结晶器振动的超前量和负滑脱量的区别
正弦振动结晶器摩擦力与负滑脱参数对比分析

的输出力 。
3 结晶器摩擦力及振动参数的实测数 据分析
实验所采用的振频与拉速的匹配关系如图 1所 示 。利用式 ( 9 )结合实测数据 ,计算得到一个振动 周期内摩擦力和速度的瞬态变化趋势 。如图 2 所 示 ,振频和振幅分别为 135 m in- 1和 2. 8 mm ,方向取 向上为正 。从图中可以看出 ,结晶器摩擦力换向的 时刻并不与相对速度同步 ,即相对速度为零时摩擦 力值并不等于零 ,存在一定的滞后 ,其原因可能在于 液渣的流速在相位上滞后于结晶器的振动速 度 [ 4, 8 ] ,从而出现滞后现象 。图中的 T1vr = 0 、T1MDF = 0 、 T2vr = 0和 T2MDF = 0分别表示一个振动内相对速度和摩 擦力为零的 4 个时刻 , T1L 和 T2L 为摩擦力在换向 时滞后于相对速度的时间 。图 3 ( a) 、( b)分别表示 不同拉速下滞后时间和滞后率 (滞后时间与振动周 期 T的比率 , R )的变化趋势 。随着拉速的增加 ,第 1 点的滞后时间先增加后恒定 ,第 2 点的滞后时间先 恒定后增加 ,由于在这一过程中振频增加而振动周 期减小 ,所以两点的滞后率都在增大 ,即随着拉速的 增加摩擦力的换向时刻滞后于相对速度的程度在增 加。
连续铸钢新技术问答

1 合金钢的凝固特性与普通碳钢有哪些不同?合金钢的凝固特性与普通碳钢有所不同,主要体现在以下几个方面:(1)合金钢中合有活泼元素。
如不锈钢中含有Cr、Al、Ti等元素,这些元素易与氧和氮发生反应,生成高熔点的化合物,悬浮于钢被中,既影响了钢液的可浇性,又给铸坯质量带来一些危害。
(2)凝固温度区间发生变化。
合金元素会使钢的固相线和液相线温度区间发生变化,合金元素含量较高时,温度区间会发生较大变化,选择钢液过热度、确定二冷制度时要给予充分考虑。
(3)形成凝固组织。
合金元素及其含量不同会形成不同的凝固组织,有些元素会使铸坯裂纹倾向增加。
(4)物理性能发生变化。
合金元素会使钢的导热系数、热膨胀系数等物理特性发生变化。
一般合金钢的导热系数比碳钢小,而凝固收缩量比碳钢大。
(5)钢的高温性能发生变化。
合金元素会使钢的高温性能发生变化,对钢的热延性曲线有重要影响。
因此,二冷区冷却强度及配水制度要根据所浇钢种实测的脆性温度范围确定。
(6)裂纹的敏感性。
裂纹的敏感性取决于所浇的钢种,是综合因素作用的结果。
2 合金钢连铸工艺有哪些特点?合金钢连铸工艺与碳钢相比有以下特点:(1)根据所浇钢种的需要,对钢液的纯净度、成分和浇注温度,尤其是对微量元素含量的控制,都要求达到规定值。
为此,特殊钢连铸必须配备炉外精炼设备。
(2)结晶器应采用高频率、小振幅的振动。
(3)选用性能良好的保护渣和全过程的保护浇注,保证铸坯质量。
(4)最好使用大容量、深熔池、砌有挡墙(坝)的中间罐,充分发挥中间罐的冶金功能。
(5)应选用合适的耐火材料,以减少消耗和提高钢的纯净度。
(6)采用结晶器器面自动控制,减少液面波动。
3 凝固沟的危害是什么?凝固沟在结晶器内钢液液面起伏的情况下才会出现。
液面上升时,不但振痕间距增加,振痕深度增加,而且还产生弯月面的溢流,形成凝固沟。
冷轧薄板表面的主要缺陷是裂缝,裂缝来源于结晶器保护渣、夹杂物和氩气气泡被裹在凝固沟的下方。
圆坯连铸工艺

