小学奥数 植树问题归纳总结
植树问题知识点总结

植树问题知识点总结在我们的日常生活和数学学习中,植树问题是一个比较常见且有趣的数学模型。
它看似简单,却蕴含着丰富的数学思维和规律。
接下来,让我们一起深入了解一下植树问题的相关知识。
一、植树问题的基本类型1、两端都植树这种情况下,树的数量比间隔数多 1。
比如,在一条 10 米长的小路两端都植树,每隔 2 米植一棵,那么间隔数为 10÷2 = 5 个,树的数量就是 5 + 1 = 6 棵。
2、一端植树,另一端不植树此时,树的数量和间隔数相等。
例如,在一条 10 米长的小路一端植树,每隔 2 米植一棵,那么间隔数为 10÷2 = 5 个,树的数量也是 5 棵。
3、两端都不植树在这种情况下,树的数量比间隔数少 1。
假如在一条 10 米长的小路两端都不植树,每隔 2 米植一棵,间隔数依然是 10÷2 = 5 个,但树的数量为 5 1 = 4 棵。
二、植树问题中的重要概念1、间隔相邻两棵树之间的距离就是间隔。
2、间隔数小路的总长度除以间隔的长度,得到的就是间隔数。
3、树的数量根据不同的植树情况,按照一定的规律计算得出。
三、解决植树问题的方法1、画图法通过简单地画图,可以更直观地理解问题,找出规律。
比如,要解决一条 20 米长的小路,每隔 4 米植树的问题,我们可以画出草图,清晰地看到间隔和树的分布情况。
2、公式法(1)两端都植树:树的数量=间隔数+ 1(2)一端植树,另一端不植树:树的数量=间隔数(3)两端都不植树:树的数量=间隔数 1在实际应用中,我们需要先判断属于哪种植树情况,然后选择相应的公式进行计算。
四、植树问题的拓展应用1、安装路灯在街道两旁安装路灯,与两端都植树的情况类似。
2、排队问题同学们排队,人与人之间的间隔就相当于植树问题中的间隔。
3、锯木头锯木头的次数相当于间隔数,锯成的段数相当于树的数量。
例如,把一根木头锯 4 次,可以锯成 5 段。
4、爬楼梯从一楼到二楼算一个间隔,楼层数相当于树的数量。
小学奥数公式大全3(植树问题)

植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题的公式
差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)
鸡兔同笼的公式:
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数。
三年级奥数第18讲 - 植树问题

植树问题知识点一:(知识点名称)【知识梳理】爸爸给晶晶出了一道题:“小朋友在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?”晶晶一看,随口答道:“27米。
”小朋友,晶晶答得对吗?这一类应用题我们通常称为“植树问题”。
解答这类问题的关键是要弄清总距离、间隔长和棵树三者之间的关系。
解答植树问题要考虑植树的方式,一般在不封闭的线路上植树,棵数=总距离÷间隔长+1;在封闭的线路上植树,棵数=总距离÷间隔长。
另外,生活中还有一些问题,可以用植树问题的方法来解答,比如锯木头、爬楼梯问题等等,这里解题的关键是要将题目中的条件与问题与植树问题中的总距离、间隔长、棵数对应起来。
【例题精讲】【例1】小朋友们植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,第一棵和第九棵相距多少米?解:要得出正确的结果,我们可以画出如下的示意图:根据“已经植了9棵”,从图中我们可以看出,第一棵树和第九棵树之间的间隔是9-1=8个,每个间隔是3米,所以第一棵和第九棵相距3×8=24米。
【变式1-1】在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了10面。
这条道路有多长?【变式1-2】在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了18盆。
这条走廊长多少米?【例2】在一条长40米的大路两侧栽树,从起点到终点一共栽了22棵。
已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?解:根据“在路的两侧共栽22棵树”这个条件,我们可先求出一侧栽了22÷2=11棵树,那么从第1棵树到第11棵树之间的间隔是11-1=10个。
40米长的大路平均分成10段,每段是40÷10=4米。
【变式2-1】在一条长32米的公路一侧插彩旗,从起点到终点共插了5面,相邻两面旗之间距离相等,相邻两面旗之间相距多少米?【变式2-2】在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子距离相等。
植树问题的公式知识点

植树问题的公式知识点:一、植树问题分两种情况,不封闭与封闭路线。
不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距三者之间的关系是:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.棵数=段数=周长÷株距.二、解植树问题的三要素解决植树问题,首先要牢记三要素:总路线长、间距(棵距)长、棵数.只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题明确空心方阵和实心方阵的概念及区别.每边的个数=总数÷41 ”;每向里一层每边棋子数减少2;掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
