离散数学数理逻辑部分期末复习题
《离散数学》复习题及答案

《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式?x((A(x)?B(y,x))??z C(y,z))?D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P↔(4)QP→⌝P⌝Q→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)?Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学期末复习题(6套)

《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。
离散数学期末考试题及答案

离散数学期末考试题及答案1.选择题(每题3分,共30分)1. 下列命题中,属于复合命题的是:A. 3是一个奇数,且2是一个偶数B. 如果2是一个素数,那么4也是一个素数C. 不是所有奇数都是素数D. 存在一个整数x,使得x>5且x是一个偶数答案:D2. 已知命题p:草地是绿的,命题q:天空是蓝的。
下列表述可以表示p ∧ ¬q 的是:A. 草地是绿的,天空是蓝的B. 草地不是绿的,天空是蓝的C. 草地是绿的,天空不是蓝的D. 草地不是绿的,天空不是蓝的答案:B3. 设命题p表示“这个数是偶数”,q表示“这个数大于10”。
那么“这个数既是偶数又大于10”可以表示为:A. p ∧ qB. p ∨ qC. ¬p ∧ qD. ¬p ∨ q答案:A4. 下列以下列集合的方式描述,其中哪个是空集∅:A. {x | 0 ≤ x ≤ 1}B. {x | x是一个自然数,x > 10}C. {x | x是一个正偶数,x < 2}D. {x | x是一个负整数,x < -1}答案:C5. 设A = {a, b, c},B = {c, d, e},C = {a, c, e}。
则(A ∪ B) ∩ C等于:A. {a, b, c, d, e}B. {a, c, e}C. {c}D. 空集∅答案:B6. 假设U是全集,A、B、C是U的子集。
则(A ∪ B) ∩ C 的补集是:A. A ∩ B ∩ C的补集B. (A ∪ B) ∩ C的补集C. A ∪ (B ∩ C)的补集D. (A ∩ C) ∩ (B ∩ C)的补集答案:D7. 若关系R为集合A到集合B的一种映射,且|A| = 7,|B| = 4,则R包含的有序对数目为:A. 4B. 7C. 11D. 28答案:D8. 设A={1,2,3},B={4,5,6},则从A到B的映射总数为:A. 3B. 9C. 6D. 18答案:C9. 设A={a,b,c,d,e},则集合A的幂集的元素个数是:A. 2B. 5C. 10D. 32答案:D10. 若f:A→B为满射且g:B→C为单射,则(g ∘ f):A→C为:A. 双射B. 满射C. 单射D. 非单射且非满射答案:A2.简答题(每题10分,共20分)1. 请简要解释什么是关系R的自反性、对称性和传递性。
离散数学期末考试复习题及参考答案

参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )
华南师范大学 离散数学数理逻辑-复习题

p ∧ r ∧ ¬(q → p)
⇔ p ∧ r ∧ ¬(¬q ∨ p)
蕴含等值式
永假式!
⇔ p ∧ r ∧ (q ∧ ¬p) ⇔ ( p ∧ ¬p) ∧ r ∧ q ⇔0
德摩根定律 结合律 否定律(矛盾律)
数理逻辑——复习题
解2:真值表法 p∧r∧¬(q→p)
永假式!
