材料力学课程设计--五种传动轴的静强度、变形及疲劳强度的计算

合集下载

材料力学课程设计曲柄轴的强度设计、疲劳强度校核及刚度计算

材料力学课程设计曲柄轴的强度设计、疲劳强度校核及刚度计算

材料力学课程设计设计计算说明书序号:160图号及数据号:7—7—16设计题目:曲柄轴的强度设计、疲劳强度校核及刚度计算学生学号:学生姓名:指导教师:2011年10月12日目录一、材料力学课程设计的目的 (2)二、材料力学课程设计的任务和要求 (2)三、设计题目 (3)1、设计题目 (3)2、曲柄轴力学模型 ................................................................... 错误!未定义书签。

3、设计数据(表7-12中第16组数据) (4)四、设计内容 (4)1、曲柄轴内力图 (4)2、按强度条件设计主轴颈D和曲柄颈的直径d (5)3、校核曲柄臂的强度 (7)4、校核主轴颈的疲劳强度 (9)5、用能量法计算A端截面转角yθ,zθ (9)五、改进措施 (9)六、设计体会 (10)七、参考文献 (11)八、附件(编程与运算结果) (11)附录:力和支座反力求解 (11)一、材料力学课程设计的目的本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。

同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。

既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。

具体的有以下六项:1、使学生的材料力学知识系统化、完整化;2、在系统全面复习的基础上,运用材料力学知识解决工程中的实际问题;3、由于选题力求结合专业实际,因而课程设计可以把材料力学知识和专业需要结合起来;4、综合运用了以前所学的个门课程的知识(高数、制图、理力、算法语言、计算机等等)使相关学科的知识有机地联系起来;5、初步了解和掌握工程实践中的设计思想和设计方法;6、为后继课程的教学打下基础。

材料力学课程设计-五种传动轴.

材料力学课程设计-五种传动轴.

材料力学课程设计五种传动轴静强度、变形及疲劳强度计算(b)班级:11级机械城轨二班姓名:林胜军学号:指导老师:任小平2013年6月目录一.设计目的: (3)二.材料力学课程设计的任务和要求 (3)三.设计题目: (3)四.设计内容 (5)五.程序设计 (20)六、课程设计总结 (23)一.设计目的:本课程设计的目的是在于系统学习完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立的计算工程中的典型零部件,以达到综合运用材料力学的知识解决实际问题的目的。

同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。

既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力,又为后继课程(零件、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。

具体的有以下六项:1. 使学生的材料力学知识系统化完整化;2. 在全面复习的基础上,运用材料力学知识解决工程中的实际问题;3. 由于选题力求结合专业实际,因而课程设计可以把材料力学知识与专业需要结合起来;4. 综合运用以前所学习的各门课程的知识,使相关学科的只是有机的联系起来;5. 初步了解和掌握工程实践中的设计思想和设计方法;6. 为后续课程的教学打下基础二.材料力学课程设计的任务和要求参加设计者要系统复习材料力学课程全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出输出结果,并完成设计计算说明书。

三.设计题目:传动轴的材料均为优质碳素结构钢(牌号45),许用应力[σ] =80MPa,经高频淬火处理,σb=650MPa,σ-1 =300MPa,τ-1 =155MPa。

磨削面的表面,键槽均为端铣加工,阶梯轴过度圆弧r均为2mm,疲劳安全系数n =2。

要求:1. 绘出传动轴的受力简图;2. 作出扭矩图和弯矩图;3. 根据强度条件设计等直轴的直径;4. 计算齿轮处轴的挠度(均按直径Φ1的等直杆计算);5. 对阶梯传动轴进行疲劳强度计算。

轴强度计算公式完整版

轴强度计算公式完整版
#43;C) -Fr×C-Ma=0
RBV=(Fr×C+Fa×d/2)/(b+C)=3790N RCV=Fr-RBV=111N
M′1V=RBV×b=3790×110=416900Nmm M″1V=RCV×C=111×180=19980Nmm
危险截面计算应力:
ca

