10第十章 分子重排反应
分子重排反应

R N C OH H O
• 6、Wolff重排 • 重氮酮在氧化银或光热作用下,与水、醇、胺反应生成酸、 酯、酰胺的反应称为Wolff重排。 O
H2O O + R C CHN2 hv O R C CH R'OH NH3 R C C OH H2 O R C C OR' H2 O R C C NH2 H2 R C C O H
+
CH3 H3C C C OH2 H2
+
- H2 O
CH3 H3C C CH2
+
CH3
CH3
CH3 Cl H3 C C CH2CH3
Cl rearrgement CH3
+
-
H3C
C
CH2 - H+ H 3C
CH3 C CHCH3
CH3
CH3
• 实验证明Wagner-Meerwein重排的历程是生成碳正离子 的SN1历程。重排的趋势一般取决于碳正离子的相对稳定 性。其迁移基团的活性次序如下:
O Ph H C H2 Cl B Ph CH2 O H2O Ph C O OH
H2O
Ph
C O
OH
• 原子上有吸电子基团时,在强碱的作 用下,季铵盐上的取代基重排到具有吸电子的碳原子上, 形成叔胺的反应称为Stevens重排。
R1 Z C H2 N
+
R1 R2 NaNH2 Z C H N
O O C C KOH O C OC OH OH O C C OK
O- O C C OH
第十章 分子重排反应

例:
CH3 C2H5 C COOH CH3 SOCl2 CH3 C2H5 C COCl C2H5 C CH2COOH ②Ag2O/H2O CH3 CH3
COCl SOCl2 CH2N2 COCHN2
①CH2N2
CH3
COOH
CH2COOH HOH Ag2O ROH CH2COOR
五、二苯羟乙酸重排:(安息香酸重排)
2、Demyanov 重排:
Demyanov重排指脂肪族或脂环族伯胺与亚硝酸作用发 生的重排。 N2 HNO2 例1:
CH3CH2CH2NH2 1,2-H 迁移 CH3CH2CH2N2 OH CH3CHCH3 CH3CH2CH2 CH3CHCH3 H2O H
例2:
CH2NH2 HNO2
CH2N2
N2 重排
缺电子氮的重排: 二、缺电子氮的重排:
酮肟,酰胺,酰基叠氮等含氮化合物在反应过程中, 酮肟,酰胺,酰基叠氮等含氮化合物在反应过程中,使 氮原子周围形成了仅6个电子的缺电子中心,即是乃春 氮原子周围形成了仅6个电子的缺电子中心,即是乃春或乃 春正离子,从而发生重排反应。 贝克曼重排, 春正离子,从而发生重排反应。有:贝克曼重排,霍夫曼重 柯堤斯重排,施密特重排等。 排,柯堤斯重排,施密特重排等。
§第一节 亲核重排
亲核重排通式(分为三步):
Z A B Y ① Z A B 重排 ② Z A B ③ A B Nu: Nu Z
三步:①缺电子体系形成(成为开放的六偶体) ②迁移基团带着一对电子迁移到缺电子中心。 ③与 Nu: 作用或发生消去生成产物。
特点:①一般均为1,2-重排。 ②重排的动力:a)生成更稳定的C b)经重排转变成稳定的中性 化合物(片呐醇→片呐酮) c)重排后减少张力 ③形成缺电子体系的四种方法: a)C 的形成; b)氮烯的生成; c)碳烯的形成; d)缺电子氧原子的形成。 下面分别介绍:
分子重排反应(molecularrearrangement)中国百科物理

分子重排反响(molecularrearrangement)中国百科物理人才源自知识 ,而知识的获得跟广泛的阅读积累是密不可分的。
古人有书中自有颜如玉之说。
杜甫所提倡的读书破万卷, 下笔如有神等 ,无不强调了多读书广集益的好处。
这篇分子重排反响(molecularrearrangement)中国百科物理 ,希望可以加强你的根底。
分子重排反响(molecularrearrangement)