p
qr
q → p ¬(q → p)
= m1 ∨ m2 ∨ m7 A的成假赋值:000,011,100,101,110 (与其成真赋值互补) ﹁A的极小项:000:﹁p∧﹁q∧﹁r, 011:﹁ p∧q∧r,
100:p∧﹁q∧﹁r, 101:p∧﹁q∧r, 110:p∧q∧﹁r
数理逻辑——复习题
﹁ A的主析取范式:(其所有极小项之和)
数理逻辑——复习题
例4 (1)已知命题公式A中含3个命题变项p, q, r,并知道它的成 真赋值为001, 010, 111, 求A的主析取范式和主合取范式。 解:成真赋值对应于极小项: 001:﹁p∧﹁q∧r, 010: ﹁ p∧q∧﹁r, 111:p ∧ q ∧ r 由所有的极小项之和可写出A的主析取范式: A=(﹁p∧﹁q∧r)∨(﹁ p∧q∧﹁r)∨(p ∧ q ∧ r)
谓词逻辑的推理规则
推理规则
∀xP ( x) ∴ P(c), 若c ∈U (U为个体域 )
P(c), 对任意 c ∈ U (U为个体域 ) ∴ ∀xP ( x)
∃xP ( x) ∴ P(c), 对某个特定元素 c ∈U (U为个体域 )
P(c), 对某个元素 c ∈ U ,U为个体域 ∴ ∃xP ( x)
② ¬H(c)
①存在量词消去
③ ∀x(G(x)∨H(x)) 前提引入
离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。
《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
数理逻辑复习题

离散数学期末复习题2012-6-161.“太阳系以外的星球上有生命。
”是命题。
( T )2.ρ(A⋃B)=ρ(A)⋃ρ(B)( F )ρ(A∩B)=ρ(A)∩ρ(B)( T )3.一个命题的合取范式不是唯一的。
( T )4.等价式⌝(∃x)A(x)⇔(∀x)⌝A(x)成立。
( T )5.(∀x)(P(x)∨Q(x))∧ R(x)是命题。
( F )8.对于一个谓词公式,指定不同的个体域,则其真值不一定相同.T9. 若命题公式A的主析取范式包含全部的极小项,则A为永真式T10.命题“他在教室看书或在宿舍看书。
”可以符号化为P∨ S。
F11.当个体域S={a,b,c}消去公式(∀x) P(x)∨(∃x)Q(x)中量词为(P(a)∨Q(a)) ∧ (P(b)) ∨Q(b)) ∧ (P(c)∨Q(c)) F12. 设P、Q是两个命题,当且仅当P、Q的真值均相同时,P↔Q的值为T. T13. 命题公式(P∧(P→ Q)) → Q是永真式. T14.命题联结词集{∨、∧}是极小功能完备的联结词集. F15.(A ≠Φ) ∧ (B ≠Φ) ⇒ (A ⋂ B ≠Φ ) F16. (P ↔ Q)→┐( P ∨Q)是矛盾式。
F17. ∃xA(x) ∨∃x B(x) ⇒∃x ( A(x) ∨ B(x)) T19. 若关系R不具有对称性则R一定具有反对称性 F22. 设A、B、C是任意集合,且C-B = C-A,则A=B 。
F23. 设A、B和C为任意集合,且A∪B=A∪C,则B=C. F24.若R和S是X上具有对称性的关系,则R º S也具有对称性。
F25.若R和S是X上的具有对称性的关系,则R ∩S具有对称性。
T26.∃xA(x)∨∃x B(x)⇒∃x ( A(x) ∨ B(x)) (F )27.(P ↔ Q)→┐( P ∨Q)是可满足式。
( F)28.{}={φ}( F )二、填空题1.已知B={ {a,b},c},则B的幂集ρ(B)= { B ,Φ,{{a,b}},{c} }2.已知A={1,2,3,4,5,6,7},B={2,4,6,8,10},则A-B= {1,3,5,7,} ,A + B= {1,3,5,7, 8,10} 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学数理逻辑部分综合练习辅导一、单项选择题1.设P :我将去打球,Q :我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A .P Q →B .Q P →C .Q P ↔D .Q P ⌝∨⌝因为语句“仅当我有时间时”是“我将去打球”的必要条件,所以选项B 是正确的.正确答案:B一般地,当语句是由“……,仅当……”组成,它的符号化用条件联结词→. 问:如果把“我将去打球”改成“我将去学习”、“我将去旅游”等,会符号化吗?2.设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ).A .0, 0, 0B .0, 0, 1C .0, 1, 0D .1, 0, 0 个人收集整理 勿做商业用途当P 为真值为1时,P ⌝的真值为0,无论()Q R ∧的真值是1还是0,命题公式G 的真值为1.所以选项D 是正确的.正确答案:D3.命题公式P ∨Q 的合取范式是 ( ).A .P ∧QB .(P ∧Q )∨(P ∨Q )C .P ∨QD .⌝(⌝P ∧⌝Q )复习合取范式的定义:定义6.6.2 一个命题公式称为合取范式,当且仅当它具有形式:A 1∧A 2∧…∧A n , (n ≥1)其中A 1,A 2,…,A n 均是由命题变元或其否定所组成的析取式.由此可知,选项B 和D 是错的.