M ca W

M 2 (T )2
0.1d 3
1
Mpa
危险截面所需直径:
d
3Βιβλιοθήκη M ca0.1 1
3
M 2 (T )2
0.1 1
mm
[σ-1]-许用弯曲应力,按材料查表(15-1) ★ 危险截面的确定:
综合0500 tg12o15 2280 N 2 .求作支反力及弯矩图 H面:
RBH=FtC/(b+C)=10500×180/(110+180) =6520N
RCH=Ft-RBH=10500-6520=3980N
M1H=RBH×b=6520×110=717000Nmm
S S 2
步骤
1. 作轴的受力计算简图,求支反力
2. 求作支反力及弯矩图(MH、MV图) 3. 求作合成弯矩图(M图) 4. 求作扭矩及扭矩图(αT图) 5. 求作当量弯矩及当量弯矩图(Me图) 6. 强度计算(转轴)
⑵ 按疲劳强度条件精确校核计算
Ⅰ计算危险截面弯曲、扭转应力 危险截面:
M
W
T
WT
载荷大直径小 有应力集中处
Ⅱ 计算弯曲、扭转疲劳的安全系数
S

1 K a m
S

1 K a m
Ⅲ 计算危险截面疲劳强度的安全系数
Sca

吉林大学材料力学课设五种传动轴

吉林大学材料力学课设五种传动轴

材料力学课程设计五种传动轴静强度、变形及疲劳强度计算(第6道题、第12组数据)姓名王琛所在学院汽车工程学院专业班级能源与动力(421415班)学号指导教师郭桂凯日期 2016年9 月 23日目录一设计目的 (2)二材料力学课程设计任务和要求 (2)三设计题目 (3)四设计内容 (5)(1)绘出传动轴的受力简图 (5)(2)传动轴扭矩图和弯矩图 (6)(3)设计等直轴的直径 (8)(4)设计D2轮轴处的挠度 (10)(5)对传动轴进行强度校核 (14)五程序计算 (19)六设计感想 (24)七参考文献 (25)一.设计目的:本课程设计的目的是在于系统学习完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立的计算工程中的典型零部件,以达到综合运用材料力学的知识解决实际问题的目的。

同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。

既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力,又为后继课程(零件、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。

具体的有以下六项:1. 使学生的材料力学知识系统化完整化;2. 在全面复习的基础上,运用材料力学知识解决工程中的实际问题;3. 由于选题力求结合专业实际,因而课程设计可以把材料力学知识与专业需要结合起来;4. 综合运用以前所学习的各门课程的知识,使相关学科的只是有机的联系起来;5. 初步了解和掌握工程实践中的设计思想和设计方法;6. 为后续课程的教学打下基础。

二.材料力学课程设计的任务和要求参加设计者要系统复习材料力学课程全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出输出结果,并完成设计计算说明书。

三.设计题目:传动轴的材料均为优质碳素结构钢(牌号45),许用应力[σ] =80MPa,经高频淬火处理,σb =650MPa,σ-1 =300MPa,τ-1=155MPa。

五种传动轴静强度变形计算

五种传动轴静强度变形计算

五种传动轴静强度变形计算设计题目:传动轴地材料为优质碳素钢<牌号45),许用应力[σ]=80MPa,经高频淬火处理.轴地表面,键槽均为端铣加工,E=210GPa.已知数据传动轴力学简图传动轴零件图%输入已知数据sigma=80。

