有 ===001321x x x . (2) =−+=−−=−−05231322321321321x x x x x x x x x . 解 方程组可表示为=−−−−−012523312111321x x x , 故 =−−−−−= −3050125233121111321x x x , 故有 ===305321x x x . 14. 设A k =O (k 为正整数), 证明(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1 证明 因为A . k =O , 所以E −A k E −A =E . 又因为k =(E −A )(E +A +A 2+⋅ ⋅ ⋅+A k −1所以 (E −A )(E +A +A ),2+⋅ ⋅ ⋅+A k −1由定理2推论知(E −A )可逆, 且)=E ,(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1.证明 一方面, 有E =(E −A )−1 另一方面, 由A (E −A ).k E =(E −A )+(A −A =O , 有2)+A 2−⋅ ⋅ ⋅−A k −1+(A k −1−A k )=(E +A +A 2+⋅ ⋅ ⋅+A k −1故 (E −A ))(E −A ),−1(E −A )=(E +A +A 2+⋅ ⋅ ⋅+A k −1两端同时右乘(E −A ))(E −A ),−1 (E −A ), 就有−1(E −A )=E +A +A 2+⋅ ⋅ ⋅+A k −1.15. 设方阵A 满足A 2−A −2E =O , 证明A 及A +2E 都可逆, 并求A −1及(A +2E )−1 证明 由A .2 A −A −2E =O 得2或 −A =2E , 即A (A −E )=2E ,E E A A =−⋅)(21, 由定理2推论知A 可逆, 且)(211E A A −=−. 由A 2 A −A −2E =O 得2或 −A −6E =−4E , 即(A +2E )(A −3E )=−4E ,E A E E A =−⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A −=+−.证明 由A 2−A −2E =O 得A 2 |A −A =2E , 两端同时取行列式得 2即 |A ||A −E |=2,−A |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2由 A ≠0, 故A +2E 也可逆. 2 ⇒A −A −2E =O ⇒A (A −E )=2E−1A (A −E )=2A −1)(211E A A −=−E ⇒,又由 A 2 ⇒ (A +2E )(A −3E )=−4 E ,−A −2E =O ⇒(A +2E )A −3(A +2E )=−4E所以 (A +2E )−1(A +2E )(A −3E )=−4(A +2 E )−1 ,)3(41)2(1A E E A −=+−.16. 设A 为3阶矩阵, 21||=A , 求|(2A )−1 解 因为−5A *|.*||11A A A =−, 所以 |||521||*5)2(|111−−−−=−A A A A A |2521|11−−−=A A=|−2A −1|=(−2)3|A −1|=−8|A |−1 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)=−8×2=−16.−1=(A −1 证明 由)*.*||11A A A =−, 得A *=|A |A −1 |A *|=|A |, 所以当A 可逆时, 有n |A −1|=|A |n −1从而A *也可逆.≠0,因为A *=|A |A −1 (A *), 所以−1=|A |−1又A .*)(||)*(||1111−−−==A A A A A , 所以(A *)−1=|A |−1A =|A |−1|A |(A −1)*=(A −1 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:)*.(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n −1 证明.(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)−1 A =A A *(A *)=E , 由此得 −1=|A |E (A *)−1所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.=O ,(2)由于*||11A A A =−, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n 若|A |≠0, 则|A *|=|A |.n −1 若|A |=0, 由(1)知|A *|=0, 此时命题也成立.;因此|A *|=|A |n −1.19. 设−=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A −2E )B =A , 故− −−−=−=−−321011330121011332)2(11A E A B −=011321330. 20. 设 =101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2 (A −E )B =A +B 得 2即 (A −E )B =(A −E )(A +E ).−E , 因为01001010100||≠−==−E A , 所以(A −E )可逆, 从而=+=201030102E A B .21. 设A =diag(1, −2, 1), A *BA =2BA −8E , 求B . 解 由A *BA =2BA −8E 得 (A *−2E )BA =−8E , B =−8(A *−2E )−1A =−8[A (A *−2E )]−1 =−8(AA *−2A )−1 =−8(|A |E −2A )−1 =−8(−2E −2A )−1 =4(E +A )−1 =4[diag(2, −1, 2)]−1−1)21 ,1 ,21(diag 4−==2diag(1, −2, 1).22. 已知矩阵A 的伴随阵−=8030010100100001*A , 且ABA −1=BA −1+3E , 求B .解 由|A *|=|A |3 由ABA =8, 得|A |=2. −1=BA −1 AB =B +3A ,+3E 得 B =3(A −E )−1A =3[A (E −A −1)]−1 A 11*)2(6*)21(3−−−=−=A E A E−=−−=−1030060600600006603001010010000161. 23. 设P −1 −−=1141P AP =Λ, 其中,−=Λ2001, 求A 11 解 由P . −1AP =Λ, 得A =P ΛP −1, 所以A 11= A =P Λ11P −1 |P |=3, .−=1141*P ,−−=−1141311P ,而−= −=Λ11111120 012001,故−− −−−=31313431200111411111A −−=68468327322731. 24. 设AP =P Λ, 其中−−=111201111P ,−=Λ511,求ϕ(A )=A 8(5E −6A +A 2 解 ϕ(Λ)=Λ). 