数学史选讲读后感

合集下载

数学史读后感

数学史读后感

数学史读后感《数学史》这本书,给我带来了很多的启发和思考。

数学,作为一门抽象的学科,具有独特的魅力和深度,而《数学史》这本书则从历史的角度,全面地展示了数学的演变历程,让我更加深入地了解了数学的本质和价值。

数学是人类智慧的结晶,也是世界上最古老的学科之一。

在《数学史》这本书里,作者从古希腊开始,一直讲述到现代数学的发展,详细介绍了许多伟大的数学家和他们的贡献。

通过阅读,我了解到了毕达哥拉斯定理、欧几里得几何学、埃拉托色尼的筛法、阿拉伯数字的传入、无理数的发现等重要的数学成果和事件。

这些成果不仅引领了数学的发展方向,也对其他科学领域产生了深远的影响。

通过了解数学的历史,我更加明白了数学在人类社会中的不可替代的地位和作用。

值得一提的是,《数学史》这本书不仅介绍了数学的发展历程,同时也展示了数学家们思考问题的过程和方法。

数学家们在解决问题时,经常需要面临各种困难和挑战,但他们从不放弃,不断地努力探索和创新。

他们坚持不懈地追求真理,不为困难和挫折所动摇。

正是这种坚持不懈的精神,使得数学在不断发展的道路上越来越丰富和完善。

对我而言,这种精神是值得我学习和借鉴的。

面对学习中的困难和挑战,我应该保持乐观积极的态度,不放弃自己,并且持续努力,才能取得更好的成果。

通过阅读《数学史》,我也意识到数学的本质是一种思维方式和逻辑思维的训练。

在数学中,我们需要运用严谨的逻辑思维和抽象的概念来解决问题,而这种思维方式是可以将其应用到生活的其他方面的。

在现实生活中,我们也经常需要进行逻辑思考,分析问题的根本原因,从而找到解决问题的有效方法。

数学的学习和应用,不仅可以培养我们的思维习惯和能力,还可以帮助我们提高解决问题的能力。

此外,《数学史》这本书也揭示了数学的美感和哲学价值。

数学不仅仅是一门实用的学科,更是一门追求真理和美的学问。

在数学中,有很多美妙的理论和公式,它们不仅仅是简单的推导和计算,更蕴含着深奥的意义和丰富的内涵。

【优质】数学史读后感-word范文 (7页)

【优质】数学史读后感-word范文 (7页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数学史读后感篇一:数学史读后感1《数学史》读后感读完《数学史》,心底不由得一阵感动。

数学的殿堂是多么的华丽,我们这一本本厚厚的高中课本中蕴含着多少前人的探索,未来的数学史会不会因为我们的发现创造而改写?数学,似乎是一个枯燥的学科,但是,却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具……是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《数学史》,我知道了许多。

数学的历史源远流长。

我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。

数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。

这便使数学成为人类文化中最基础的工具。

而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学的发展决不是一帆风顺的,更是一部充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的情景剧。