又因为P ∧Q 与P ∨Q 不是等价的,选项A 是错的.所以,选项C 是正确的.正确答案:C4.命题公式)(Q P →⌝的析取范式是( ).A .Q P ⌝∧B Q P ∧⌝C .Q P ∨⌝D .Q P ⌝∨复习析取范式的定义:定义6.6.3 一个命题公式称为析取范式,当且仅当它具有形式:A 1∨A 2∨…∨A n , (n ≥1)其中A 1,A 2,…,A n 均是有命题变元或其否定所组成的合取式.公式)(Q P →⌝与Q P ⌝∧是等价的,Q P ⌝∧满足析取范式的定义,所以,选项A是正确的.正确答案:A5.下列公式成立的为( ).A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→QC.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q因为:⌝P∧(P∨Q)⇒Q所以,选项D是正确的.正确答案:D6.下列公式( )为重言式.A.⌝P∧⌝Q↔P∨Q B.(Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C.(P→(⌝Q→P))↔(⌝P→(P→Q)) D.(⌝P∨(P∧Q)) ↔Q(P→(⌝Q→P)) ⇔⌝P∨(Q∨ P),(⌝P→(P→Q)) ⇔ P∨(⌝P∨Q) 所以,C是重言式,也就是永真式.正确答案:C说明:如果题目改为“下列公式( )为永真式”,应该是一样的.7.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.⌝(∃x)(A(x)∧B(x))C.⌝(∀x)(A(x)→B(x))D.⌝(∃x)(A(x)∧⌝B(x))由题设知道,A(x)→B(x)表示只要是人,就是学生,而“不是所有”应该用全称量词的否定,即⌝∀x,得到公式C.个人收集整理勿做商业用途正确答案:C8.设C(x):x是国家级运动员,G(x):x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为( ).个人收集整理勿做商业用途A.))G(xx)(⌝∀(→x⌝C((x()Gx∧x⌝C⌝∀B.)) C.))G(x()(x∧x⌝C⌝∃x⌝∃D.)))((x(Gx⌝→C由题设知道,C(x)∧⌝ G(x)表示国家级运动员不是健壮的,而“没有一个”就是“不存在一个”,因此用存在量词的否定,即⌝∃x,得到公式D.个人收集整理勿做商业用途正确答案:D9.表达式))RyQzyxP∧∨∃→x∀∀中x(x(,)())(zQ((zy,)∀的辖域是( ).A.P(x, y) B.P(x, y)∨Q(z) C.R(x, y) D.P(x, y)∧R(x, y)个人收集整理勿做商业用途所谓辖域是指“紧接于量词之后最小的子公式称为量词的辖域”.那么看题中紧接于量词∀x之后最小的子公式是什么呢?显然是P(x, y)∨Q(z),因此,选项B是正确的.个人收集整理勿做商业用途正确答案:B10.在谓词公式(∀x )(A (x )→B (x )∨C (x ,y ))中,( ).A .x ,y 都是约束变元B .x ,y 都是自由变元C .x 是约束变元,y 都是自由变元D .x 是自由变元,y 都是约束变元约束变元就是受相应的量词约束的变元.而自由变元就是不受任何量词约束的变元.所以选项C 是正确的.正确答案:C注:如果该题改为填写约束变元或自由变元的填空题,大家也应该掌握.二、填空题1.命题公式()P Q P →∨的真值是.因为()P Q P →∨⇔⌝P ∨(Q ∨P )⇔1,所以应该填写:1.应该填写:1问:命题公式Q Q →、Q Q ⌝∨的真值是什么?2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.个人收集整理 勿做商业用途一般地,当语句是由“如果……,那么……”,或“若……,则……”组成,它的符号化用条件联结词→.应该填写:(P ∨Q )→R3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 .复习主析取范式的定义:定义6.6.5 对于给定的命题变元,如果有一个等价公式,它仅仅有小项的析取组成,则该等价式称为原式的主析取范式.个人收集整理 勿做商业用途而小项的定义是:定义6.6.4 n 个命题变元的合取式,称为布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.个人收集整理 勿做商业用途由小项的定义知道,命题公式P ∧Q 中缺少命题变项R 与它的否定,因此,应该补上,即P ∧Q ⇔P ∧Q ∧ (R ∨⌝R ) ⇔(P ∧Q ∧ R ) ∨(P ∧Q ∧⌝R )得到命题公式P ∧Q 的主析取范式.应该填写:(P ∧Q ∧R )∨ (P ∧Q ∧⌝R )4.设个体域D ={a , b },那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为. 因为在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则 所以,应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))如果个体域是D ={1, 2},D ={a , b , c }, 或谓词公式变为(()())x A x B x ∃∨,怎么做?5.