板块一、非封闭的植树问题【例 1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:400÷4+1=101(棵).【例 2】从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【解析】该题含植树问题、相差关系两组数量关系.从小熊家到小猪家的距离是:45×(53-1)=2340(米),间隔距离变化后,两地之间种树:2340÷60+1=40(棵),所以可余下树: 53-40=13(棵) ,综合算式为:53-[45×(53-1)÷60+1]=13(棵).【例 3】马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【解析】第一棵树到第153棵树中间共有153-1=152(个)间隔,每个间隔长8米,所以第一棵树到第153棵树的距离是:152×8=1216(米),汽车经过1216米用了4分钟,1分钟汽车经过:1216÷4=304(米),半小时汽车经过:304×30=9120(米),即小明的家距离学校9120米.【例 4】一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树)【解析】从家门口走到第11棵树是走了11个间隔,走一个间隔所用时间是:11÷11=1(分钟),那么走24分钟应该走了:24÷1=24(个)间隔,所以老爷爷应该走到了第24棵树.【例 5】晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【解析】题意的实质反映的是一线段上的点数与间隔数之间的关系.线段示意图如下:解:①每相邻两层楼之间有多少级台阶?÷-=(级)36(31)18②从第一层走到第六层共多少级台阶?⨯-=(级)18(61)90【例 6】元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【解析】一共挂了21只彩灯说明彩灯中间的间距有:21-1=20(个),每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,说明每个间距的长是:30÷2=15(分米),所以学而思学校的大门宽度为:15×20=300(分米)【例 7】有一个报时钟,每敲响一下,声音可持续3秒.如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒.现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?【解析】每次敲完以后,声音持续3秒,那么从敲完第一下到敲完第6下,一共经历的时间是43340-=(个)间隔,-=(秒),而这之间只有615所以每个间隔时间是4058÷=(秒),现在要敲响12下,所以一共经历的时间是11个间隔和3秒的持续时间,一共需要时间是:118391⨯+=(秒).【例 8】小明家的小狗喝水时间很规律,每隔5分钟喝一次水,第一次喝水的时间是8点整,当小狗第20次喝水时,时间是多少?【解析】第20次喝水与第1次喝水之间有20119-=(个)间隔,因为小狗每隔5分钟喝一次,所以到第20次喝水中间间隔的时间是:19595⨯=(分钟),也就是1个小时35分钟,所以小狗第20次喝水时时间是:9时35分.【例 9】裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?【解析】如果呢子有2米,不需要剪;如果呢子有4米,第一天就可以剪去最后一段,4米里有2个2米,只用1天;如果呢子有6米,第一天剪去2米,还剩4米,第二天就可以剪去最后一段,6米里有3个2米,只用2天;如果呢子有8米,第一天剪去2米,还剩6米,第二天再剪2米,还剩4米,这样第三天即可剪去最后一段,8米里有4个2米,用3天,……我们可以从中发现规律:所用的天数比2米的个数少1.因此,只要看16米里有几个2米,问题就可以解决了.16米中包含2米的个数:1628÷=(个)剪去最后一段所用的天数:817-=(天),所以裁缝第7天剪去最后一段.【例 10】有一根180厘米长的绳子,从一端开始每3厘米作一记号,每4厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成了多少段?【解析】⑴每3厘米作一记号,共有记号:1803159÷-=(个)⑵每4厘米作一记号,共有记号:1804144÷-=(个)⑶其中重复的共有: 18012114÷-=(个)⑷所以记号共有:59441489+-=(个)⑸绳子共被剪成了: 89190+=(段).【例 11】在一根长100厘米的木棍上,自左至右每隔6厘米染一个红色点,同时自右向左每隔5厘米也染一个红点,然后沿红点将木棍逐级锯开,那么长度是4厘米的短木棍有多少根?【解析】由于100是5的倍数,所以自右向左每隔5厘米染一个红点相当于自左向右每隔5厘米染一个红点.而每隔30厘米可得到2个4厘米的短木棍.最后10030310-⨯=(厘米)也可以得一个短木棍,故共有⨯+=(个)4厘米的短棍.2317【例 12】同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?【解析】带领学生画图求解.一共有几行?列式:4+6+1=11(行)一共有几列?列式:5317+-=(列)一共有多少人?列式:11777⨯=(人)【例 13】北京市国庆节参加游行的总人数有60000人,这些人平均分为25队,每队又以12人为一排列队前进.排与排之间的距离为1米,队与队之间的距离是4米,游行队伍全长多少米?【解析】这道题仍是植树问题的逆解题,它与植树问题中已知树的棵数,树间的距离,求树列的全长相当.逆解时要注意段数比树的棵数少1.