E=210000。

P=input('请输入大带轮传动地功率 P= <KW)'>。

P1=input('请输入小带轮传动地功率 P1= <KW)'>。

n=input('请输入小带轮地转速 n= (rpm>'>。

D=input('请输入大带轮直径 D= <mm)'>。

D1=input('请输入小带轮直径 D1= <mm)'>。

D2=input('请输入齿轮直径 D2= <mm)'>。

a=input('请输入 a= (mm>'>。

alfa=input('请输入α= '>。

%计算各轮受力并输出F2=2*9.549*10^6*P/n/D。

fprintf('大带轮D上作用地水平力:3*F2=%3.3f(N>\n',3*F2>。

m=9.549*10^6*P/n。

fprintf('大带轮D上作用地力偶:m=%3.3f(Nmm>\n',m>。

F1=2*9.549*10^6*P1/n/D1。

fprintf('小带轮D1上作用地铅垂力:3*F1=%3.3f(N>\n',3*F1>。

m1=9.549*10^6*P1/n。

fprintf('小带轮D1上作用地力偶:m1=%3.3f(Nmm>\n',m1>。

F=2*(m-m1>/D2。

fprintf('齿轮D2上作用地水平力:F*sinα=%3.3f(N>\n',F*sin(alfa>>。

传动轴的强度和刚度计算 ppt课件

传动轴的强度和刚度计算 ppt课件

2020/10/28
4
3.2.2 传动轴的强度和刚度计算
传动轴(受扭圆轴)实例
F d
F
A
F
M
F
Me
B
2020/10/28
5
3.2.2 传动轴的强度和刚度计算
➢外力偶矩、扭矩与扭矩图
1.外力偶矩的计算
在工程中,作用于圆轴上的外力偶矩一般不是直接给出的, 通常给出的是
圆轴所需传递的功率和转速。因此,需要了解功率、 转速和外力偶矩三者之间
径方向呈线性增长。其最大切应力τmax为:
3.2.2 传动轴的强度和刚度计算
3.2课题二:轴
3.2.1 轴的分类与材料 3.2.2 传动轴的强度和刚度计算 3.2.3 心轴的强度和刚度计算计算 3.2.4 转轴的强度设计
2020/10/28
1
3.2.2 传动轴的强度和刚度计算
➢传动轴的概念与实例 ➢外力偶矩、扭矩与扭矩图 ➢圆轴扭转的切应力与强度计算 ➢圆轴扭转变形与刚度计算 ➢剪切与挤压的实用计算 ➢思考与练习
2 T ( N ·m )
B
C
5 0 0 N ·m
(d )
O
x
- 1 5 0 0 N ·m
2020/10/28
11
3.2.2 传动轴的强度和刚度计算
解: (1) 计算梁上各段横截面上的扭矩。
因为是悬臂梁,可取截面的自由端部分BC段, 如图(b)所 示。
由平衡方程T1-500=0 得: T1 =500 N·m
(c)
m
T (扭矩,单位为N·m )
TM 10 TM 1
T
M2
M3
2020/10/28
T′+M2-M3=0 T′=M3-M2

机械设计-轴的强度计算

机械设计-轴的强度计算

轴的强度校核
5 小结
轴的强度校核
传动轴的强度计算 轴的强度计算方法 心轴的强度计算
转轴的强度计算 切应力计算 传动轴切应力计算 轴端直径计算
弯曲应力计算 芯轴弯曲应力计算
轴端直径计算
当量弯曲应力计算 转轴的当量弯曲应力计算
轴端直径计算
谢谢观看
d
3
Me 0.1 1
w
另外,需考虑键槽对轴强度的削弱,上式直径应增大4%~7%,单键槽时取较小
值,双键槽时取较大值。
T --轴的切应力 M--作用在轴上的弯矩 WT --轴的抗扭截面系数
σ W --轴的弯曲应力 W --轴的抗弯截面系数
M e--当量弯矩
[σ] W --轴的许用弯曲应力 T--轴传递的转矩
轴的强度校核
1 轴的强度计算方法 2 传动轴切应力计算 3 芯轴弯曲应力计算 4 转轴的当量弯曲应力计算 5 小结
CONTENTS
目 录
轴的强度校核
1 轴的强度计算方法 初步完成轴的结构设计之后进行轴的强度计算,对于不
同受载和应力性质的轴,应采用不同的计算方法。
1、传动轴的强度计算 2、心轴的强度计算 3、转轴的强度计算
轴的强度校核
4 转轴的当量弯曲应力计算
转轴在复合应力作用下危险截面的当量弯曲应力计算
ew
2 w
4
2 T
M W
2