24、为什么要控制钢水中的 为什么要控制钢水中的Ca/Al比 为什么要控制钢水中的 比 用铝脱氧的钢液中存在的氧化铝夹杂物,熔点很 高,且夹杂物在钢水的形态是固态,在连铸的过 程中很容易在中间包水口处聚集,引起堵塞。钢 材中的Al2O3在轧制过程中会被破碎,沿轧制方 向连续分布,造成严重的缺陷。为了克服上述缺 点。必须改变Al2O3夹杂物的形态,将固态的 Al2O3 Al2O3夹杂物变为液态的钙铝酸盐夹杂。
10、合金钢连铸机中间包有什么特点
和普通钢连铸机相比,中间包有如下特点: 容量选择较大一些,一般选择有效出钢量的40%; 熔池选择较深一些,有效液面高度最好控制在 800mm以上; 设置挡渣墙和坝,以充分过滤掉大型夹杂物和有 效减少小型夹杂物; 选择专用耐火材料,减少因耐火材料选择不当对 钢水的二次污染,提高钢的纯净度。
23、影响振痕深度的因素有哪些 影响振痕深度的因素有哪些
振动频率和振幅:高频率振动下的振痕深度较浅, 振幅增加,振痕深度增加。因此现代连铸机普遍 采用高频率、小振幅的结晶器振动装置。 拉坯速度:其他条件不变的情况下,拉坯速度增 大,振痕深度变浅。 负滑脱量和负滑脱时间:负滑脱量能够决定是否 有沟状振痕存在,负滑脱时间决定坯壳凹陷的深 度。负滑脱时间越长,坯壳凹陷的越深,振痕也 就越深。 结晶器超前量:超前量越大,形成沟状振痕的机 会越大。 保护渣性能对振痕深度的影响:保护渣黏度越大, 振痕越浅。 采用抛物线结晶器会减少振痕深度
17、什么叫缓冷
缓冷就是将高温铸坯(一般在500度以 上)运入缓冷容器内,在保温状态下 让其缓慢地冷却到200度以下。
18、为什么大多数合金钢钢种需要设置缓冷坑
是因为大多数合金钢,由于合金元素的作用,在 高温冷却过程发生相变,组织应力发生变化而导 致铸坯表面和内部产生裂纹。例如马氏体不锈钢, 当冷却到300~200度时,由于产生马氏体相变, 导致体积膨胀,引起组织应力而形成铸坯的脆性。 再如轴承钢,通过缓冷能够大大降低冷却过程产 生的组织应力和热应力,能够防止白点的产生。 所以一般情况下合金钢连铸铸坯出坯以后都吊入 设置的缓冷坑内。如果条件允许,铸坯最好直接 进行“红送”轧制。
连铸结晶器振动工艺参数

连铸结晶器振动工艺参数2023-11-20汇报人:CATALOGUE目录•结晶器振动工艺参数概述•振动频率•振幅•振动波形•结晶器与铸坯间的摩擦系数•实际生产中的结晶器振动工艺参数调整与优化01结晶器振动工艺参数概述CHAPTER减少摩擦和磨损改善润滑效果促进坯壳均匀生长030201结晶器振动的作用工艺参数对连铸坯质量的影响振动频率01振幅02振动波形03结晶器振动工艺参数的设定与调整CHAPTER振动频率02定义单位振动频率的定义与单位结晶组织裂纹和缺陷润滑和传热振动频率对铸坯表面质量的影响合适振动频率的选择与调整铸坯材质和规格实时监测和调整CHAPTER振幅03定义单位振幅的定义与单位结晶组织振幅过大可能导致铸坯内部气孔和夹杂物的形成,影响铸坯的质量。
气孔和夹杂裂纹振幅对铸坯内部组织的影响铸坯材质铸坯断面尺寸设备性能操作经验01020304合适振幅的选择与调整CHAPTER振动波形04正弦波、方波、三角波等常见波形介绍正弦波方波三角波表面质量不同的波形会对铸坯表面质量产生显著影响。
例如,正弦波能够显著减少铸坯表面裂纹的产生,而方波由于其强烈的振动冲击,可能会导致铸坯表面质量的下降。
内部结构波形也会影响铸坯的内部结构。
例如,三角波由于其稳定性和均匀性,能够促进铸坯形成均匀且稳定的组织结构。
不同波形对铸坯质量的影响选择原则调整策略合适波形的选择与调整05结晶器与铸坯间的摩擦系数CHAPTER通常采用试验测定法,通过模拟结晶器与铸坯的实际接触情况,测量出摩擦力与压力,并计算得到摩擦系数。
摩擦系数的定义与测量方法测量方法定义振动频率摩擦系数的大小直接影响到结晶器与铸坯之间的摩擦力,进而影响到振动频率的选择。
过高的摩擦系数要求更高的振动频率以克服摩擦力,确保铸坯的顺利下滑。
摩擦系数的变化会对振幅产生一定影响。
当摩擦系数增大时,为了保持铸坯在结晶器内的稳定性,可能需要适当增大振幅,以提供足够的振动力。
摩擦系数的不同可能导致振动波形的变化。
连铸结晶器振动参数取值限度问题