所以,⑴每队的人数是:60000252400÷=(人)⑵每队可以分成的排数是:240012200÷=(排)⑶200排的全长米数是:1(2001)199⨯-=(米)⑷25个队的全长米数是:199254975⨯=(米)⑸25个队之间的距离总米数是:4(251)96⨯-=(米)⑹游行队伍的全长是:4975965071+=(米)【例 14】学而思学校三年级运动员参加校运动会入场式,组成66⨯的方块队(即每行每列都是6人),前后每行间隔为2米.他们以每分钟40米的速度,通过长30米的主席台,需要多少分钟?【解析】通过下表理清解题思路.方块队通过主席台需要多少分钟?通过的路程总长÷方块队行进的速度(40米/分钟)方块队长+主席台长(30米)?运用植树问题的逆解思路,即前后每行间隔长×间隔数=方块队长.方块队长:2(61)10⨯-= (米),方块队通过主席台行进路程总长:103040+=(米),方块队通过主席台需要:40401÷=(分钟),综合算式:[2(61)30]401⨯-+÷=(分钟).【巩固】 1一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米?【解析】 根据植树问题得到:()9115450-⨯=(米)【巩固】 2从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔60米安装一根电线杆.求还需要多少根电线杆?【解析】 该题含植树问题、相差关系两组数量关系.解:①从甲地到乙地距离多少米?40(511)2000⨯-=(米)②间隔距离变化后,甲乙两地之间安装多少根电线杆?+=(根)200020100÷=(根),1001101③还需要下多少根电线杆?-=(根)1015150综合算式:[40(511)201]5150⨯-÷+-=(根)【巩固】3马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?【解析】张军5分钟看到501棵树意味着在马路的两端都植树了;只要求出这段路的长度就容易求出汽车速度.解:5分钟汽车共走了:⨯-=(米),9(5011)4500汽车每分钟走:45005900÷=(米),汽车每小时走:=(千米)9006054000⨯=(米)54列综合式:⨯-÷⨯÷=(千米)9(5011)560100054【巩固】5丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【解析】丁丁实际跑了三层的距离,爸爸跑了两层的距离,到16层需要跑15层的距离,所以丁丁跑了1535÷=(个)三层的距离,爸爸同时跑了5个两层的距离.所以爸爸跑到了52111⨯+=(层).【巩固】7有一个挂钟,每小时敲一次钟,几点钟就敲几下,六点时,5秒钟敲完,那么十二点时,几秒钟才能敲完?【解析】六点时敲6下,中间共有5个间隔,所以每个时间间隔是551÷=(秒),十二点要敲12下,中间有11个时间间隔,所以十二点要用:11111⨯=(秒)才能敲完.【巩固】8科学家进行一项试验,每隔5小时做一次记录,做第12次记录时,挂钟时针恰好指向9,问做第一次记录时,时针指向几?【解析】我们先要弄清楚从第一次记录到第十二次记录中间经过的时间是多少.第1次到第12次有11个间隔:51155⨯=(小时).然后我们要知道55小时,时针发生了怎样的变化.时针每过12小时就会转一圈回到原来的状态,所以时针转了4圈以后,又经过了7个小时.551247÷=L L(小时)而这时时针指向9点,所以原来时针指向2点.【巩固】9一根木料在24秒内被锯成了4段,用同样的速度锯成5段,需要多少秒?【解析】锯的次数总比锯的段数少1.因此,在24秒内锯了4段,实际只锯了3次,这样我们就可以求出锯一次所用的时间了,又由于用同样的速度锯成5段;实际上锯了4次,这样锯成5段所用的时间就可以求出来了.所以锯一次所用的时间:24(41)8÷-=(秒),锯5段所用的时间:⨯-=()(秒).85132【巩固】11一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?【解析】一共有多少行?列式:5+5+1=11(行)【解析】一共有多少列?列式:4+4+1=9(列)【巩固】12一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
小学四年级奥数第三讲__植树问题

小学四年级奥数第三讲__植树问题work Information Technology Company.2020YEAR植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。
1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距三者之间的关系是:棵数 = 段数 + 1 = 全长÷株距 + 1全长 = 株距×(棵数 - 1)株距 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长 = 株距×棵数;棵数 = 全长÷株距;株距 = 全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数 = 段数– 1 = 全长÷株距 - 1 株距 = 全长÷(棵数 + 1)。
2、封闭的植树路线棵数 = 段数 = 周长÷株距.3、方阵问题学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。
②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。
③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。
一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。
小学奥数 植树问题归纳总结PPT课件

2.张亮家住四楼,他从底楼到二楼需2分钟,那么他 从底楼到四楼需要几分钟?