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。

第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。

从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。

但是,希帕苏斯却被无情地抛进了大海。

不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

数学史读后感

数学史读后感

数学史读后感数学史作为一门独特的学科,记录了人类对数学的探索和发展历程。

通过阅读数学史,我对数学的起源、发展和应用有了更深入的了解,也对数学的重要性有了更深刻的认识。

首先,数学史告诉我们数学的起源可以追溯到古代文明。

古埃及人和古巴比伦人通过观察天象和解决实际问题,形成为了一些基本的数学概念和技巧。

例如,他们发明了一套计数系统和简单的代数方法,用于解决土地测量和贸易交易等问题。

这些数学知识为后来的数学家提供了珍贵的经验和启示。

其次,数学史展示了数学的发展是一个不断演化的过程。

古希腊的数学家们,如毕达哥拉斯、欧几里德和阿基米德,提出了许多重要的数学理论和定理,为几何学和数论的发展奠定了基础。

他们的工作不仅在当时产生了重大影响,而且对后来的数学家和科学家产生了深远的影响。

例如,欧几里德的《几何原本》成为了几何学的经典教材,至今仍被广泛使用。

此外,数学史还展示了数学在现代科学和技术中的广泛应用。

从牛顿的微积分到爱因斯坦的相对论,数学在物理学、工程学和计算机科学等领域中发挥了重要作用。

现代数学的发展离不开对历史上数学成就的总结和借鉴,这使得数学史成为了一门重要的学科。

通过阅读数学史,我深刻认识到数学的重要性。

数学不仅是一门学科,更是一种思维方式。

它培养了我们的逻辑思维能力、分析问题的能力和解决问题的能力。

数学的发展历程也告诉我们,数学的进步是需要不断的探索和创新的。

我们应该保持对数学的兴趣和热爱,不断学习和研究,为数学的发展做出自己的贡献。

总而言之,数学史读后感让我对数学有了更深入的认识和理解。

通过了解数学的起源、发展和应用,我意识到数学在人类文明进程中的重要性。

数学不仅是一门学科,更是一种思维方式和工具,对我们的生活和社会发展有着深远的影响。

我将继续学习和研究数学,为数学的发展贡献自己的力量。

数学史选讲读后感

数学史选讲读后感

数学史选讲读后感数学作为一门基础学科,我们从小就开始接触和学习与数学有关的许多知识。

但是对于数学的发展历史,我们却不甚了解。

其实数学知识的形成过程与人类认识自然的历史一样漫长,数学史记载了这么学科发生、发展的过程,展现了其深刻内涵和完美形式背后的伟大的探索精神。

了解与学习数学史,能让我们加深对数学的理解,体会数学对人类文明发展的重要作用,并学习数学家们的严谨态度和锲而不舍的探索精神。

一、数学是一门严谨的学科欧几里得的《原本》是用公理化方法建立起演绎体系的最早典范,而其中的平行公设也因遭人怀疑,经过许多学者的研究,导致了非欧几何的诞生。

数学史上的三次危机,第一次使无理数得到认可,第二次使数学分析被建立在实数理论的严格基础之上,而第三次数学危机,罗素悖论彻底动摇了整个数学的基础。

数学在一个个危机下不断发展,从最初的直觉和经验到现在成为了一个严密的学科,一丝一毫的不严谨都有可能导致数学大厦的坍塌。

了解了数学史,我们不难理解,为什么一道看上去正确的几何题目需要让我们写下一长篇繁琐的证明过程,为什么得出一个结论必须要列出那么多的条件——因为数学就是这样一门严谨的学科。

二、探索精神是推动数学发展的动力从古至今,数学史上一道道未解难题、猜想,都刺激着无数数学家们献身其中。

伽罗瓦的群论解决了高次方程可解性和古希腊三大几何问题,欧拉解决哥尼斯堡七桥问题并创造了图论,维尔斯经过8年努力使费马猜想变成费马大定理……而仍有哥德巴赫猜想、黎曼猜想、孪生素数猜想等等许多难题久攻不克。

无论是数学四杰还是其他伟大的数学家们,他们严谨的态度和对真理的不懈追求是让他们在数学的海洋中长风破浪的重要因素。

学习数学史,我们也要学习数学家们那种孜孜以求的探索精神,遇到难题要有一定将它攻下的决心,并探索更多种解决问题的方法。

三、学习数学史能让我们更好地学习数学数学是在大量的生产和生活实践活动的基础上产生的。

我们现在学习数学大多是先学习基本定义定理性质,再用它们来解决问题,而数学知识大多是先出现问题,然后提出猜想或引入新的定义,接着进行论证、检验和完善,一步一步成为一个庞大而严密的体系的。