8(5E −6Λ+Λ2 =diag(1,1,5)8)[diag(5,5,5)−diag(−6,6,30)+diag(1,1,25)]=diag(1,1,58 ϕ(A )=P ϕ(Λ)P )diag(12,0,0)=12diag(1,0,0).−1 *)(||1P P P Λ=ϕ−−−−−− −−−=1213032220000000011112011112=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A −1+B −1 证明 因为也可逆, 并求其逆阵.A −1(A +B )B −1=B −1+A −1=A −1+B −1而A ,−1(A +B )B −1是三个可逆矩阵的乘积, 所以A −1(A +B )B −1可逆, 即A −1+B −1 (A 可逆.−1+B −1)−1=[A −1(A +B )B −1]−1=B (A +B )−1 26. 计算A .−−−30003200121013013000120010100121. 解 设 =10211A , =30122A , −=12131B ,−−=30322B ,则 2121B O B E A O E A+=222111B A O B B A A ,而 −= −−+−=+4225303212131021211B B A ,−−= −− =90343032301222B A , 所以 2121B O B E A O E A +=222111B A O B B A A−−−=9000340042102521, 即−−−30003200121013013000120010100121−−−=9000340042102521. 27. 取==−==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==−−=−−=D C B A , 而 01111|||||||| ==D C B A ,故 ||||||||D C B A D C B A ≠. 28. 设 −=22023443O O A , 求|A 8|及A 4解 令. −=34431A ,=22022A , 则=21A O O A A ,故 8218=A O O A A=8281A O O A ,1682818281810||||||||||===A A A A A .= =464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1−O B A O ; 解 设 =−43211C C C C O B A O , 则O B A O 4321C C C C = =s n E O O E BC BC AC AC 2143. 由此得====s n EBC OBC O AC E AC 2143⇒ ====−−121413B C O C O C A C ,所以= −−−O A B O O B A O 111. (2)1−B C O A . 解 设 =−43211D D D D B C O A , 则 = ++= s nE O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得=+=+==s nEBD CD O BD CD O AD E AD 423121⇒ =−===−−−−14113211B D CA B D O D A D ,所以−= −−−−−11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)2500380000120025; 解 设 =1225A , =2538B , 则−−= =−−5221122511A ,−−==−−8532253811B .于是 −−−−= = =−−−−850032000052002125003800001200251111B A B A .(2)4121031200210001. 解 设 =2101A ,=4103B ,=2112C , 则−= =−−−−−−1111114121031200210001B CA B O A BC O A−−−−−=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1)−−340313021201;解−−340313021201(下一步: r 2+(−2)r 1, r 3+(−3)r 1 ~. )−−−020*********(下一步: r 2÷(−1), r 3 ~÷(−2). )−−010*********(下一步: r 3−r 2 ~. )−−300031001201(下一步: r 3 ~÷3. )−−100031001201(下一步: r 2+3r 3 ~. )−100001001201(下一步: r 1+(−2)r 2, r 1+r 3 ~. )100001000001.(2)−−−−174034301320;解−−−−174034301320(下一步: r 2×2+(−3)r 1, r 3+(−2)r 1 ~. )−−−310031001320(下一步: r 3+r 2, r 1+3r 2 ~. )0000310010020(下一步: r 1 ~÷2. )000031005010.(3)−−−−−−−−−12433023221453334311;解−−−−−−−−−12433023221453334311(下一步: r 2−3r 1, r 3−2r 1, r 4−3r 1~. )−−−−−−−−1010500663008840034311(下一步: r 2÷(−4), r 3÷(−3) , r 4~÷(−5). )−−−−−22100221002210034311(下一步: r 1−3r 2, r 3−r 2, r 4−r 2~. )−−−00000000002210032011.(4)−−−−−−34732038234202173132. 解−−−−−−34732038234202173132(下一步: r 1−2r 2, r 3−3r 2, r 4−2r 2~. )−−−−−1187701298804202111110(下一步: r 2+2r 1, r 3−8r 1, r 4−7r 1 ~. )−−41000410002020111110(下一步: r 1↔r 2, r 2×(−1), r 4−r 3~. )−−−−00000410001111020201(下一步: r 2+r 3~. )−−00000410003011020201. 2. 设= 987654321100010101100001010A , 求A .解100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(−1))−=100010101.− =100010101987654321100001010A= − =287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)323513123;解 100010001323513123~−−−101011001200410123~ −−−−1012002110102/102/3023~−−−−2/102/11002110102/922/7003~−−−−2/102/11002110102/33/26/7001故逆矩阵为−−−−21021211233267.