显微镜基础知识

合集下载

中考生物显微镜知识点归纳

中考生物显微镜知识点归纳

中考生物显微镜知识点归纳显微镜是生物学研究中常用的观察工具,对于中考生物科目来说,掌握显微镜的使用方法和相关知识点是非常重要的。

以下是中考生物显微镜知识点的归纳:显微镜的结构1. 镜筒:显微镜的主体部分,包括物镜和目镜。

2. 物镜:位于镜筒下方,用于放大标本的镜头。

3. 目镜:位于镜筒上方,用于观察物镜放大后的图像。

4. 载物台:放置标本的平台,通常配有压片夹固定标本。

5. 调焦旋钮:用于调节物镜与标本之间的距离,以获得清晰的图像。

6. 光源:提供照明,使标本可见。

显微镜的使用步骤1. 取镜和安放:右手握住镜臂,左手托住镜座,将显微镜放在实验台上。

2. 对光:转动转换器,使低倍物镜对准通光孔,调整光圈和反光镜,使视野明亮。

3. 放置标本:将标本放在载物台上,用压片夹固定。

4. 观察:左眼注视目镜,转动粗准焦旋钮,使物镜逐渐靠近标本,直到看到图像。

5. 调焦:转动细准焦旋钮,使图像清晰。

6. 清洁和收镜:观察结束后,用擦镜纸清洁镜头和载物台,将显微镜放回原处。

显微镜的成像原理显微镜的成像原理基于光学原理,物镜和目镜共同作用,将标本放大。

物镜负责初步放大,目镜则进一步放大物镜的成像。

显微镜的放大倍数显微镜的总放大倍数是物镜放大倍数与目镜放大倍数的乘积。

例如,10倍物镜和10倍目镜的显微镜总放大倍数为100倍。

显微镜的分类1. 光学显微镜:使用可见光进行观察。

2. 电子显微镜:使用电子束进行观察,分辨率远高于光学显微镜。

显微镜在生物学中的应用显微镜在生物学中的应用非常广泛,包括细胞结构观察、组织切片分析、微生物研究等。

显微镜的维护和保养1. 避免强烈震动和高温。

2. 定期清洁镜头和载物台。

3. 存放时避免潮湿和直射阳光。

结束语掌握显微镜的使用方法和相关知识点,对于中考生物科目的学生来说至关重要。

通过不断的练习和学习,可以提高观察和分析生物标本的能力,为生物学研究打下坚实的基础。

希望以上的知识点归纳能够帮助同学们更好地理解和运用显微镜。

显微镜基础知识检测

显微镜基础知识检测
B.转动,方向使镜筒缓缓,直到物镜接近玻片标本为止,此时实验者的眼睛应侧面看着,目的是C.左眼看内,同时缓缓转动,使镜筒,直到看到物像,再稍稍转动,使看到的物像。
4、:取下载玻片,擦干外表,镜头(物镜、目镜)用擦。送进镜箱,放回原处。
5、显微镜使用的注意点:
(1)放在显微镜下观察的生物标本是(种类:)光线能透过,才能观察清楚。显微镜放大的倍数=。(是指或者的放大倍数,不是面积放大倍数)
(7)视野中的污点有三种情况:。移动,如果污点随之移动,则污点在上;移动,污点随之移动,则污点在;如果前两次都不能移动污点,则污点在上。
(8)一行细胞数量的变化,可根据视野范围与放大倍数呈反比计算。
例:某台显微镜放大100倍时,可看到一行8个细胞;若放大到400倍时,则只可看到一行个细胞。
(8)图形视野内细胞数量变化,可根据视野范围与放大倍数的平方成反比计算。
(2)显微镜中看到的像是放大的。如,玻片中写的“d”,视野中看到的就是“”;玻片中写的“69”,视野中看到的就是“”。(上下与左右都颠倒,即旋转)
(3)光线较弱换用上的和的;光线较强换用上的和的。
如果要观察植物细胞的液泡应
(4)移动玻片标本,物像向方向移动。(要使物像向右移动,就要向移动玻片;物像偏在右上方,要移到中央,就要向移动玻片)
第二单元生物体的结构
考点一、细胞的基本结构和功能
1、认识显微镜:观察右图,辨认显微镜的每一部分,弄清每一部分的名称和功能。
(1)机械部分:镜座、镜柱、镜臂、镜筒、、细准焦螺旋、、载物台、通光孔、压片夹。
(2)照明部分:(含和)、、
(3)光学部分:、(低倍镜、高倍镜)。作用
2、显微镜的成像原理(放大原理)
(5)低倍镜(放大倍数越)下看到的细胞数目,视野范围越,体积越,光线越;物镜离玻片。高倍镜(放大倍数越)下看到的细胞数目,视野范围越,体积越,光线越;物镜离玻片。