4
T WT
2
w
WT
2W
ew
1 W
M 2 T 2 w
考虑弯曲应力与扭切应力循环特性的差异,将上式中的转矩T乘以应力校正系数α
ew
1 W
M
2
T
2
Me W

传动轴的强度及刚度计算

传动轴的强度及刚度计算
➢圆轴扭转变形与刚度计算
•刚度条件
最 大 单 位 长 度 扭 转 角 θmax 不 超 过 许 用 的 单 位 长 度 扭 转 角
[θ]。即:
maxLT GmpaIx180[]
式中θ的单位为°/m。
精密机器的轴:[θ]=0.25~0.50(°/m)。
一般传动轴: [θ]=0.50~1.00(°/m)。
②纵向线均倾斜了一角 度。
横截面不存在正应力,而仅有垂直于半径方向的切应力。
3.2.2 传动轴的强度和刚度计算
➢圆轴扭转的切应力与强度计算
T

O
max
T
max
横截面上任意一点的切应力与该点到轴心的距离成正比,其方向与半径 垂直,可以证明横截面上任意一点的切应力计算公式为:
τρ=Tρ/Ip
式中,Ip为横截面对圆心O点的极惯性矩,按下列公式计算:
3.2.2 传动轴的强度和刚度计算
3.2课题二:轴
3.2.1 轴的分类与材料 3.2.2 传动轴的强度和刚度计算 3.2.3 心轴的强度和刚度计算计算 3.2.4 转轴的强度设计
3.2.2 传动轴的强度和刚度计算
➢传动轴的概念与实例 ➢外力偶矩、扭矩与扭矩图 ➢圆轴扭转的切应力与强度计算 ➢圆轴扭转变形与刚度计算 ➢剪切与挤压的实用计算 ➢思考与练习
(a )
B1
C
A
2
1 5 0 0 N ·m
T1
(b )
1 2 2 0 0 0 N ·m
5 0 0 N ·m
T2 (c )
2 T ( N ·m )
B
C
5 0 0 N ·m
(d )
O
x
- 1 5 0 0 N ·m
3.2.2 传动轴的强度和刚度计算 解: (1) 计算梁上各段横截面上的扭矩。 因为是悬臂梁,可取截面的自由端部分BC段, 如图(b)所
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学课程设计设计题目五种传动轴的静强度、变形及疲劳强度的计算1.课程设计的目的本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。

同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。

既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合运用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。

1.使所学的材料力学知识系统化、完整化。

让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。

2.综合运用了以前所学的各门课程的知识(高数、制图、理力、算法语言、计算机等)使相关学科的知识有机地联系起来。

3.使我们初步了解和掌握工程实践中的设计思想和设计方法,为后继课程的教学打下基础。

2.课程设计的任务和要求要求参加设计者,要系统地复习材料力学的全部基本理论和方法,独立分析、判断、设计题目的已知条件和所求问题。

画出受力分析计算简图和内力图,列出理论依据和导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

3.课程设计的题目传动轴的强度、变形及疲劳强度计算6-1 设计题目传动轴的材料为优质碳素结构钢(牌号45),许用应力[σ]=80MPa,经高频淬火处理,其σb=650MPa,σ-1=300MPa,τ-1=155MPa,磨削轴的表面,键槽均为端铣加工,阶梯轴过渡圆弧r均为2,疲劳安全系数n=2,要求:1)绘出传动轴的受力简图;2)作扭矩图及弯矩图;3)根据强度条件设计等直轴的直径;4)计算齿轮处轴的挠度;(按直径Φ1的等直杆计算)5)对阶梯传动轴进行疲劳强度计算;(若不满足,采取改进措施使其满足疲劳强度);6)对所取数据的理论根据作必要的说明。