(2)−−−−−1210232112201023.解−−−−−10000100001000011210232112201023~−−−−00100301100001001220594012102321~−−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321 ~−−−−−−−−−−10612631110`1022111000010000100021 ~−−−−−−−106126311101042111000010000100001故逆矩阵为−−−−−−−10612631110104211. 4. (1)设 −−=113122214A ,−−=132231B , 求X 使AX =B ;解 因为−−−−=132231 113122214) ,(B A−−412315210 100010001 ~r ,所以−−==−4123152101B A X .(2)设−−−=433312120A , −=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为−−−−=134313*********) ,(T T B A−−−411007101042001 ~r ,所以−−−==−417142)(1T T T B A X ,从而−−−==−4741121BA X . 5. 设−−−=101110011A , AX =2X +A , 求X .解 原方程化为(A −2E )X =A . 因为−−−−−−−−−=−101101110110011011) ,2(A E A−−−011100101010110001~,所以−−−=−=−011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r −1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r −1阶子式, 也可能存在等于0的r 阶子式. 例如,=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, −1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:−0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式: (1)−−−443112112013;解−−−443112112013(下一步: r 1↔r 2 ~. )−−−443120131211(下一步: r 2−3r 1, r 3−r 1 ~. )−−−−564056401211(下一步: r 3−r 2 ~. )−−−000056401211, 矩阵的2秩为, 41113−=−是一个最高阶非零子式.(2)−−−−−−−815073*********;解−−−−−−−815073*********(下一步: r 1−r 2, r 2−2r 1, r 3−7r 1 ~. )−−−−−−15273321059117014431(下一步: r 3−3r 2~. )−−−−0000059117014431, 矩阵的秩是2, 71223−=−是一个最高阶非零子式.(3)−−−02301085235703273812. 解−−−02301085235703273812(下一步: r 1−2r 4, r 2−2r 4, r 3−3r 4~. )−−−−−−023*********63071210(下一步: r 2+3r 1, r 3+2r 1~. )−0230114000016000071210(下一步: r 2÷16r 4, r 3−16r 2. )~−02301000001000071210 ~−00000100007121002301, 矩阵的秩为3, 070023085570≠=−是一个最高阶非零子式.10. 设A 、B 都是m ×n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设−−−−=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 −−−−=32321321k k k A+−−−−−)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =−2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠−2时, R (A )=3.12. 求解下列齐次线性方程组: (1) =+++=−++=−++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−212211121211~ −−−3/410013100101,于是 ==−==4443424134334x x x x x x x x ,故方程组的解为−= 1343344321k x x x x (k 为任意常数).(2) =−++=−−+=−++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−−−5110531631121~−000001001021,于是 ===+−=4432242102x x x xx x x x ,故方程组的解为+−= 10010*********k k x x x x (k 1, k 2 (3)为任意常数).=−+−=+−+=−++=+−+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =−−−−−7421631472135132~1000010000100001,于是 ====0004321x x x x ,故方程组的解为 ====00004321x x x x .(4) =++−=+−+=−+−=+−+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =−−−−−3127161311423327543~−−000000001720171910171317301,于是 ==−=−=4433432431172017191713173x x x x x x x xx x ,故方程组的解为−−+= 1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1) =+=+−=−+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。
行列式展开与应用例题和知识点总结

行列式展开与应用例题和知识点总结一、行列式的定义行列式是一个数值,它是由一个 n 阶方阵的元素按照一定的规则计算得到的。
对于一个二阶方阵 A = a b; c d,其行列式的值为 ad bc。
对于一个三阶方阵 A = a11 a12 a13; a21 a22 a23; a31 a32 a33,其行列式的值可以通过以下公式计算:|A| = a11(a22a33 a23a32) a12(a21a33 a23a31) + a13(a21a32a22a31)二、行列式的展开法则1、二阶行列式的展开对于二阶行列式|a b; c d|,其展开式为 ad bc。