显微镜基础知识及主要参数说明

显微镜基础知识及主要参数说明

第一章:显微镜的几个重要光学技术参数在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。

只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。

显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、工作距离、覆盖差等。

这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。

1.数值孔径:(Numerical aperture)简写NA数值孔径是判断物镜性能(分辨率,焦深和亮度)的关键要素,计算公式如下:N.A.=n×Sin(u/2)n = 试样与物镜之间介质的折射率(空气:n=1、油:n=1.515)u:孔径角又称“镜口角”,是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,也是光轴与离物镜中心最远折射光形成的角度。

孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。

空气的折射率为n=1,孔径角最大不能超过180度,否则会因为物镜工作距离等于零而无法工作。

Sin(180/2)=1,所以空气介质的NA值小于1。

显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。

基于这一原理,就产生了水浸系物镜和油浸物镜,因介质的折射率n值大于1,NA 值就能大于1。

数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。

目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。

这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值,数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。

它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。

七年级上生物显微镜知识点

七年级上生物显微镜知识点

七年级上生物显微镜知识点生物显微镜是生物学中最基础的工具之一。

通过它我们可以观察到肉眼所看不到的微小生物和细胞结构。

在七年级上学习生物显微镜的过程中,我们需要掌握以下五个主要知识点。

一、生物显微镜的原理生物显微镜的主要原理是利用光学的放大和聚焦性质观察细胞和微生物。

它由光源、凸透镜、物镜、目镜和台座组成。

当光源照射到材料上时,凸透镜将光线聚焦,然后通过物镜和目镜再次进行放大,最终可以看到高清晰的影像。

二、常见的生物显微镜在学习生物显微镜的过程中,我们需要了解常见的生物显微镜类型,包括底光显微镜、倒置显微镜、荧光显微镜等。

底光显微镜是最常用的显微镜,倒置显微镜和荧光显微镜则分别适用于不同的实验和研究领域。

三、生物样品的制备为了观察到清晰的细胞和微生物结构,我们需要精细制备样品。

制备过程包括采样、固定、切片、染色等步骤。

采样时需要保证取样区域干净、无细菌污染,并选择适合的样品处理方法。

四、使用生物显微镜的技巧生物显微镜的操作需要注意周围环境的光线、温度和湿度等因素,还需要掌握样品放置和操作显微镜的技巧。

例如,为了减少环境光的影响,需要关闭附近的灯光。

五、生物显微镜的应用生物显微镜在生物学研究和医学诊断中具有广泛的应用。

它可以用于观察细胞、细菌、病毒、组织等生物结构,并且可以帮助研究人员了解各种疾病的病因和治疗方法。

在学习七年级生物显微镜知识点时,我们需要理解每一个知识点的重要性,这些知识点对于今后的学习和工作都有着重要的影响。

如果我们能够熟练掌握这些知识,那么我们将能够更加深入地研究生物学中的各种现象和问题。

显微镜基础知识单选题100道及答案解析

显微镜基础知识单选题100道及答案解析

显微镜基础知识单选题100道及答案解析1. 在显微镜下观察到的物像若在视野左下方,要将物像移到视野正中央,应将装片向()移动。

A. 右上方B. 右下方C. 左上方D. 左下方答案:D解析:因为显微镜成的像是倒立的像,物像的移动方向和装片的移动方向相反。

物像在左下方,应向左下方移动装片才能将物像移到视野正中央。

2. 使用显微镜时,若光线太暗,应选用()A. 大光圈、平面镜B. 大光圈、凹面镜C. 小光圈、平面镜D. 小光圈、凹面镜答案:B解析:大光圈可以通过更多的光线,凹面镜有聚光作用,光线太暗时应选用大光圈和凹面镜来增加亮度。