3.小冬住在大厦11层,他数了10楼到11楼有21级台 阶,你能算出从底楼到小冬家有多少级台阶吗?
.
8
例题 2
锯木头的段数问题
把1根木头锯断,要2分钟。把这 根木头锯成4段,要几分钟?
【点拨与解答】
可以这样想:把1根木头锯断,也就是锯1次要用2 分钟。而把这根木头锯成4段,需要锯几次?
【点拨与解答】
.
6
荣荣家住五楼,从底楼走到五楼,其实是走了5-1 = 4(层)楼梯。由于每层楼梯20级,因此住在五楼, 其实是求4个20是多少,是20×4 = 80(级)台阶。
列式如下:
5-1 = 4(层) 20×4 = 80(级)
答:荣荣走80级楼梯才能到自己住的那一层。
.
7
练一练
1.小于家住在6楼。如果他从1楼走到3楼需要42秒, 那么以同样的速度走到家,还需要多少秒?
.
10
例题 3
敲钟遇到的时间问题
时钟4点钟敲4下,用12秒敲完。那 么6电钟敲6下,几秒钟敲完?
【点拨与解答】
时钟敲4下,经过了3个时间间隔。每个时间
间隔是:12÷(4-1)=4(秒)。
敲6下需要:4×(6-1)=20(秒)
答:20秒敲完。
.
11
练一练
1、时钟敲下5下,用8秒钟,敲10下用几秒钟?
答:第1和第9棵树相距24米。5米插一面,从起点到终 点共插了20面,这条道路有多长?
5×(20-1)=95(米)
(2)在学校的走廊两边,每隔4米放一盆菊花,从起点 到终点一共放了15盆,这条走廊长多少米?
4×(15-1)=56 (米)
小学奥数 植树问题 知识点+例题+练习 (分类全面)

一、植树问题知识点梳理要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长.②间距(棵距)长.③棵数.只要知道这三个要素中任意两个要素.就可以求出第三个。
关于植树的路线,有封闭与不封闭两种路线。
封闭型的和不封闭型的植树问题,区别在于间隔数(段数)与棵数的关系:1、不封闭型的(多为直线上),一般情况为两端植树,如下图所示,其路长、间距、棵数的关系是:但如果只在一端植树,如右图所示,这时路长、间距、棵数的关系就是:如果两端都不植树,那么棵数比一端植树还要再少一棵,其路长、间距、棵数的关系就是:2、封闭型的情况(多为圆周形),如下图所示,那么:数量关系:线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)例题:一、线型植树1、求棵树例1、一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?拓展:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?2、求线路长例2 、马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?拓展:在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?拓展:一个人以均匀的速度在路上散步,从第一根电线杆走到第七根电线杆用了12分钟,这个人走了30分钟,他走到了第______根电线杆.二、封闭型1、圆形例3、一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?拓展:一个圆形鱼塘的周长是1500米,沿鱼塘周围每隔6米栽一棵杨树,需要种多少棵杨树?例4、一个圆形水库,周长是2430米,每隔9米种柳树一棵.又在相邻两棵柳树之间每3米种杨树1棵,要种杨树多少棵?拓展:圆形滑冰场,周长400米,每隔40米装一盏灯.再在相邻两盏灯之间放3盆花,问共需装几盏灯?放几盆花?例5、公园里有个湖,湖边周长是3600米,按等距离共种了120棵柳树.现在要在每3棵柳树间等距离地安放一条长椅供游人休息,沿湖边安放一周需要多少条长椅?两条长椅间相距多少?拓展:人民公园有一个湖泊,周长168米.现在沿边长等距离做8个长9米的花坛,问花坛间隔是多少米?拓展:某街心公园新辟一条小道长50米,从头到尾在小道的一旁等距离放6个长5米的花坛,花坛间隔是多少米.2、正方形例6、有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?拓展:一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?拓展:有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?3、三角形例7、一个街心花园如下图所示,它由四个大小相等的等边三角形组成。