【分子重排反响】(molecularrearrangement)
亦称重排反响。
有机物理反响类型之一。
一般有机物理反响只涉及到分子中个别原子或原子团 ,而碳骨胳不起变化。
但某些有机化合物的分子 ,在试剂的作用或其他因素影响下 ,使其发生某些基团转移或分子内碳原子骨胳的改变(包括环扩大或缩小)。
通常是一种不可逆的分子内的连续过程 ,和可逆的互变异构有所区别。
种类繁多 ,可按反响历程、分子内、分子间或化合物类型等加以分类。
在重排反响式中A ,B通常是碳原子或其他元素 ,为重排起点及终点 ,X为重排基 ,Y为脱离基。
主要有以下三种形式:(1)亲核重排:是包含产生缺电子的正离子中间体的反响。
(2)亲电子重排:是包含产生负离子中间体的反响。
(3)游离基重排。
感谢你阅读分子重排反响(molecularrearrangement)中国百科物理。
1 / 1。
《分子重排反应》课件

III. 分子重排反应的机理
• 分子重排反应的机理涉及分子内、分子间的结构变化以及化学键的重组。 • 这类反应通常包括断裂原始键、形成新的共价键、转移原子或基团等
步骤。 • 具体反应机理的理解对于控制反应路径和提高反应效率至关重要。
IV. 分子重排反应的影响因素
1 1. 温度
温度对分子重排反应速率和选择性起着重要 作用,通常较高的温度会促进分子重排反应 的进行。
II. 分子重排反应的分类
1. 根据反应类型
分子重排反应可以根据不同 的反应类型进行分类,如醇 酯互变异构、氧杂环化、羰 基互变异构等。
2. 根据反应条件
分子重排反应也可以根据不 同的反应条件进行分类,如 酸催化、碱催化、高温条件 下发生的分子重排反应等。
3. 根据反应底物
分子重排反应还可以根据不 同的反应底物进行分类,如 环状化合物的分子重排反应、 链状化合物的分子重排反应 等。
VII. 分子重排反应与有机合成的关系
分子重排反应是有机合成中的重要环节,可以用于构建复杂分子结构和控制化学反应的选择性。
2
2. 药物合成
分子重排反应在药物合成中发挥着重要作用,可用于合成药物前体和改进药物性 能。
3
3. 新型材料制备
分子重排反应可用于制备新型材料,例如高分子材料、金属配合物等。
VI. 分子重排反应的实验方法
为了研究和实施分子重排反应,可以使用各种实验方法,如核磁共振(NMR)、质谱(MS)和红外光谱(IR) 等。
2 2. 反应物浓度
反应物浓度越高,分子重排反应的速率通常 会增加。
3 3. 催化剂
催化剂可以显著提高分子重排反应的速率, 并且可以排反应的进行和产物 选择性有重要影响。
重排反应总结

重排反应总结1、什么叫重排反应?一般地,在进攻试剂作用或者介质的影响下,有机分子发生原子或原子团的转移和电子云密度重新分布,或者重键位置改变,环的扩大或缩小,碳骨架发生了改变等等,这样的反应称为重排反应。
简单的理解:重排反应是指反应中烃基或氢原子或别的取代基从分子中的一个原子迁移到该分子中的另一个原子上的变化。
(指分子内重排)2、重排的分类按反应机理 ,重排反应可分为:基团迁移重排反应和周环反应中的重排。
基团迁移重排反应 即反应物分子中的一个基团在分子范围内从某位置迁移到另一位置的反应。
常见的迁移基团是烃基。
基团迁移重排反应又包括缺电子重排(亲核重排),富电子重排(亲电重排)和自由基重排.。
周环反应中的重排包括电环反应、σ键迁移。
也可按照不同的标准,分成分子内重排和分子间重排,光学活性改变和不改变的重排反应等等。
本讲义把重排分为以下几类:a.从碳原子到碳原子的重排 b.从碳原子到杂原子的重排 c.从杂原子到碳原子的重排 d.其它重排一、从碳原子到碳原子的重排反应1、Wangner-Meerwein 重排(瓦格纳尔—米尔外英重排,简称瓦—米重排)两个相邻原子之间发生的重排叫1,2重排,也叫Wangner-Meerwein 重排。