3. 显微镜的目镜为5×,物镜为10×,则物像的放大倍数是()A. 5 倍B. 10 倍C. 15 倍D. 50 倍答案:D解析:显微镜的放大倍数等于目镜放大倍数乘以物镜放大倍数,即5×10 = 50 倍。

4. 要使视野中单个细胞最大,你认为应选用的显微镜镜头组合是()A. 1 和4B. 2 和6C. 3 和4D. 1 和6答案:C解析:目镜越短,放大倍数越大;物镜越长,放大倍数越大。

要使视野中单个细胞最大,应选用放大倍数最大的目镜3 和物镜4 的组合。

5. 用显微镜观察时,转动粗准焦螺旋使镜筒缓缓下降,此时眼睛一定要看着()A. 目镜B. 物镜C. 反光镜D. 镜筒答案:B解析:转动粗准焦螺旋使镜筒缓缓下降时,眼睛一定要看着物镜,防止物镜压坏玻片标本。

6. 当显微镜目镜和物镜的放大倍数均为“10×”时,学生在视野中看到的图像如右图所示。

如果仅将物镜换成“40×”,那么在视野中可以看到的细胞数一般是()A. 2 个B. 4 个C. 10 个D. 40 个答案:A解析:显微镜的放大倍数越大,看到的细胞数目越少。

原来放大10×10 = 100 倍看到8 个细胞,换成40×10 = 400 倍,放大倍数增大 4 倍,看到的细胞数目为原来的1/4,即8÷4 = 2 个。

小学生显微镜的知识点总结

小学生显微镜的知识点总结

小学生显微镜的知识点总结显微镜是一种用来观察微观世界的仪器,它可以让我们看到肉眼无法看到的微小细节,比如细胞、细菌、微生物等等。

在科学实验室或者学校的实验室里,显微镜是常见的仪器之一,它在生物、化学、地理等学科的学习和研究中都起着非常重要的作用。

那么,让我们一起来了解一下关于显微镜的知识吧。

一、显微镜的种类显微镜有许多种类,其中主要有光学显微镜和电子显微镜两大类。

1.光学显微镜光学显微镜是利用可见光来观察样品的一种显微镜。

它主要包括荧光显微镜、共聚焦显微镜、螺旋扫描共聚焦显微镜等各种类型。

荧光显微镜可以对生物样品中的某些部分进行特异性标记,使其在显微镜下呈现出荧光,从而可以对特定的细胞结构或者分子进行观察和研究。

2.电子显微镜电子显微镜则是利用电子束来观察样品的一种显微镜。

它可以对样品进行高倍率的放大,从而让人们能够看到更加微小的细节和结构。

电子显微镜主要有透射电子显微镜和扫描电子显微镜两种类型,它们在生物学、材料科学、地质学等领域都有着广泛的应用。

二、显微镜的构成1.物镜物镜是显微镜中用来放大样品的部分,一般情况下一个显微镜会有多个不同倍率的物镜,比如4倍、10倍、40倍等。

物镜的放大倍率不同,所能观察到的细节也会有所不同。

2.目镜目镜是用来观察物镜放大后的样品的部分,它一般有一个或者两个,视觉舒适度更好。

3.镜头显微镜的镜头也非常重要,它会影响到观察到的图像的清晰度和质量。

一般来讲,优质的镜头能够让图像更加清晰、细节更加丰富。

4.支架支架是显微镜的支撑结构,质量好的支架能够保证显微镜的稳定性和使用寿命。

并且支架上的焦螺距能够调节物镜和目镜的位置,以达到最佳的观察效果。

5.光源显微镜通常需要透过样品进行观察,为了让样品的细节更加清晰,需要光源来照亮样品。

一般情况下显微镜会配有自己的光源,或者可以使用环境光源。

在一些特殊情况下,还需要用到偏光装置来观察一些特殊的样品。

三、显微镜的使用1.准备工作在使用显微镜之前,首先要对显微镜进行一些准备工作,比如先检查一下显微镜有没有损坏,然后调节一下焦距和光源,最后检查一下有没有灰尘和杂质。