小学奥数——植树问题

解植树问题的方法植树问题是研究植树地段的全长、间隔距离、株数三种数量之间的关系的应用题。
植树应用题基本分为两类:沿路旁植树;沿周长植树。
沿路旁植树,因为首尾两端都要种一棵,所以植树棵数要比分成的段数多1;沿周长植树,因为首尾两端重合在一起,所以,植树的棵数和所分成的段数相等。
解答植树问题的基本方法是:(1)沿路旁植树(2)沿周长植树棵数=全长÷间隔+1 棵数=全长÷间隔间隔=全长÷(棵数-1)间隔=全长÷棵数全长=间隔×(棵数-1)全长=间隔×棵数(一)沿路旁植树1、有一段路长720米,在路的一边每间隔3米种1棵树。
问这样可以种多少棵树?解:根据棵数=全长÷间隔+1的关系,可得:720÷3+1=240+1=241(棵)答:可以种241棵树。
2、在某城市一条柏油马路上,从始发站到终点站共有14个车站,每两个车站间的平均距离是1200米。
这条马路有多长?解:根据全长=间隔×(棵数-1)的关系,可得:1200×(14-1)=1200×13=15600(米)答:这条马路长15600米。
3、要在612米长的水渠的一岸植树154棵。
每相邻两棵树间的距离是多少米?解:根据“间隔=全长÷(棵数-1)”的关系,可得:612÷(154-1)=612÷153=4(米)答:每相邻两棵树间的距离是4米。
4、两座楼房之间相距60米,现要在两座楼房之间栽树9棵。
每两棵树的间隔是多少米?解:因为在60米的两端是两座楼房,不能紧挨着楼房的墙根栽树,所以,把60米平均分成的段数要比树的棵数多1。
由距离和段数便可求出两棵树之间的距离:60÷(9+1)=60÷10=6(米)答:每两棵树的间隔是6米。
5、原计划沿公路一旁埋电线杆301根,每相邻两根间的距离50米。
实际上在公路一旁只埋了201根电线杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练一练
1、把一根木头锯成6段,每锯一次要4分钟,一共要锯 多少分钟?
2、工人师傅15分钟把一根木头锯成了4段,如果他锯了 30分钟,那么这根木头被锯成了几段?
3、一根绳子对折一次,被剪3次后,平均每段长2米, 你知道剪了几段?这根绳子总长多少米吗?
敲钟遇到的时间问题
时钟4点钟敲4下,用12秒敲完。那 么6电钟敲6下,几秒钟敲完?
求全长 4×7=28(米) 全长=棵距×棵数
求棵距 28÷7=4(米) 棵距=全长÷棵数
为了美化环境,学校准备在操场边上的一条 100米长的小路一边植树,每隔5米栽一棵(只栽 一端) ,需要准备多少棵树苗呢?
【思路导航】根据“长100米的小路,每隔5米
栽一棵树”这个条件,我们可以先求出多少个间
隔100÷5=20,根据:棵数=段数=全长÷棵距
③两端都不植树:棵数比段数少1棵. 三要素之间的关系如下:
棵数=段数-1=全长÷棵距-1; 全 长=棵距×(棵数+1); 棵距=全长÷(棵数+1).
沿着小路的一边栽树,两端都不栽。 用线段图表示你的植树方案,再说一说你 栽了几棵树?有几段间隔?
栽了3棵树,有4个间隔。
栽了4棵树,有5个间隔。
在一条直路上,两端都栽时
小结
1、爬楼梯的层次问题
2、锯木头的段数问题
3、敲钟遇到的时间
4、排队问题
解答这类应用题,先找出间隔数之间的关系, 结合已知条件和问题,就能找到解决问题 的方法了
植树问题
植树问题的三要素:
总路线长、间距(棵距)长、棵数.只要知道这三个要素
中任意两个要素,就可以求出第三个.
