六年级数学毕业复习比和比例知识点

合集下载

小学六年级数学总复习比和比例3

小学六年级数学总复习比和比例3
总复习
一、正比例
两种相关联的量,一种量变化,另一种量 也随着变化,如果这两种量中相对应的两 个数的比的比值(商)一定,这两种量就 叫做成正比例量,它们之间的关系叫做正 比例关系。
如果用x和y表示两种相关联的量,用k表示它们 的比值,那么上面这种数量关系式可以用 y/x =k (一定) 来表示。
二、反比例
选择题(选择正确答案的序号填在括号里)
(1)S表示路程,t表示时间,则S=60t中, S与t (
A)
A、成正比例,B、成反比例,C、不成比例
(2)长方形的面积一定,它的长和宽(
B

A、成正比例,B、成反比例,C、不成比例
练习与提高:
根据关系式判断各题中两种量是不是 成比例,成什么比例。 ⑴收入一定,支出和节余。 ⑵出米率一定,稻谷的重量和大米 的重量。 ⑶圆柱的侧面积一定,它的底面周 长和高。
两种相关联的量,一种量变化,另一 种量也随着变化 ,如果这两种量中相 对应的两个数的积一定,这两种量就 叫做成反比例的量,它们的关系叫做 反比例关系。
如果用x和y表示两种相关联的量,用k表示它 们 的比值,那么上面这种数量关系式可以用 X· y=k (一定)来表示
三、正比例和反比例的相同点和不同点:
4 160
5 200
6 240
· · · · · · · · · · · ·
(1)
路程(千米)
每小时加工数
5 120
10 60
15 40
20 30
25 24
30 20
· · · · · · · · · · · ·
(2)
加工时间
加工时间(时) 路程(千米)
240
200 160 120 80 40

小学六年级比和比例知识点

小学六年级比和比例知识点

八.比和比例239.“比”和“比值”这两个概念有什么联系和区别?在除法中,两个数相除时,就叫做两个数的比。

一般分为两种情况:(1)比较同类量的倍数关系,表示其中一个数是另一个数的几倍或几分之几。

例如:红光小学有女教师40人,男教师12人。

表示女教师与男教师人数的比是40∶12(或化简为10∶3),这也表示女教师人数是男教师人数(2)两个不同类量相比,是表示一个新的量。

例如:总价∶数量,表示单价。

路程∶时间,表示速度。

总产量∶亩数,表示亩产量。

“比”是由前项∶后项组成的,而“比值”是前项除以后项所得的商。

如:由此可以看出:“比”和“比值”这两个概念是有区别的。

但两者之间也是有联系的,因为没有前面的“比”,就不会有后面的“比值”。

就一般而言,“比”和“比值”都是一个完整比的组成部分。

除此之外,还要看到“比”和“比值”也有着一致性。

从广义上解释,两个数的比是两个数的商,这个商也是比值。

如:由于比中的比号相当于分数中的分数线,所以用比的形式表示,就是7∶240.比、除法、分数这三者之间,有什么联系和区别?在小学数学教材中,从除法到分数,又到比,这不仅是一个发展过程,三者之间也存在着内在的必然联系。

在比的教与学中,揭示它们之间的联系,是极其必要的。

比的前项相当于除法中的被除数,分数中的他子;后项相当于除法中的除数,分数中的分母;比号柑当于除法中的除号,分数中的分数线;比值相当于除法中的商,分数的分数值。

例如:在比中,前项÷后项=比值 a∶b=c在除法中,被除数÷除数=商 a÷b=c如上所述,比、除法、分数三者之间有着如此密切的联系,目的在于:有关比的运算,可以转化为除法运算或分数形式,而又需要重新建立比的运算法则。

它们之间的区别,从意义上区分有:“比”是表示两个数的倍数;“除法”表示的是一种运算;“分数”则是一个数。

241.“求比值”和“化简比”有区别吗?在比和比例中,求比值是常用的,但也需要把较复杂的整数比(不包括含有分数、小数的比),化成简单的整数比,这两者是有区别的。

六年级数学比和比例知识点

六年级数学比和比例知识点

1、比的意义和性质
(1)比的意义:两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的
数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0 除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以
是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,
2、比例的意义和性质
(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫
做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的基本性质
在比例里,两个外项的积等于两个两个内向的积。

(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个
数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

六年级数学毕业复习_比和比例知识点资料讲解

六年级数学毕业复习_比和比例知识点资料讲解

六年级数学毕业复习_比和比例知识点比和比例知识点---------判断两个量是否成正比例、反比例或不成比例一、写(写出数量关系式)1、根据数量间的关系或公式,写出数量关系式。