显微镜的成像特点和物像移动规律(基础版)

显微镜的成像特点和物像移动规律(基础版)

显微镜的成像特点和物像移动规律(基础版)【知识梳理】光学显微镜主要由目镜、物镜、载物台和反光镜组成。

目镜和物镜都是凸透镜,焦距不同。

物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。

目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。

反光镜用来反射,照亮被观察的物体。

反光镜一般有两个反射面:一个是平面,在光线较强时使用;一个是凹面,在光线较弱时使用。

(1)成像特点:显微镜成放大倒立的虚像,即上下、左右均是颠倒的。

实物与像之间的关系是实物旋转180°就是像。

如实物为字母“b”,则视野中观察到的为“q”。

(2)移动规律:在视野中物像偏向哪个方向,则应向哪个方向移动(或同向移动)装片。

如物像在偏左上方,则装片应向左上方移动。

【例题领悟】例题1 下列关于高倍物镜的叙述中,正确的是( )解析使用显微镜观察标本时,应先在低倍镜下找到视野,再换用高倍物镜观察,A项错误;为了使高倍物镜下的视野亮一些,可使用更大的光圈或凹面反光镜,B项正确;换上高倍物镜后,禁止用粗准焦螺旋调焦,应用细准焦螺旋调至物像最清晰,C项错误;要观察图1所示微生物,应把载玻片向图2中丙方向移动,D项错误。

A.因为藓类叶片大,在高倍镜下容易找到,所以可以直接使用高倍物镜观察B.为了使高倍镜下的视野亮一些,可使用更大的光圈或凹面反光镜C.换上高倍物镜后,必须先用粗准焦螺旋调焦,再用细准焦螺旋调至物像最清晰D.要观察图1所示微生物,应把载玻片向图2中甲方向移动答案B例题2 在不同的放大倍数下,所呈现的视野分别为甲和乙(如图所示),下列相关叙述正确的是( )解析由图可知,乙是高倍镜下的视野,甲是低倍镜下的视野,乙与甲相比,视野较暗,故A正确;甲放大倍数较小,乙放大倍数较大,甲中观察到的细胞,在乙中不会都被观察到,故B错误;视野中物像是倒立的,物像与玻片移动的方向相反,若玻片右移,则甲、乙的物像都会向左移,故C错误;若在甲中看到的物像模糊,则改换成乙也不会看到清晰的物像,故D错误。

光学显微镜基础知识

光学显微镜基础知识

光学显微镜基础知识利用光学原理把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。

简史早在公元前1世纪,人们就已发现通过球形透明物体去观察微小物体时可以使其放大成像。

后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。

1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。

1610年前后,意大利的伽利略和德国的j.开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。

17世纪中叶,英国的r.胡克和荷兰的a.van列文胡克都对显微镜的发展作出了卓越的贡献。

1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。

这些部件经过不断改进,成为现代显微镜的基本组成部分。

1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中9台保存至今。

胡克和列文胡克利用自制的显微镜在动、植物机体微观结构的研究方面取得了杰出的成就。

19世纪,高质量消色差浸液物镜的出现使显微镜观察微细结构的能力大为提高。

1827年g.b.阿米奇第一个采用浸液物镜。

19世纪70年代,德国人e.阿贝奠定了显微镜成像的古典理论基础。

这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括r.科赫、l.巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。

在显微镜本身结构发展的同时,电子显微镜观测技术也在不断创新:1850年发生了偏光电子显微镜之术,1893年发生了干预电子显微镜之术,1935年荷兰物理学家f.泽尔尼克缔造了相配电子显微镜之术,他为此在1953年被授与诺贝尔物理学奖金。