说明:a) 坐标的选取均按下图6—1所示;b) 齿轮上的力F与节圆相切;c) 数据表中P为直径D的皮带轮传递的功率,P为直径为D1的皮带轮传递的功率。

16—2传动轴的零件图Φ1 为静强度条件所确定的轴径,尺寸最后一位数准确到mm ,并取偶数。

设1.1433221===φφφφφφ 图号6-4本次课程设计采用第14组数据。

P=21.3kW , P1=8.1kW , n=1200r/min , D=750mm , D1=400mm , D2=250mm , G2=750N , G1=350N , a=600mm , α=25°。

4.课程设计的具体设计方案(一) 绘出传动轴的受力简图分析传动轴的零件图(下图)和受力图(右图),P 为直径D 的皮带轮传递的功率,所以直径D 的皮带轮传递的力矩M=9549nP=169.495Nm , 1P 为直径为D1的皮带轮传递的功率,所以直径D2的皮带轮传递的力矩M1=9549nP 1=64.456Nm 。

在传动轴旋转方向上由力矩守衡可得平衡方程 F ×D2/2+(2F1-F1)×D1/2+(F2-2F2)×D2/2=0 其中M=(2F2-F2)D/2 , M1=(2F1-F1)D1/2故可解得F=2(M-M1)/D2=840.312N传动轴的受力图:传动轴的零件图:现绘出传动轴的受力简图(如下图所示):(二)作扭矩图及弯矩图由传动轴的受力简图可求支反力得Fy1=(4Fcosα+2G1+6F1+G2)/5=1286.000NFz1=(4Fsinα+3F2)/5=555.297NFy2=(Fcosα+3G1+9F1+4G2)/5=1542.418NFz2=(4Fsinα+12F2)/5=1368.871N 并作出传动轴各截面的内力图:沿z轴方向的剪力图:扭矩图:沿z 轴方向的弯矩图:(三)根据强度条件设计等直轴的直径I .由于传动轴的材料为优质碳素结构钢(牌号45),因此需要选用第三强度理论进行强度计算。

根据第三强度理论3r σ=W1422=+τσ []σ<++222Mz My Mx 其中 3231πφ=W由扭矩图与弯矩图可确定危险截面在D 截面右侧与E 截面左侧。

在D 截面右侧Nm M Dy 553.1715=,Nm M Dz 608.658=,Nm M Dx 495.169=,则有NmNm Nm Nm M M M M Dx Dz Dy D 430.1845)495.169()608.658()553.1715(222222max ,=++=++=在E 截面左侧Nm M Ey 451.925=,Nm M Ez 323.821=,Nm M Ex 495.169=,则有NmNm Nm Nm M M M M Ex Ez Ey E 903.1248)49.169()474.693()434.925(222222max ,=++=++=m ax ,m ax ,E D M M >,所以等直轴只需要满足D 截面右侧即可。

因此[]MPa Nm M W D D 80430.184532131max ,max ,=<⨯==σπφσ 解得mm m 707.61061707.01==φ,取mm 621=φ。

由1.1433221===φφφφφφ得 mm m 097.56056097.02==φ,取mm 582=φ; mm m 998.50050998.03==φ,取mm 523=φ;mm m 362.46046362.04==φ,取mm 484=φ;II .再校核2φ是否满足静强度条件。

此时需对U 截面左侧进行校核。

其中32322πφφ=W ;在U 截面左侧Nm M Uy 564.1479=,Nm M Uz 250.577=,Nm M Ux 039.105=,则有 NmNm Nm Nm M M M M Ux Uz Uy U 654.1591)039.105()250.577()564.1479(222222max ,=++=++=因此[]MPa Nm M W U U 80654.159132132max ,2max ,=<⨯==σπφσφ 解得mm mm m 58738.58058738.02>==φ,所以2φ不满足静强度条件。