数学史读后感

数学史读后感

数学史读后感数学史是一本关于数学发展历史的著作,通过对数学的起源、发展和演变进行深入探讨,让读者对数学的发展过程有更深刻的理解。

在阅读完《数学史》这本书后,我不禁对数学这门学科有了全新的认识和感悟。

首先,在阅读过程中,我对数学的起源和发展历程有了更加清晰的了解。

书中详细介绍了古代数学的起源,从古埃及、古巴比伦到古希腊等各个时期的数学成就,使我对古代数学的发展有了更加全面的认识。

例如,古埃及人发展出了一套简单而实用的计数系统,古巴比伦人发明了著名的巴比伦数字,而古希腊人则提出了许多重要的几何学理论。

通过了解这些历史背景,我深刻认识到数学的发展是一个源远流长的过程,每一次的进步都离不开前人的积累和努力。

其次,读完《数学史》后,我对数学的应用价值有了更加深刻的认识。

数学不仅仅是一门学科,更是一种思维方式和工具,广泛应用于各个领域。

书中介绍了数学在物理学、经济学、计算机科学等领域的应用案例,让我意识到数学在现实生活中的重要性。

例如,物理学中的力学和电磁学等理论都离不开数学的支持,经济学中的数学模型可以帮助我们分析市场变化和预测趋势,计算机科学中的算法和数据结构也是数学的重要应用之一。

通过这些案例,我更加深刻地认识到数学不仅仅是一门学科,更是一种解决问题的工具和思维方式。

此外,阅读《数学史》也让我对数学的美感有了更加深刻的体会。

数学作为一门学科,不仅仅是实用的工具,更是一种美的表达方式。

书中介绍了数学家们在探索数学规律和定理的过程中,所展现出来的智慧和创造力,让我对数学的美感有了更加深刻的体会。

例如,欧几里得的几何学原理和定理,牛顿的微积分理论,高斯的数论等等,这些数学家们的贡献不仅仅是对数学知识的积累,更是对人类智慧的体现。

通过阅读这些数学家们的故事,我对数学的美感有了更加深刻的认识和体会。

总结起来,阅读《数学史》这本书让我对数学的发展历程、应用价值和美感有了更加深刻的认识。

数学不仅仅是一门学科,更是一种思维方式和工具,它的发展离不开历史的积累和人类智慧的体现。

(完整版)学习数学史的心得体会

(完整版)学习数学史的心得体会

--------------------------------- 优选公函范文 --------------------------学习数学史的心得领会各位读友大家好,此文档由网络采集而来,欢迎您下载,感谢你知道毕达哥拉斯何许人?你能列举《几何本来》与《九章算术》的不一样风格?你能列举几位有名温州籍的数学家?这些问题让我们学了九年数学的学生不知所答,但跟着上学期对《数学史选讲》进行整合学习,对这些问题逐渐明亮与认识。

发现数学的发展陪伴着人类的发展,上下五千年的人类文明储藏着十分丰富的数学史料。

经过学习让我们更为深入地认识数学的发展历程,历经数学萌芽期、初等数学期间、变量数学期间、近代数学期间、现代数学期间,这好像胎儿的发育过程,大概要经过从单细胞生物到人类的进化过程,要经过近似原生动物、腔肠动物、脊椎动物、---------------- 优选公函范文 ----------------灵长类等各阶段,最后才长成人类的样子。

作为人类智慧的结晶,数学不单是人类文化的重要构成部分,并且一直是推感人类文明进步的重要力量。

在近一周的数学史学习中,我感想颇深,适逢老师部署大家撰写一篇学习领会,现报告以下:领会一:懂得历史:从欧几里获得牛顿的思想变迁历史令人理智,数学史也不例外。

古希腊的文明,数学是主要标记之一,此中欧几里得的《几何本来》闪烁着理性的光芒,人们在赏识和赞美严实的逻辑系统的同时,逐渐地把数学等同于逻辑,以“理性的关闭演绎”作为数学的主要特点。

跟我国古代数学巨著《九章算术》相比较,就能够发现从形式到内容都各有特点和所长,形成东西方数学的不一样风格:《几何本来》以形式逻辑方法把所有内容贯串起来,很少说起应用问题,以几何为主,略有一点算术内容,而《九章算术》则按问题的性质和解法把所有内容分类编排,以解应用问题为主,包括了算术、代数、几何等我国当时数学的所有内容。