古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。

后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。

现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显微镜基础知识第一章:显微镜简史随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。

显微镜是从十五世纪开始发展起来。

从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。

第二章显微镜的基本光学原理一.折射和折射率光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。

当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。

二.透镜的性能透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。

依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。

当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过交点并垂直光轴的平面,称“焦平面”。

焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。

光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。

实像可在屏幕上显现出来,而虚像不能。

三.影响成像的关键因素—像差由于客观条件,任何光学系统都不能生成理论上理想的像,各种像差的存在影响了成像质量。

下面分别简要介绍各种像差。

1.色差(Chromatic aberration)色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。

白光由红橙黄绿青蓝紫七种组成,各种光的波长不同,所以在通过透镜时的折射率也不同,这样物方一个点,在像方则可能形成一个色斑。

光学系统最主要的功能就是消色差。

色差一般有位置色差,放大率色差。

位置色差使像在任何位置观察都带有色斑或晕环,使像模糊不清。

而放大率色差使像带有彩色边缘。

2.球差(Spherical aberration)球差是轴上点的单色相差,是由于透镜的球形表面造成的。

球差造成的结果是,一个点成像后,不在是个亮点,而是一个中间亮边缘逐渐模糊的亮斑,从而影响成像质量。

球差的矫正常利用透镜组合来消除,由于凸、凹透镜的球差是相反的,可选配不同材料的凸凹透镜胶合起来给予消除。

旧型号显微镜,物镜的球差没有完全矫正,应与相应的补偿目镜配合,才能达到纠正效果。

一般新型显微镜的球差完全由物镜消除。

3.慧差(Coma)慧差属轴外点的单色像差。

轴外物点以大孔径光束成像时,发出的光束通过透镜后,不再相交一点,则一光点的像便会得到一逗点状,型如慧星,故称“慧差”。

4.像散(Astigmatism)像散也是影响清晰度的轴外点单色像差。

当视场很大时,边缘上的物点离光轴远,光束倾斜大,经透镜后则引起像散。

像散使原来的物点在成像后变成两个分离并且相互垂直的短线,在理想像平面上综合后,形成一个椭圆形的斑点。

像散是通过复杂的透镜组合来消除。

5.场曲(Curvature of field)场曲又称“像场弯曲”。

当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。

这样在镜检时不能同时看清整个像面,给观察和照相造成困难。

因此研究用显微镜的物镜一般都是平场物镜,这种物镜已经矫正了场曲。

6.畸变(Distortion)前面所说各种像差除场曲外,都影响像的清晰度。

畸变是另一种性质的像差,光束的同心性不受到破坏。

因此,不影响像的清晰度,但使像与原物体比,在形状上造成失真。

四. 显微镜的成像(几何成像)原理显微镜之所以能将被检物体进行放大,是通过透镜来实现的。

单透镜成像具有像差,严重影响成像质量。

因此显微镜的主要光学部件都由透镜组合而成。

从透镜的性能可知,只有凸透镜才能起放大作用,而凹透镜不行。

显微镜的物镜与目镜虽都由透镜组合而成,但相当于一个凸透镜。

为便于了解显微镜的放大原理,简要说明一下凸透镜的5种成像规律:(1)当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;(2)当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;(3)当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;(4)当物体位于透镜物方焦点上时,则像方不能成像;(5)当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。

显微镜的成像原理就是利用上述(3)和(5)的规律把物体放大的。

当物体处在物镜前F-2F(F为物方焦距)之间,则在物镜像方的二倍焦距以外形成放大的倒立实像。

在显微镜的设计上,将此像落在目镜的一倍焦距F1之内,使物镜所放大的第一次像(中间像),又被目镜再一次放大,最终在目镜的物方(中间像的同侧)、人眼的明视距离(250mm)处形成放大的直立(相对中间像而言)虚像。