植树问题的分类:
①两端都植树
植树问题 之
间隔问题
专题分析
爬楼梯的层次问题,锯木头的段数问题,敲钟遇到的时 间,排队问题等
1、爬楼梯遇到层数问题,主要是要明白几楼与几层楼 梯是不同的,楼数比楼梯层数多1。
楼数=楼梯层数+1 2、锯木头的段数问题,主要是要明白锯成木头的段数 比锯木头的次数多1。
锯的次数 = 段数-1
3、敲钟遇到的时间问题,应先考虑敲的次数比敲的 间隔数多1。
【点拨与解答】
10个男生排成一排,有几个间隔? 和前面一样,应有9个间隔,也就是9个1米。
1×(10-1)=9(米) 答:这排男生排列的长度排有9米。
1、参加阅兵的战士有1200人,平均分成5个大队,队 距是10米。每队6人为一排,排距是2米。整个队伍的 总长有多少米?
2、做操时,二(4)班全班48人排成2路纵队,前、后 两人之间相隔1米,那么二(4)班的队伍共长多少米?
种树方案
路长(米)
每两棵树间 的距离(米)
间隔数
10
5
2
圆周种
15
5
3
20
5
4
种树棵树
规律
2
棵数=
间隔数
3
4
例题1.1 简单的圆周植树 在一个周长30米的圆形熊猫馆外种植 一圈小树,每隔5米种一棵小树,能种多 少棵?
分析: 棵数=段数=周长÷间距
30÷5=6(棵) 答:能种6棵小树。
9个小朋友围成一圈做 游戏,每两个人之间的 距离是1米,这一圈的 长度是多少?
荣荣家住五楼,从底楼走到五楼,其实是走了5-1 = 4(层)楼梯。由于每层楼梯20级,因此住在五楼, 其实是求4个20是多少,是20×4 = 80(级)台阶。
列式如下:
5-1 = 4(层) 20×4 = 80(级)
答:荣荣走80级楼梯才能到自己住的那一层。
练一练
1.小于家住在6楼。如果他从1楼走到3楼需要42秒, 那么以同样的速度走到家,还需要多少秒?
【思路导航】根据“在路的两侧共栽了14棵
树”这个条件,我们可以先求出每一侧栽了 14÷2=7(棵)树,那么从第1棵树到第7棵树之 间的间隔是7-1=6(个)。42米长的大路平均分 成6段,每段是42÷6=7(米)。列式如下:
42÷(14÷2-1)=42÷(7-1)=42÷6 =7(米) 答:相邻两棵树之间的距离是7米。
全长=棵距×(棵数-1); 棵距=全长÷(棵数-1) 将题目中的条件和问题与植树 问题中的“总距离”、“间隔 长”、“棵数”对应起来。
一端不植树:棵数与段数相等.
三要素之间的关系如下: 棵数棵=数全=长全÷长棵÷距棵;距; 全长全=棵长距=×棵棵距数×棵;数; 棵距棵=全距长=÷全棵长数÷棵.数.
可以求出棵数。
列式如下:100÷5=20(段) 20=20(棵)
答:需要20棵树苗。
在一条小路的一旁安装路灯,每隔20米 安装一盏(一端安另一端不安),一共安装 了50盏路灯,这条小路长多少米
【思路导航】根据“每隔20米安装一盏,一共
安装了50盏路灯”这个条件,我们可以先知道路 灯数=间隔数,根据:全长=棵距×棵数 可以求出 棵数20×50=1000(米)。
敲的次数=敲的间隔数+1 4、排队问题,主要是考虑排队的人数比每两人 之间的间隔多1。
排队人数=每两人之间的间隔+1
爬楼梯的层数与阶梯问题
某人到一座高层楼的8楼去办事,不巧停 电,电梯停开。他从1楼走到4楼用了48秒。 用同样的速度走到8楼,还要多长时间?