如,①宽一定,长方形的面积和长是否成正比例。

根据“长方形的面积=长×宽”得到“宽(一定)长长方形的面积”,因为长方形的面积和长是相关联的量,宽一定,也就是它们的比值一定,所以“宽一定,长方形的面积和长是成正比例”。

②圆锥的体积一定,底面积和高是否成反比例。

根据“底面积×高×31=圆锥的体积”得到“底面积×高=圆锥的体积×3”,因为底面积和高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。

2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。

如,“(长+宽)×2=长方形的周长”的左边就多了×2,长方形的周长”应变为“(长+宽)=2又如,梯形的上底和下底不变,面积和高。

可以这样写关系式:(a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h→s÷h=(a+b)÷2,因为上底和下底不变,(a+b)÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。

3、还有些数量之间是无法写关系式的。

如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。

二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定)1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。

如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。

小学六年级__比与比例知识点梳理

小学六年级__比与比例知识点梳理

复习课:比和比例知识点三:求比值和化简比1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题 1、 按比例分配问题 (1) 按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2) 解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x 的比例式,再解比例求出x 。

2、 用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为x ,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

精讲典型题 例题1(1) 一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是():()(2) 把2米:4厘米化成最简单的整数比是(),比值是()。

小学六年级 比和比例知识点梳理

小学六年级 比和比例知识点梳理

黄冈教育@张家界教学中心内部使用复习课:比和比例知识点一: 比和比例的联系与区别知识点三:求比值和化简比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比y?k(一定)例关系。

正比例的关系式:x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

xy?k(一定)反比例的关系式:3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例1黄冈教育@张家界教学中心内部使用知识点五:用比例知识解决问题按比例分配问题1、比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的按(1)应用题叫做按比例分配应用题。

解题方法2)(一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量分别求出各部分的最后按照求一个数的几分之几多少的解题方法,占总量的几分之几,量是多少?平归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量=总份数?,再用“一份的量,求出各部分的量。

各部分量所对应的份数”均每份的量(归一)”用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等。

的比例式,再解比例求出x量关系式列出含有x 用正、反比例知识解答应用题的步骤、2(2)找等量关系。

如果成正比例,则按等比找)分析数量关系。

判断成什么比例。

(1,(3)解比例式。

设未知数为x等量关系式;如果成反比例,则按等积找等量关系式。

(4)解比例。

比和比例知识点六年级

比和比例知识点六年级

比和比例知识点六年级比和比例是数学中的重要概念,它们在我们生活和学习中都有广泛的应用。

下面我们就来详细了解一下比和比例的相关知识。

一、比的概念和性质在数学中,比是用来表示两个量之间的大小关系的一种方法。

比通常采用“:”、“/”或“÷”来表示。

例如,1:2、1/2或1÷2表示1和2之间的比。

在比中,1被称为第一个比例数,2被称为第二个比例数。

比具有以下几个性质:1.相等性:如果两个比的第一个比例数与第二个比例数相等,那么这两个比相等。

例如,1:2 = 2:4,表示1与2的比等于2与4的比。

2.倒数性:如果两个比的第一个比例数与第二个比例数的倒数存在比,那么这两个比互为倒数。

例如,3:4与4:3互为倒数。

3.加法性:如果两个比存在比,那么它们可以相加。

例如,1:2 + 2:3 = 3:5。

二、比例的概念和性质比例是由两个或多个比构成的等式关系,其中的比称为比例。

比例一般用等号“=”来表示。

例如,1:2 = 2:4表示1与2的比等于2与4的比。

比例具有以下几个性质:1.可扩性:如果一个比例的两个比例数同时乘(或除)一个相同的非零数,得到的新比例与原比例相等。

例如,1:2 = 2:4,将1:2的两个比例数同时乘以2得到2:4。

2.翻转性:一个比例的两个比例数互为倒数时,将其翻转得到的新比例与原比例相等。

例如,1:2与2:1互为倒数。

3.变比性:如果一个比例中的第一个比例数与第二个比例数的比等于另一个比例中的第一个比例数与第二个比例数的比,那么这两个比例互为变比。

例如,1:2 = 3:6,表示1与2的比等于3与6的比。

三、实际应用比和比例在我们的生活中有许多实际应用,下面列举几个常见的例子:1.时间比例:例如,一部电影长3个小时,而电影院播放时间是2小时,那么这两个时间的比是3:2。