连铸结晶器振动参数取值限度问题连铸结晶器振动参数取值限度问题1 前⾔随着连铸技术的发展,结晶器振动技术亦不断发展,主要表现在振动参数的选择更加灵活,振动的⼯艺效果更好,尤其是振动参数更适合连铸⾼拉速的⼯艺要求。
结晶器振动的每⼀次完善都是突破原有振动参数的取值限度,以适应连铸更⾼的⼯艺要求。
随着结晶器⾮正弦振动形式的开发,本⽂讨论振动参数的取值限度问题。
2 结晶器振动参数的影响拉速Vc是连铸⼯艺控制的⼀个最关键的参数,因此结晶器振动参数的选择亦必须适合拉速的要求。
结晶器振动⼯艺参数对其⼯艺效果的影响如下:1)结晶器振动的负滑脱时T N控制铸坯表⾯的振痕深度,即两者呈增函数关系。
T N越长,振痕越深。
2)保护渣的消耗量与结晶器振动的正滑脱时间呈增函数关系,正滑脱时间越长,保护渣消耗量越⼤。
3)结晶器振动的负滑脱时间率、负滑动量、结晶器上振的最⼤速度都反映结晶器振动的⼯艺效果,但它们不是独⽴的参数,⽽且随着结晶器振动形式的确定,⼀般以其正、负滑脱时间来判定结晶器振动的⼯艺效果。
基于上述⼏点,为控制铸坯的振痕深度,希望T N短;⽽为保证结晶器的润滑效果,增加保护渣的消耗量,希望正滑脱时间长,为此⽬的开发了结晶器的⾮正弦振动形式,从⽽突破了结晶器正弦振动参数的取值限度。
3 问题的提出在结晶器⾮正弦振动中引⼊波形偏斜率α这⼀基本参数,增加了振动的独⽴参数,使振动参数的选择更灵活,更适合⾼速连铸的⼯艺要求。
即在⼀定的V C条件下,采⽤⾮正弦振动可以明显地降低振动频率f ,即可以保持f 不变,通过调整α来适合Vc的要求。
此外,⾮正弦振动可以分别构造结晶器的上振和下振速度曲线。
由此提出:在⼀定的Vc下,可否通过不断地增加α⽽⽆限地降低f 。
图1⽰出在⼀定V C和振幅S时,不同α所对应的t N – f 曲线。
可见α增加,t N – f 曲线左移。
图2为对应图1中某⼀t N值时,不同α和f 下的结晶器振动速度V m– 时间t曲线。
结晶器振动全解

连铸技术
结晶器振动参数对拉速的影响
研究表明,采用高频振动有利于提高拉坯速度, 而且提高拉速还有利于减少振痕。但在一定的 工艺条件下,拉坯速度受到冷却速度及设备精 度的限制,提高拉速将会导致拉漏率的上升。
23
连铸技术
2.2. 结晶器正弦振动的特性分析
目前描述负滑脱的参数较多,对于同一振幅、频率和拉 速的情况下,这些参数给出了不同的数值。但它们当 中独立的参数只有两个:负滑动率 NS 和负滑脱时间 tN。因为负滑脱参数直接关系到铸坯的脱模和铸坯的 质量,所以参数 NS和tN被称为工艺参数。 目前国外有关文献报道,大多数的负滑脱时间取值范围 在 0.1s ~ 0.25s,认为对于不同的钢种最佳负滑动 时间为 0.1s 左右。至于负滑动率 NS,国内外有关 文献报道在 NS值为-20%~240%范围内变化进行 浇铸,结果对铸坯脱模及表面质量没有任何不利影响。 可见,对于负滑动率 NS 的取值范围是很宽的,工艺 参数的确定主要是确定负滑动时间。
27
连铸技术
28
连铸技术
① 全部 tN 曲线与 Ns=-0.024 的射线交于顶点,在一 定的拉速范围内,对于任何一拉速和 tN 曲线都有两 个交点,它们分别对应一个高频率和一个低频率。这 两个频率对应相同的负滑动时间。 ② 全部 tN、Ns 曲线相交于坐标系原点 0 点,曲线的 下部相互靠近,并重合于 Ns=-0.3634(负滑动率极 限值)曲线。s 值越大它们越靠近,tN值越小它们重 合的线段越长,tN=0 时与 Ns=-0.3634 曲线全部 重合。 ③ 增大 s 值,可增大 tN 曲线在拉速 Vc轴上的投影, 因此可根据不同的工作拉速选择相应的 s 值。
4
连铸技术
1—同步式振动 2—负滑脱振动 3—正弦振动 图 1 结晶器振动方式
高效连铸知识问答