【点拨与解答】
可以先求出上1层楼梯要多少秒,从图中知道,48 秒上了3层楼梯,上1层楼梯用的时间是
12米
如图,一端不植树,树有4棵(段数为4段),棵距为3米, 总长为12米
求棵数 12÷3=4(棵) 棵数=全长÷棵距
求全长 3×4=12(米) 全长=棵距×棵数
求棵距 12÷4=3(米) 棵距=全长÷棵数
28米
如图,两端都植树,树有7棵(段数为7段),棵距为4米, 总长为28米
求棵数 28÷4=7(棵) 棵数=全长÷棵距
48÷(4-1)=16(秒)
再求出从4楼到8楼用的时间,从图中也可以知 道,要上4层楼梯,也就是4个16秒。
48÷(4-1)=16(秒) 16×(8-4)=64(秒) 答:还要64秒。
荣荣住的这幢楼共七层,每层楼 梯20级,她家住在五楼,你知 道荣荣走多少级楼梯才能到自 己住的那一层?
【点拨与解答】
列式如下:20×50=1000(米)
答:这条小路长1000米。
练一练
1、沿着60米的小路两边栽树,每隔10米栽一棵(一端 栽一端不栽),应该栽多少棵?
2、在一条赛道的一旁插上小红旗,每隔4米插一面,一 端插一端不插,一共插了25面。这条赛道多么长?
3、一条小路全长450米,要在这条路的一旁安装路灯 (一端安一端不安),一共安了9盏,每隔多少米安一 盏?
0
3米 6米 9米 12米 15米 18米 21米 24米
1棵 2棵 3棵 4棵 5棵 6棵 7棵 8棵 9棵
根据“已经植了9棵”,从图中可以看出,第一棵树
和第九棵树之间的间隔是9-1=8(个),每个间隔是3米,
所以第一棵和第九棵相距3×8=24(米),
具体列式:3×(9-1)=3×8=24(米)
答:第1和第9棵树相距24米。
⑴ 直线型的植树问题(不封闭) ②一端植树
⑵ 封闭型植树问题
③两端都不植树
⑶ 特殊类型的植树问题
1、直线型的植树问题
两端都植树:棵数比段数多1.
三要素之间的关系如下: 棵数=段数+1=全长÷棵距+1; 全长=棵距×(棵数-1); 棵距=全长÷(棵数-1).
(1)两端都植树
8米
如图,两端都植树,树有5棵(段数为4段),棵距为2米, 总长为8米
棵数=间隔数-1
同学们在全长10 米的小路一边植树, 每间隔2米栽一棵。(两端不栽)一共要 栽多少棵?
开端
终端
2米
2米
2米
2米
2米
间隔数: 5
树的棵数:4
树的棵数 = 间隔数 1=全长÷棵距-1
全 长=棵距×(棵数+1)
线段图
起点
13.72米
9.14米
• 起点至第一栏的距离为13.72 米,
• 中间共有10个栏,栏间距离为 9.14米,
分析
9个小朋友=9段 两人之间的距离是 1米,间距=1米 全长=段数×间距 9×1=9米
练一练
1、一个圆形池塘的周长是120米,如果每隔10米 栽一棵,一共需要栽多少棵?
2、圆形体育场一周全长是1500米,如果沿着这 一圈每隔15米配一个垃圾桶,一共需要多少垃圾 桶?
例题1.2 复杂的圆周植树
一个圆形跑道长300米,沿跑道周围每隔6 米插一面红旗,每两面红旗中间插一面黄旗, 跑道周围各插了多少面红旗和黄旗?
2.张亮家住四楼,他从底楼到二楼需2分钟,那么他从 底楼到四楼需要几分钟?
3.小冬住在大厦11层,他数了10楼到11楼有21级台阶, 你能算出从底楼到小冬家有多少级台阶吗?
锯木头的段数问题
【点拨与解答】
可以这样想:把1根木头锯断,也就是锯1次要用 2分钟。而把这根木头锯成4段,需要锯几次? 从上图可以看出:只要锯3次,也就是需要3个2分钟。
• 最后一栏至终点的距离是 14.02米
• 你们知道他从起点到终点跑了 多少米吗?
终点
14.02米
小明:10×9.14+13.72+14.02=119.14(米) 小红:(10-1)×9.14+13.72+14.02=110(米)
起点
13.72米
9.14米
终点 14.02米
练一练
1、一条走廊长18米,每隔2米放一盆花(两边都要 放,两端都不放),一共要多少盆花?
【点拨与解答】
时钟敲4下,经过了3个时间间隔。 每个时间间隔是: 敲6下需要: 答:20秒敲完。
练一练
1、时钟敲下5下,用8秒钟,敲10下用几秒钟?