如:醇或卤代烃在酸催化下进行亲核取代或消除反应时,烯烃进行亲电加成时发生的重排。
例如:a.亲电加成时发生的重排如果反应液中同时存在两种或是两种以上的亲核试剂,则通过中间体碳正离子,能够生成混合加成产物。
R 2C R 3R 1C OHR 4R 5R 2C R 3R 1CR 4R 5R 1CR 2C R 3R4R 5R1CR 2CR 3R 4R 5OH H +(-H O)重排H O(-H +)b.醇进行亲核取代和消除时的重排亲核取代时,除大多数伯醇难以形成正碳离子而按S N 2反应外,仲醇或叔醇反应常伴随着重排产物的产生。
(S N 1)消去时(S N 1):c.卤代烃进行亲核取代和消除时的重排亲核取代按S N 1机理反应时伴随着碳正离子的重排 消去时注意:有碳正离子形成时,就有可能伴随着重排反应 形成C +的方式总结: (a)卤代烃 (AgNO 3醇溶液) (b)含-NH 2,重氮化放氮气(c)-OH ,加 H + (失H 2O),烯烃加H +基团迁移顺序:对迁移顺序的理解:迁移基团的电子云密度越大越容易迁移(但具体情况下,要具体分析)(CH 3)3C-CH 2Cl(CH 3)32Ag (AgNO 3(CH 3)3C-CH 2N 2Cl-N 2(CH 3)3C-CH 2(CH 3)3C-CH 3NH 2NaNO 2△(CH 3)3C-CH 2OH (CH 3)3C-CH 2=CH 2(CH 3)32(CH 3)33H +2H +ClR 3C-R 2CH-RCH 3-CH 3-H->>>>>>OCH 3>反应举例:2、Pinacol (频哪醇)重排(邻二醇重排)当起始物的脱水产物能产生两种不同的正离子时,总是生成更稳定的正碳离子为主,有不同迁移基团时,按迁移的难易程度进行。
分子重排反应

Me Me Me MeOH
H2SO4
Me Me
Me Me
Me Me Me CH2Cl
AgNO3
ONO2 Me CH2CH3 + Me
Me Me
Me H
4
7.2.2 频哪醇(Pinacol)重排
Me Me H2SO4 Me C C Me OH OH Me Me C C Me Me O
O OH
OH Br Br + t-Bu AlCl3 Br
OH Br +
t-Bu
2
7.1.2 按反应历程分类 根据迁移基团的亲核、亲电或是自由基的性质可将重排反应分为 亲核重排、亲电重排和自由基重排。 亲核重排是迁移基团带着一对电子迁移到缺电子的迁移终点。 亲电重排是迁移基团不带电子向富电子的迁移终点转移。 自由基重排是带着一个电子的迁移。
O Ag+ R CHN2 H2O R
Wolff Rearrangement
O OH
O
Hofmann Rearrangement
Br2, NaOH NH2
R
RNH2
迁移基团如果是手性的,迁移前后其构型保持不变。
6
7.3 亲电重排
Favorskii 重排:α - 卤代酮在碱作用下重排得到羧酸盐或羧酸酯。
哪一个羟基质子化离去,取决于碳正离子的稳定性; 通常能提供电子,稳定正电荷较多的基团优先迁移。
Ph Ph C OH
Me Ph C OH
H H2SO4 C H OH
Me H2SO4 C Ph OH
Ph Ph C C H H O
Me Ph C C Me Ph O
重排反应

重排反应(rearrangement reaction)是分子的碳骨架发生重排生成结构异构体的化学反应,是有机反应中的一大类。
重排反应通常涉及取代基由一个原子转移到同一个分子中的另一个原子上的过程。
以下例子中取代基R由碳原子1移动至碳原子2:分子间重排反应也有可能发生。
按反应机理,重排反应可分为:基团迁移重排反应和周环反应。
基团迁移重排反应反应物分子中的一个基团在分子范围内从某位臵迁移到另一位臵的反应。
常见的迁移基团是烃基。
迁移基团的原来位臵称为迁移起点,迁移后的位臵称为迁移终点,这类反应又可按价键断裂方式分为异裂和均裂,前者重要得多,其中尤以缺电子重排最为重要。