2、三阶行列式的展开三阶行列式可以按照某一行(或列)展开。
例如,按第一行展开:|a11 a12 a13; a21 a22 a23; a31 a32 a33| = a11 × M11 a12 × M12 +a13 × M13其中,Mij 是元素 aij 的余子式,即去掉第 i 行和第 j 列后剩下的元素构成的二阶行列式的值,再乘以(-1)^(i + j)。
3、 n 阶行列式的展开n 阶行列式可以按照任意一行(或列)展开,其展开式是一个线性组合。
三、行列式的性质1、行列式与它的转置行列式相等。
2、互换行列式的两行(列),行列式的值变号。
3、行列式中某行(列)的元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。
四、行列式的应用例题例 1:计算行列式|2 1; 3 4|解:根据二阶行列式的展开公式,该行列式的值为 2×4 1×3 = 8 3 = 5例 2:计算三阶行列式|1 2 3; 4 5 6; 7 8 9|解:我们可以按第一行展开:|1 2 3; 4 5 6; 7 8 9| = 1×(5×9 6×8) 2×(4×9 6×7) + 3×(4×85×7)= 1×(-3) 2×(-6) + 3×(-1)=-3 + 12 3= 6例 3:已知行列式|a b c; d e f; g h i| = 4,求行列式|2a 2b 2c; 3d 3e 3f; 4g 4h 4i|的值。
《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题1-1.计算下列行列式(1)713501163.(2)4321651005311021.(3)222111ab c a b c . (4)2010411063143211111.(5)49362516362516925169416941.1-2.计算行列式abcdb a dc cd a b d c b a.1-3.计算n 阶行列式(1)n321332122211111.(2)14321432113213121321n nnn nn n n---.(3)21111121111211112------. 1-4. 证明:(1)2221112222221111112c b a c b a c b a b a a c c b b a a c c b b a a c cb =+++++++++.(2)321321321332321332321332321c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++.(3)222244441111a b c d a b c d a b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++.1-5.计算行列式xyy x y x y x 0000000000.1-6.计算4阶行列式112233440000000a b a b b a b a . 1-7. 如果行列式∆=nnn n nna a a a a a a a a212222111211,试用∆表示行列式nnn n n nn a a a a a a a a a a a a 11211213323122221的值. 1-8.利用克莱姆法则解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x . 1-9. 问λ取何值时,齐次线性方程组可能有非零解?12120x x x x λλ+=⎧⎨+=⎩ 1-10.已知()413571200=10301004ij D a =,求11121314A A A A +++.第一章习题解答1-1.计算下列行列式(1)713501163(2)4321651005311021(3)2010411063143211111(4)49362516362516925169416941(5)222111a b c a b c .(1)解一 由三阶行列式定义得7135011633076531111033516170901*******.=⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯=++---=解二2331123361105105105361056317317018r r r r r r --↔==--23325105105018018340560034r r r r ↔-=-=-=-.(2)解213241120112011201135001510151015601560007123400330033r r r r r r -----==34120101512100330007r r ↔-==.(3)解43433232211111111111111234012301231361001360013141020014100014r r r r r r r r r r -----==4311110123100130001r r -==. (4)解43433232211491614916149164916253579357909162536579112222162536497911132222r r r r r r r r r r -----===.(5)解 222111()()()ab c c b c a b a a b c =---. 1-2.计算行列式abcdb a dc cd a b d c b a.解12341111()r r r r ab c d b a d c b a d c a b c d c d a b c d a bdcba dcba+++=+++41322110()c c c c c c b a bd a c b a b c d c d c a d b c dc db ca d------=+++------()a b d ac b a b cd d c a db c c db ca d---=+++------ 3221()000r r r r a b d a c b a b c d a b c da b c da b c d++---=+++--++--+--21()()(1)d a c b a b c d a b c d a b c da b c d+--=+++--+-+--+--[]()()()()()()()()().a b c d a b c d a b c d d a c b a b c d a b c d a b c d a b c d =-+++--++-----=+++--++---+-1-3.计算n 阶行列式(1)n321332122211111.(2)143214321132********n nn n nn n n---.(3)21111121111211112------.(1)解 1122111111111122201111123300111230001n n n n r r r r r r n------==. (2)解12123112312131113123111311(1)22341134123411341nc c c n n n n n n n n n n n n n n n n n n+++------+=2131112310100001200(1)2112001111n r r r r r r n n n n n n------+=--10001200(1)113021111n n n--+=--1(1)!