因此,当我们在镜检时,通过目镜(不另加转换棱镜)看到的像于原物体的像,方向相反。

五.显微镜光学系统简介显微镜光学系统的设计有三种光学系统。

1 . 长筒光学系统2 . 万能无限远校正光学系统:是较先进的光路设计,它体现了无限远校正方式的优越性。

光线通过物镜后成为平行光束通过镜筒,并在结像透镜处折射或完成无像差的中间像。

物镜与观察筒内结像透镜之间可添加光学附件,而不影响总放大倍数。

另外这种光学系统不需要安装附加校正透镜,都能得到最佳的显微图像。

3. 万能无限远双重色差校正光学系统:是目前最先进的光路设计,不但能矫正位置色差,同时还能矫正倍率色差可提高水平分辨率12%,提供最高反差、最高衬度、最高分辨率的最锐利图象。

第三章显微镜的重要光学技术参数在镜检时,人们总是希望能得到清晰而明亮的理想图像,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。

只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。

显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。

这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系。

一.数值孔径数值孔径简写NA(蔡司公司的数值孔径简写CF),数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低(即消位置色差的能力,蔡司公司的数值孔是代表消位置色差和倍率色差的能力),的重要标志。

其数值的大小,分别标科在物镜和聚光镜的外壳上。

数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(η)和孔径角(u)半数的正玄之乘积。

用公式表示如下:NA=ηsinu/2 孔径角又称“镜口角”,是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。

孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。

显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率η值。

基于这一原理,就产生了水浸系物镜和油浸物镜,因介质的折射率η值大于一,NA值就能大于一。

数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。

目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。

这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值,数值孔径与其它技术参数有着密切的关系,它几乎决定和影响着其它各项技术参数。

它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。

二.分辨率分辨率又称“鉴别率”,“解像力”。

是衡量显微镜性能的又一个重要技术参数。

显微镜的分辨率用公式表示为:d=0.61λ/NA 式中d为最小分辨距离;λ为光线的波长;NA为物镜的数值孔径。

可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。

NA值越大,照明光线波长越短,则d值越小,分辨率就越高。

1. 要提高分辨率,即减小d值,可采取以下措施。

降低波长λ值,使用短波长光源。

2.曾大介质η值和提高NA值(NA=ηsinu/2)。

3.消色差。

4.增加明暗反差。

三.放大率放大率就是放大倍数,是指被检验物体经物镜放大再经目镜放大后,人眼所看到的最终图像的大小对原物体大小的比值,是物镜和目镜放大倍数的乘积。

放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好,在选择时应首先考虑物镜的数值孔径。

四.焦深焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。

焦深大, 可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其它技术参数有以下关系:1.焦深与总放大倍数及物镜的数值孔镜成反比。

2.焦深大,分辨率降低。

由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。

在显微照相时将详细介绍。

五.视场直径(Field of view)观察显微镜时,所看到的明亮的原形范围叫视场,它的大小,是由目镜里的视场光阑决定的。

视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。

视场直径23最为科学,大视场容易引起场曲。

F=FN/Mob F: 视场直径,FN:视场数,Mob:物镜放大率。

视场数(Field Number, 简写为FN),标刻在目镜的镜筒外侧。

由公式可看出:1.视场直径与视场数成正比。

2.增大物镜的倍数,则视场直径减小。

因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。

六.覆盖差显微镜的光学系统也包括盖玻片在内。

由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了像差,这就是覆盖差。

覆盖差的产生影响了显微镜的成像质量。

国际上规定,盖玻片的标准厚度为0.17mm, 许可范围在0.16—0.18mm.,在物镜的制造上已将此厚度范围的像差计算在内。

物镜外壳上标记0.17,即表明该物镜要求盖玻片的厚度。

七.工作距离工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。

镜检时,被检物体应处在物镜的一倍至二倍焦距之间。

因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。

在物镜数值孔径一定的情况下,工作距离短孔径角则大。

数值孔径大的高倍物镜,其工作距离小。

第四章显微镜的光学附件显微镜的光学部件包括物镜,目镜,聚光镜及照明装置几个部分。

各光学部件都直接决定和影响光学性能的优劣,现分述如下:一.物镜物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成像,因而直接关系和影响成像的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。

相关文档
最新文档