缺电子重排反应是反应物分子先在迁移终点形成一个缺电子活性中心,从而促使迁移基团带着键裂的电子对发生迁移,并通过进一步变化生成稳定产物。
以频哪酮重排反应为例,反应物分子中的一个羟基与酸作用形成锌盐后失水变为缺电子活性中心正碳离子,促使邻位带羟基碳原子上的一个甲基带着电子对发生1,2-迁移,同时羟基氧原子上未共用电子对转移至碳?氧之间构成双键,最后失去质子而得产物(见上反应式)。
在迁移终点形成一个富电子活性中心后,促使迁移基团不带键裂电子对而转移,叫富电子重排反应,例如法沃斯基重排:a - 卤代酮在强碱作用下重排,生成碳架不同的羟酸酯,反应通过富电子活性中心负碳离子进行:环反应反应物因分子内共价键协同变化而发生重排Favorsky重排反应的反应,有电环化反应和δ迁移反应。
例如环丁烯经加热发生逆向电环化而得1,3-丁二烯,1,3-己二烯经加热发生氢原子1,5-迁移而得2,4-己二烯。
这类重排在合成中应用最多的是属于3,3-迁移的科普重排和克莱森重排。
科普重排是1,5-二烯受热重排为另一个1,5-二烯的反应。
例如内消旋-3,4-二甲基-1,5-己二烯经加热几乎定量地转变为(Z ,E)-2,6-辛二烯:克莱森重排反应是参与反应的体系中有一个氧原子代替了碳原子。
有机化学中的重排反应

有机化学中的重排反应重排反应是有机化学中一类重要的反应类型,它指的是在分子内,原子的连接方式发生改变,形成不同的同分异构体或结构异构体的化学反应。
重排反应在有机化学领域具有广泛的应用和重要的理论意义。
本文将介绍几种常见的有机化学重排反应及其机理和应用。
一、Wagner-Meerwein重排反应Wagner-Meerwein重排反应是一类重要的碳正离子重排反应,它指的是烷基或芳基正离子的骨架发生重新排列的反应。
该反应的机理是通过重排步骤使得碳正离子的位置发生变化。
例如,烷基正离子在重排反应中可以通过氢的迁移、碳骨架的迁移或者亲电自由基的捕获等方式形成不同位置的同分异构体。
Wagner-Meerwein重排反应在合成有机化合物中有着广泛的应用,可以用于构建碳骨架、生成复杂的天然产物分子以及合成药物等领域。
二、Claisen重排反应Claisen重排反应是一类重要的氧化重排反应,它经常用于合成酮或醛类化合物。
该反应是通过氧的迁移和碳骨架的重排来转化一个氧杂环底物或氧杂环中间体到另一个化合物。
Claisen重排反应在有机合成中得到了广泛的应用。
通过选择合适的底物和条件,可以有效地实现各种氧杂环化合物的合成和转化。
三、Hofmann重排反应Hofmann重排反应是一种氮杂杂环化合物的重排反应,它可以将一些含有氮杂杂环的底物转化为相应的醇、酮或醛化合物。
该反应的机理是通过化学键的断裂和重组来完成的。
Hofmann重排反应在有机合成中具有重要的应用,可以实现对氮杂杂环底物的立体和功能改变。
同时,该反应也是许多天然产物的合成关键步骤之一。
四、Beckmann重排反应Beckmann重排反应是一种重要的氮杂环重排反应,它将氮杂杂环化合物转化为酸中的相应醛或酮类化合物。
该反应的机理是通过氮杂杂环中氧原子的迁移和化学键的重组来实现的。
Beckmann重排反应在有机合成中得到了广泛的应用,可以用于合成酮和醛类化合物,为药物和天然产物的合成提供了重要的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亲核重排反应:
重排现象:亲电加成,芳环上亲电取代,亲核取代 (SN1)反应中见到: 首先形成一个缺电子体系(叔碳正离子 、 烷氧基正离子 、卡宾 、氮 宾 )
迁移基团带一对成键电子转移到缺电子中心
碳原子间迁移的重排
瓦格纳尔—梅尔外英(Wagneer-Meerwein) 重排(碳正离子重排) ROH+H+→R++H2O