(1).2n n -+=-(3)解 21111111112111021111211012111111210112n D +--+==---+-----+--, 按第一列展开成两个行列式得111111111211021111210121111112112n D -=+--------213111111032200320003n nr r r r r r n D +++-=+ 112122122333333n n n n n n n D D D -------=+=++=++++12212221333333512n n n n ----=++++=++++-12213313333111132n n n n ---+=++++++=+=-.1-4. 证明:(1)2221112222221111112c b a c b a c b a b a a c c b b a a c c b b a a c cb =+++++++++.证11111111111111112222222222222222b cc a a b b c a a b c c a a b b c c a a b b c a a b c c a a b b c c a a b b c a a b c c a a b ++++++++++=++++++++++++左= 1111111122222222b c a a c a a b b c a a c a a b b c a a c a a b ++=+++++111111222222bc a c a b b c a c a b b c a c a b =+1112222a b c a b c a b c ==右. (2)321321321332321332321332321c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++. 证 1323123233122312323312231232331223c lc c mc a ka la a ma a a ka a a b kb lb b mb b b kb b b c kc lc c mc c c kc c c --+++++++=+++++左=12123123123c kc a a a b b b c c c -==右. (3)222244441111a b c d abcda b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++.证 243322122224444222222222111111110=()()()0()()()r a r r ar r ar a b c d b a c a d a a b c d b b a c c a d d a a b c d b b a c c a d d a ------=------左222222222()()()()()()b ac ad a b b a c c a d d a b b a c c a d d a ---=------222111()()()()()()b ac ad a bcdb b ac c ad d a =---+++21222111()()()()()()r ar b a c a d a b ac ad ab b ac c ad d a +=---++++++23121()2222111()()()00()()()()r b r r b a r b a c a d a c bd bc b c ad b d a --+=------+-+2222()()()()()()()c bd bb ac ad a c b c a d b d a --=----+-+[]222211()()()()()()()()()()()()()()()()()()()()()()()()()()()()(b a c a d a c b d b c b c a d b d a b a c a d a c b d b d b d a c b c a b a c a d a c b d b d ad bd ab c ac bc ab b a c a d a c b d b d ad bd c ac bc b a =-----++++=-----++-++⎡⎤=-----+++----⎣⎦⎡⎤=-----++---⎣⎦=-)()()()()()()c a d a c b d b d c a b c d -----+++=右.1-5.计算行列式xyy x y x y x 0000000000.解 记000000000n x y x y D x y y x=,当1n =时,1D x =;当2n ≥时,按第1列展开得00000000000000n x y x y x y xyD x x y xyx==100000(1)0000n y x y y y xy++-1(1)n n n x y +=+-.1-6.计算4阶行列式1122334400000000a b a b b a b a . 解11222222111413313333444400000(1)0(1)000a b a b a b a b a b a b b a b a a b b a ++=-+- 2222333114143333(1)(1)a b a b a a b b b a b a ++=⨯--⨯-()()142323142323a a a a b b bb a a b b =---14142323()()a a b b a a b b =--. 1-7. 如果行列式∆=nnn n nna a a a a a a a a212222111211,试用∆表示行列式nnn n n nn a a a a a a a a a a a a 11211213323122221的值.解112212122211121313232122211121211121(1)(1)n n n n r r n r r n n r r n n n n n nn n n nnna a a a a a a a a a a a a a a a a a a a a ---↔↔↔--=-=-∆.1-8.利用克莱姆法则解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x .解 方程组的系数行列式2151130627002121476D ---==≠--,181********52120476D ---==---,2285119061080512176D --==----,321811396270252146D --==--,4215813092702151470D --==---,方程组的解为12343,4,1,1x x x x ==-=-=.1-9. 问λ取何值时,齐次线性方程组可能有非零解?12120x x x x λλ+=⎧⎨+=⎩解 方程组的系数行列式211(1)(1)1D λλλλλ==-=+-,当1λ=或1λ=-时,0D =,方程组可能有非零解.1-10. 已知()413571200=10301004ij D a =,求11121314A A A A +++.解 1234411122341112131411111111112000200==103000301004004k c c c c k A A A A =----+++∑=-2.。