取mm 602=φ,由1.1433221===φφφφφφ得 mm m 612.64064612.01==φ,取mm 661=φ; mm m 398.53053398.03==φ,取mm 543=φ;mm m 544.48048544.04==φ,取mm 504=φIII .然后校核3φ是否满足静强度条件。

此时需对Q 截面左侧,V 截面右侧和E 截面左侧进行校核。

很明显max ,max ,Q V M M >,其中32333πφφ=W 。

在V 截面左侧Nm M Vy 502.1320=,Nm M Vz 965.739=,Nm M Vx 495.169=,则有 NmNm Nm Nm M M M M Vx Vz Vy V 155.1523)495.169()965.739()502.1320(222222max ,=++=++=在E 截面左侧Nm M Ey 451.925=,Nm M Ez 323.821=,Nm M Ex 495.169=,则有Nm Nm Nm Nm M M M M Ex Ez Ey E 903.1248)49.169()474.693()434.925(222222max ,=++=++=Ey Vy M M >,因此[]MPa Nm M W V V 80155.152332133max ,3max ,=<⨯==σπφσφ 解得mm mm m 54883.57057883.03>==φ,所以3φ不满足静强度条件。

取mm 583=φ,由1.1433221===φφφφφφ得 mm m 083.70070083.01==φ,取mm 721=φ;mm m 671.63063671.02==φ,取mm 642=φ; mm m 621.52052621.04==φ,取mm 544=φ。

综上所述,mm 721=φ,mm 642=φ,mm 583=φ,mm 544=φ。

(四)计算齿轮处轴的挠度(均按直径Φ1的等直杆计算)图中直径为D2的轮为齿轮。

I .可以在该轮处(图中B 点位置)沿y 轴方向加一单位力F=1,并作出单位力作用下的弯矩图M 图。

沿y 轴方向的弯矩图:M 图:其中E=200GPa(数据来源:《材料力学》(机械工业出版社)P29页表2-2),6441πφ==z y I I此时可以利用图形互乘法求齿轮处该轴沿y 轴方向的挠度mm M a M M a M M M a M M a M M M a M M a M EI f Ey Ey Dy Ey By Dy By By z y 012.4]6121125)(2183322)(214323221[1=⋅⋅+⋅-⋅+⋅+⋅-⋅+⋅+⋅⋅=II .再在该轮处沿z 轴方向加一单位力F=1,并作出单位力作用下的弯矩图M 图。

沿z 轴方向的弯矩图:M 图:此时可以利用图形互乘法求齿轮处该轴沿z 轴方向的挠度mmM a M M a M M M a M M a M EI f Ez Bz Ez Bz Bz y z 896.1]6121213)(218533221[1=⋅⋅+⋅-⋅+⋅+⋅⋅=III . mm mm f f f z y 437.4896.1012.42222=+=+=(五)对阶梯传动轴进行疲劳强度计算(若不满足,采取改进措施使其满足疲劳强度)I .首先对传动轴键槽进行疲劳强度计算因为该轴键槽为端铣加工,σb =650MPa ,所以根据《材料力学》(机械工业出版社)P355页图13-10a 可查得σK =1.8,根据《材料力学》(机械工业出版社)P355页图13-10b 可查得τK =1.48。

因为该轴经高频淬火处理,σb =650MPa ,σK =1.8,所以根据《材料力学》(机械工业出版社)P356页表13-4可查得β=2.4。

由于此传动轴工作在弯扭组合交变应力状态下,因此在进行疲劳强度计算时疲劳强度条件可写成222=≥+=n n n n n n τστσστ。

WM M WMzy 22max max+==σ,P x W M =maxτ,323πφ=W ,163πφ=P W 。

max min σσ-=,故弯矩循环系数r=-1,循环特征为对称循环;0min =τ,故扭矩循环系数r=0,循环特征为脉动循环。

所以max1σβεσσσσK n -=,m a K n τψτβετττττ+=-1。

相关文档
最新文档