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为.因为(∃x)A(x)⇔A(1)∨A(2)∨A(3)⇔1∨1∨0⇔1应该填写:16.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为.因为自由变元就是不受任何量词约束的变元,在公式(∀x)((A(x)∧B(x)) ∨C(y))中,y是不受全称量词∀约束的变元.所以应该填写:y.个人收集整理勿做商业用途应该填写:y问: 公式中的约束变元是什么?三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是天晴;则命题公式为:P.问:“今天不是天晴”的命题公式是什么?2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游,则命题公式为:P∧Q.注:语句中包含“也”、“且”、“但”等连接词,命题公式要用合取“∧”.3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P:他去旅游,Q:他有时间,则命题公式为:P→Q.4.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x是人,Q(x):x努力工作.谓词公式为:(∀x)(P(x)→ Q(x)).四、判断说明题(判断下列各题,并说明理由.)1.命题公式P P⌝∧的真值是1.解错误.因为P P⌝∧是永假式(教材167页的否定律).2.命题公式⌝P∧(P→⌝Q)∨P为永真式.解:正确因为,由真值表P Q ⌝P ⌝Q P→⌝Q⌝P∧(P→⌝Q)∨P0 0 1 1 1 10 1 1 0 1 110 0 1 1 1 1 1 0 0 0 1可知,该命题公式为永真式.注:如果题目改为该命题公式为永假式,如何判断并说明理由?3.下面的推理是否正确,请给予说明.(1) (∀x )A (x ) ∧ B (x ) 前提引入(2) A (y ) ∧B (y ) US (1)解:错第2步应为:A (y )∧B (x )因为A (x )中的x 是约束变元,而B (x )中的x 是自由变元,换名时,约束变元与自由变元不能混淆.五.计算题1. 求P →Q ∨R 的析取范式,合取范式、主析取范式,主合取范式.解 P →Q ∨R ⇔⌝P ∨Q ∨R (析取范式、合取范式、主合取范式)⇔(⌝P ∧(Q ∨⌝Q )∧(R ∨⌝R ))∨((P ∨⌝P )∧Q ∧(R ∨⌝R ))∨((P ∨⌝P )∧(Q ∨⌝Q )∧R )个人收集整理 勿做商业用途 (补齐命题变项)⇔(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧⌝Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(⌝P ∧Q ∧R )∨(⌝P ∧⌝Q ∧R ) (∧对∨的分配律)个人收集整理 勿做商业用途⇔(⌝P ∧⌝Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(P ∧Q ∧⌝R )∨(P ∧Q ∧R ) (主析取范式)个人收集整理 勿做商业用途注:如果题目只是求“析取范式”或“合取范式”,大家一定不要再进一步求“主析取范式”或“主合取范式”.2.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.解 (1)量词x ∃的辖域为(,)(,,)P x y zQ y x z →∀,z ∀的辖域为(,,)Q y x z ,y ∀的辖域为(,)R y z .(2)自由变元为(,)(,,)P x y zQ y x z →∀中的y ,(,)R y z 中的z .约束变元为(,)(,,)P x y zQ y x z →∀中的x ,(,,)Q y x z 中的z ,(,)R y z 中的y .3.设个体域为D ={a 1, a 2},求谓词公式∀y ∃xP (x ,y )消去量词后的等值式.解:∀y ∃xP (x , y )⇔(∃xP (x , a 1))∧(∃xP (x , a 2))⇔(P (a 1, a 1)∨P (a 2, a 1))∧(P (a 1, a 2)∨P (a 2, a 2))六、证明题1.试证明命题公式(P→(Q∨⌝R))∧⌝P∧Q与⌝(P∨⌝Q)等价.证:(P→(Q∨⌝R))∧⌝P∧Q⇔(⌝P∨(Q∨⌝R))∧⌝P∧Q⇔((⌝P∨Q∨⌝R)∧⌝P)∧Q⇔⌝P∧Q(吸收律)⇔⌝(P∨⌝Q) (摩根律)2.试证明(∃x)(P(x)∧R(x))⇒(∃x)P(x)∧(∃x)R(x).分析:前提:(∃x)(P(x)∧R(x)),结论:(∃x)P(x)∧(∃x)R(x) .证明(1) (∃x)(P(x)∧R(x)) P(2) P(a)∧R(a) ES(1) (存在指定规则)(3) P(a) T(2) (化简)(4) (∃x)P(x) EG(3) (存在推广规则)(5)R(a) T(2) (化简)(6) (∃x)R(x) EG(5) (存在推广规则)(7) (∃x)P(x)∧(∃x)R(x) T(4)(6) (合取引入)。