(CH 3 ) 3 CC H 2 N H 2 H NO 2 -N 2 + (C H 3 ) 3 C C H 2 甲 基 迁 移 重 排 (CH 3 ) 2 C(O H )C H 2 C H 3 H 2O -H +
瓦-梅重排的一种
(C H 3 ) 2 C C H 2 C H 3 +
脂环伯胺则为扩环产物
苄基正离子比叔碳正离子稳定,
+ (C H 3) 3C C H Ph
不发生重排生成
+ 因为生成 C 为 p - π共 轭 可 分 散 正 电 荷 , 很 稳 定
+ (CH 3 ) 2CCH(CH 3)Ph
β-碳原子上迁移基团的活性
在环状化合物中,环张力大小也是发生重排的一 个因素。
捷米杨诺夫(Demjanov)重排 脂肪伯胺反应生成醇中的重排
Baeyer-Villiger重排历程
不对称酮的重排中,基团亲核性趋大,迁移的倾向趋 大 迁移倾向: 烃基:H>Ph>3°>2°>1°>甲基 芳基:p-CH3Ph>Ph->p-NO2Ph
亲电重排反应
迁移基团(不带成键电子对)迁移到富电子
中心 也称为碳(或其它元素)负离子重排 此类反应较少 反应过程:
第十章
分子重排反应
分子重排反应:(molecular rearrangement rxn)
加热、光照或化学试剂作用 有机化合物分子中某些原子或基团发生迁移 分子的碳骨架发生变化,生成新化合物
离子型重排:
亲核重排
亲电重排
自由基重排
重排位置
1,2-重排(β-重排)
1,3-重排(γ-重排)
NH
O
柯提斯(Curtius)重排
酰基叠氮化合物加热脱氮生成异氰酸酯 异氰酸酯水解成伯胺
处于羰基反位的基团从碳原子上迁移到氮原子上
柯提斯(Curtius)重排
重排时,异氰酸酯可与醇反应生成氨基甲酸酯 氨基甲酸酯水解也生成伯胺
Curtis重排也可由羧酸制备少一个碳原子的伯胺
施密特(Shmidt)重排:
频那醇重排(pinacol rearrangement)
三(四)取代的频那醇(1,2-二醇) 酸催化下脱水 重排生成醛或酮
不对称1,2-二醇脱水重排得到两种产物
碳正离子中间体A稳定性比B强(+C>+I) A′产物为主
在重排反应中,碳正离子稳定性顺序:
+ +
+ + Ar 2 C + > R 2C > ArC H > R C H > C H 2
对位被R,Ar或R2N占据时
对位被CO2H,SO3H,Cl占据时
在强酸存在下,羧酸与叠氮酸(HN3)反应生成少一 个碳原子的伯胺
叠氮酸用NaN3与硫酸(或磷酸制备) NaN3毒性大,反应剧烈,易爆炸
贝克曼(Beckmann)重排
酮肟在PCl5或H2SO4作用下生成N-取代酰胺
PCl 5
RR’C=O+NH2OH RR’C=NOH酮肟 类似于烯醇式重排成酮
二苯乙醇酸(benzilic acid)重排 (苯偶姻 benzil重 排) α-二酮在强碱存在下重排成α-羟基酸 α-酮酸也有此反应
重排历程
苯基迁移到羰基碳原子上,不是前面所见的迁移到 碳正离子上
由碳原子迁移到氮原子上的重排(Hofmann, Curtis, Schmidt等重排)
霍夫曼(Hofmann)重排、(酰胺降 解制备少一个碳原子的伯胺)
OH C H 3C O CH3 95%
联苯胺(benzidine)重排: (反应历程不清楚)
氢化偶氮苯类化合物用强酸处理,重排为联苯胺
由N,N′-二芳基肼制备4,4′-二氨基联苯
NH2NH2:肼,联氨
PhNHNH2:苯肼
N H -N H H+ H 2N 70% H 2N N H2 30% NH 2
联二环烷基-1,2-二醇发生pinacol重排
HO O H H 3O + O + O
环扩大(主产物)与环缩小产物
烯丙型亲核重排:双键发生迁移
-L R C H = C H C H 2L _ + RCH =CH CH 2 3 2 1
SN1反应
+ _ RCH CH =CH2 1 2 3 N u: -