2.长度比例:例如,一张A4纸的长宽比是1:√2。

这个比例是根据纸张的特定尺寸和长宽比定义的。

3.货币兑换比例:例如,人民币对美元的兑换比例是1:6.4。

小学六年级__比和比例知识点梳理

小学六年级__比和比例知识点梳理

复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为x,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例知识点
---------判断两个量是否成正比例、反比例或不成比例 一、写(写出数量关系式)
1、根据数量间的关系或公式,写出数量关系式。

如,①宽一定,长方形的面积和长是否成正比例。

根据“长方形的面积=长×宽”得到“
宽(一定)长
长方形的面积
”,因为长方形的面积和长
是相关联的量,宽一定,也就是它们的比值一定,所以“宽一定,长
方形的面积和长是成正比例”。

②圆锥的体积一定,底面积和高是否成反比例。

根据“底面积×高×1=圆锥的体积”得到“底面积×高=圆锥的体积×3”,因为底面积和3
高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,
就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。

2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。

如,“(长+宽)×2=长方形的周长”的左边就多了×2,应变为“(长
长方形的周长”
+宽)=
2
又如,梯形的上底和下底不变,面积和高。

可以这样写关系式:
(a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h →
s÷h=(a+b)÷2,因为上底和下底不变,(a+b)÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。

3、还有些数量之间是无法写关系式的。

如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。

二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定)
1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。

如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。

又如,圆的周长一定,π和直径就不是相关联的量。

因为不管直径怎
么变,π总是等于3.14……,不会随直径而改变。

2、看是否能变化:也就是这两个量都是能变化的,不是固定的。

如,上例的π就不是能变化的量。

如,“边长×边长=正方形的面积(一定)”,因为正方形的面积(一定),所以边长也只能是固定的,不是变量。

所以,正方形的面积(一定),边长和边长不成比例。

3、看是否商(积)一定:也就是这两个量相除(或相乘)的结果是否固定不变的。

如,圆的周长和直径成正比例。

因为圆的周长和直径的比值等于π,π是固定的数,即圆的周长和直径的比值一定的。

π(一定)直径
圆的周长
三、列(列出几组数据)
列出几组数据,然后看这两个量是否相关联,比值或积是否一定。

(如果上面两种方法能够准确判断,可不必用这种方法。

不好写关系式、无法写关系式、不好判断的最好用这种方法。


如,“长方形的周长一定,长和宽成是否正比例。

”先任意列数字,如周长为18,
宽是1,长就是8,宽是2,长就是7……
然后看长和宽是否相关联,比值是否一定。

最后得出结论:长和宽是相关联的量,但它们的比值不一定:8÷1=8,
7÷2=3.5,6÷3=2,……,所以“长方形的周长一定,长和宽不成是正比例。


8、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?(试用比例解)
9、一辆汽车一次加汽油支付60元,行驶了300千米。

现在要去800
千米的某地接运一批货物回来。

需要支付多少元汽油费?(用比例解)
10、解比例。

0.28:x=3.75:7.5
4.035
.0
5.
10
x
11、X华骑自行车从A地到B地,前齿轮共转了1200圈,后齿轮转
了多少圈?(用比例解)
12、三晨电机厂按照预约赶制一份外商订单任务,如果每天生产42
台电机,8天就能完成,开工前一天,外商与王厂长签订了合约,改为提前2天交付产品,那么每天必须增产几台?
13、有袋米,第一袋与第二袋重量的比是8:9,如果从第二袋中取出10千克放入第一袋中,两袋米的重量就相等。

两袋米共有多少千克?
14、甲乙两个图书架所放图书册数的比是2:3,现从乙书架拿出42
册图书放到甲书架,甲、乙两个书架图书的比是5:4,甲书架原有图书多少册?
15、六⑵班上学期男女生人数比为5:7,这学期转入2名男生,转出
2名女生后,男女生人数比为11:13。

这学期六⑵班有女生多少人?
1,
16、某筑路队计划四月份修完一条路,上旬修了这条路的
5中旬比上旬多修70米,这时,已修与未修的比是3:1,这条路全长多少米?
17、甲乙两人一次测验成绩是5:4,如果甲少得22.5分,乙多得22.5
分,则成绩之比是5:7。

甲、乙两人的原分数各是多少?
18、下图中三角形ABC的面积和正方形面积的比是4:9,正方形的边
长是6厘米,三角形中AB边的长是多少厘米?
A
B C。

相关文档
最新文档