可是在近代数学史上,以牛顿为代表的数学巨人突破了“数学=逻辑演绎”的公式,创建地发了然微积分。

数学史读后感

数学史读后感

数学史读后感数学史是一本关于数学发展历史的书籍,通过对数学的起源、发展和重要人物的介绍,让读者了解数学的演变过程和数学思想的发展。

读完这本书,我深受启发,对数学的价值和意义有了更深刻的认识。

首先,数学史告诉我们数学的起源可以追溯到古代文明时期。

早在古埃及、古巴比伦和古希腊时期,人们就开始了解和运用基本的数学概念和方法。

例如,埃及人使用几何学解决土地测量问题,巴比伦人发展了一套计算方法来解决代数方程,希腊人则研究了几何学和数论等数学分支。

这些古代文明为数学的发展奠定了基础,也为后来的数学家提供了宝贵的经验和启示。

其次,数学史向我们展示了数学的不断进步和创新。

在中世纪,阿拉伯数学家通过翻译和吸收古希腊和印度数学的成果,推动了代数学和三角学的发展。

文艺复兴时期,欧洲的数学家们开始关注几何学和分析学,如笛卡尔的坐标系和牛顿的微积分等,这些成果为现代数学的发展打下了坚实的基础。

随着科学技术的进步,数学在物理学、工程学和计算机科学等领域得到广泛应用,为人类社会的发展做出了巨大贡献。

此外,数学史还向我们展示了数学家们的智慧和创造力。

伽利略通过实验和观察,提出了地球自转的假说,并运用数学方法进行验证。

费马通过提出费马大定理,激发了数学家们长期的努力和研究,最终被安德鲁·怀尔斯证明。

高斯通过研究数论和几何学,提出了许多重要的定理和方法,对数学的发展做出了巨大贡献。

这些数学家们的贡献不仅推动了数学的发展,也对其他科学领域产生了深远影响。

最后,数学史让我认识到数学的重要性和应用广泛性。

数学不仅仅是一门学科,更是一种思维方式和解决问题的工具。

无论是在自然科学、社会科学还是工程技术领域,数学都扮演着重要的角色。

例如,在物理学中,数学被用来建立和描述物理定律和现象;在经济学中,数学被用来建立经济模型和进行经济分析;在计算机科学中,数学被用来设计和分析算法等。

数学的应用范围广泛,对人类社会的发展和进步起到了关键作用。

数学史读后感

数学史读后感

数学史读后感数学史读后感(一)《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。

我知道了,数学的历史源远流长。

我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。

数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。

这便使数学成为人类文化中最基础的工具。

而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

我知道了,第一次数学危机;;你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他;;希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。

从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。

但是,希帕苏斯却被无情地抛进了大海。

不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字;;希帕苏斯!第二次数学危机;;知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

第三次数学危机;;我们听过这个名字;;罗素,但是紧跟在他的身后的两个字却是那么刺眼;;“悖论”。

“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。

与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

数学似乎是再也站不起来了。

是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。

这一问题的解决到现在还在进行中。

罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学史选讲读后感
本文是关于读后感的,仅供参考,如果觉得很不错,欢迎点评和分享。

数学史选讲读后感
为了进一步提高数学教师专业素养,学校为老师们准备了《数学史选讲》这本书,读了以后有点感想。

数学是几千年来人类智慧的结晶,书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,读后让人初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。

第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。

但是最早发现根号2的希帕苏斯被抛进了大海。

第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。

第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。

但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

如果说“危机”是数学长河的主流,那数学史上一道道悬而未解的难题、猜想,就是一朵朵美丽的浪花。

费马猜想,历经三百年,终于变成了费马定理;四色
猜想,也被计算机攻克。

哥德巴-赫猜想,已历经两个半世纪之多,众多的数学家为之竞相奋斗,尽管陈景润跑在了最前面,但最终的证明还是遥遥无期。

更有庞加莱猜想、黎曼猜想、孪生素数猜想等……,刺激着数学家的神经,等待着数学家的挑战。

天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。

但就是在这样的环境下,他们依然默默的坚守着自己的信念,执着着自己的理想。

数学家们那种锲而不舍的精神是我们应该努力学习的,正是有了那种精神,他们才能坚守在自己的阵地上直到自己生命的最后一刻,这也许就是他们所认为的幸福。

回想我们自身,什么才是我们所追求的呢?什么才是幸福呢?教师职业本身的内涵和学生的健康成长是我们应该追求的目标,享受职业内在的幸福要从做好自己的本职工作开始。

浪花是美丽的,数学更是美丽的,英国数学家罗素说过:“数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,即就像是一尊雕塑……这种美没有绘画或音乐那样华丽的装饰,他可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界。

” 这么美的东西除了我们自己感受,还要在学生中去流传,将数学史渗透到数学教学中,可以拓宽学生的视野,提高学生素质,激励学生奋发向上,也能够激发学生们学习数学的兴趣。

感谢阅读,希望能帮助您!。

相关文档
最新文档