-H +
+
C Ph
Ph
半频那醇重排 β-氨基醇及β-卤代醇的重排生成酮
pinacol重排的立体化学
重排基团和离去基团相互处于反式 迁移基团带一对成键电子从离去基团背后接近碳原 子 CH3 OH
H+ HO H 3C 快 CH3 H 3C O
OH H H 3C CH3 OH 慢
+
CH3 C=O CH3
伯酰胺重排水解生成少一个碳原子的伯胺 N-溴代酰胺的生成 酰胺质子有酸性被消去 重排时R迁移与Br离去同步
Hofmann重排由二元酸的亚胺制备氨 基酸或内酰胺
O C NH C O NH2 B r 2 /N a O H COO H (85% )
O B r 2 /Na OH
NH
O (85% )
R C :N OH R' H
+
HO C :N
R'
O C N
R'
R
H
R
Beckmann重排历程:
制ε-己内酰胺—合成纤维尼龙-6单体
OH N H 2 SO 4 重排 O
NH
由碳原子迁移到氧原子上的重排
拜依尔-维利格(Baeyer-Villiger)重排 酮经过氧酸氧化得到酯
环酮经过氧酸氧化得到内酯
_ R C H C H = C H 2 + R C H = C H C H 2N u Nu 重排取代产物 正常取代产物
形成共轭体系的重排产物为主
PhC H C H = C H 2 X C H 3 C H = C H C H C H = CH 2 OH _ C H 3 C H C H = C H C H =C H 2 OH 占 100% PhC H = CH _ CH 2 X 占 100%
弗里斯(Fris)重排 (反应历程不清楚)
酚类化合物的羧酸酯
在Lewis酸作用下(AlCl3,ZnCl2,SnCl4,多磷
酸)
酰基由氧迁移到芳环的邻、对位 生成芳酮
由苯酚制羟基芳酮
OH A lCl 3 25℃ O _ CO CH3 CH3 COCH 3 80~85%
CH3 A lCl 3 165℃
不同基团的迁移倾向:
Ph>>CH3>>C2H5
苯环上有取代基时,迁移倾向
p-CH3OC6H4>p-CH3C6H4>C6H5>p-ClC6H4>R
频那醇重排用于扩环
OH OH C Ph Ph Ph +H
+
OH C
+
OH 2 Ph
-H 2 O O Ph Ph 99% 重排 OH
+
:
OH Ph Ph
先由强碱夺取质子形成一个负离子富电子中心 之后迁移基团再转移到富电子中心
史蒂文斯(Stevens)重排
α-碳上连有吸电子基团的季铵盐制备叔胺
强碱夺取α-氢质子形成碳负离子 烃基由氮原子迁移到碳负离子上生成叔胺
R:苄基、烯丙基、烃基等
O O _ , _ , RO C 等吸电子基团
R’:
CH3
C +
CH3
3 o碳 正 离 子
CH3
+ C H
CH2
o CH3 2 碳 正 离 子
烯烃的亲电加成: 第一步
(CH 3) 3CCH=CH 2 + H
+
+ (CH 3 ) 3CCHCH 3
+ (CH 3) 2CCH (CH 3 ) 2
发生甲基迁移,主要生成加成产物:
(C H 3 ) 2 C C H (C H 3 ) 2 X
烯烃的碳碳双键(C=C)与质子(H+)亲电加
成 第一步生成碳正离子(CH-C+)
RX的SN1或E1反应也有R+
醇在酸中的溴代(甲基迁移)
一个(H-)或一个烷基(R-)或一个芳基(Ar-) 带一对成键电子迁移到相邻碳原子上
CH3 H CH3 3; CH2 CH3 迁移
RC
PhCH 2
+
O N aO H
PhCH 2 O _ (CH 3) 2N CH CPh 90%
(CH 3) 2 N CH 2 CPh
环内季铵盐发生重排生成缩环叔胺
CH3 C 6H 5 + N NaNH 2 苯 CH3 N C 6H 5 63%
法沃尔斯基(Favorskii)重排
α-卤代酮在OH-或RO-作用下发生重排得到羧酸或 羧酸酯 成酯历程