高效连铸知识问答1.什么是高效连铸?答:高效连铸通常定义为五高:即整个连铸坯生产过程是高拉速、高质量、高效率、高作业率、高温铸坯。
陆着市场经济的深入发展,应当添加高经济效益(大幅度降成本)这一项最直接的指标;另外,高自动控制也提到日程上来了。
目前,国内的方坯高效连铸(以150方为例),应在单流年产15万吨~20万吨合格普碳钢铸坯的水平、板坯应在100万-150万吨合格铸坯的水平。
其铸坯每吨的成本也在逐年降低。
连铸机的全程自动控制水平也在逐年提高。
2.高效连铸技术有哪些主要内容?答:高效连铸技术是一项系统的整体技术,实现高效连铸需要工艺、设备、生产组织和管理、物流管理、生产操作以及与之配套的炼钢车间各个环节的协调与统一。
主要技术内容如下:(1)保证适宜的钢水温度、最佳的钢水成分.并保证其稳定性的连铸相关配套技术。
(2)供应清洁的钢水和良好流动性钢水的连铸相关技术。
(3)连铸的关键技术—高冷却强度的、导热均匀的长寿结晶器总成(包括结晶器整体结构、精密水套、导热均匀的曲面铜管等等)。
(4)高精度、长寿的结晶器振动装置是高效连铸关键技术之一,这其中包括振动装置硬件的优化及结晶器振动形式、振动工艺参数的软件优化。
以往高效连铸采用的半板簧、全板簧及高频小振幅正弦波形起到了一定的正面效果。
目前,中冶连铸研制的新型串接式全板簧振动装置,其精度更高,整体刚度增强,寿命长,对促进高效连铸进一步发展将起到重要作用。
该装置可采用液压传动或机械传动,液压传动可增加正滑脱时间,提高保护渣用量,减小上振速度峰值,降低拉坯阻力,降低负滑脱时间,使振痕深度相应减小。
机械传动可以降低成本,更易于,推广使用。
(5)保护渣技术。
众所周知,保护渣与拉速相匹配,拉速提高后,保护渣黏度等指标要相应改进,保证用量不减或在允许范围内减少,以保证铸坯的高质量。
因此,连铸高效化后必须有低黏度、低熔点、高熔化速度、大凝固系数的保护渣。
保护渣技术是连铸高效化的一项关键技术。
连铸结晶器振动工艺参数

异常情况的预警与处理
预警标准
设定异常参数的阈值,当实时监测数据超过阈值时, 发出预警信号。
预警方式
通过声、光、短信等方式提醒操作人员关注异常情况 。
处理措施
根据异常类型,采取相应的处理措施,如调整振动参 数、清洗结晶器等。
工艺参数的调整与优化建议
调整原则
根据实时监测数据和异常情况,及时调整结晶器的振动参数,确 保连铸过程的稳定性和产品质量。
初始阶段
早期的连铸机采用人工敲击的方式使结晶器振动,这种方 式效率低下且不稳定。
机械式振动阶段
随着机械技术的发展,人们开始采用机械传动装置来实现 结晶器的振动,出现了多种形式的机械式振动装置。
液压式振动阶段
液压技术的引入使得结晶器的振动更加平稳可控,液压式 振动装置逐渐成为主流。
智能化振动阶段
随着计算机技术和传感器技术的发展,结晶器的振动控制 逐渐实现智能化,能够根据实际生产情况自动调整振动参 数,提高铸坯质量和产量。
04
连铸结晶器振动工艺参数的优 化
基于实验的参数优化
实验设计
通过实验方法,对连铸结晶器振 动工艺参数进行优化,需要设计 合理的实验方案,包括选择合适 的实验参数、确定实验范围和实
验步骤等。
数据采集与分析
在实验过程中,需要采集各种数 据,如振动频率、振幅、波形等 ,并对数据进行处理和分析,以 确定各参数对结晶器振动效果的
总结词
随着连铸技术的不断发展,新型振动装置的开发与应 用成为研究重点。新型振动装置应具备更高的稳定性 和可靠性,能够实现更加灵活的振动模式和精确的工 艺参数控制。
详细描述
目前,新型振动装置的开发主要集中在智能化、模块 化和集成化等方面。例如,采用智能传感器和控制系 统,实现对结晶器振动状态的实时监测和自动调整; 采用模块化设计,方便对结晶器进行快速更换和维修 ;采用紧凑型设计,减小设备体积和重量,提高设备 的可靠性和稳定性。这些新型振动装置的开发将为连 铸结晶器振动工艺参数的研究提供更加先进和可靠的 实验平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结晶器振动的超前量和负滑脱量的区别
结晶器实施有规律的往复振动,可以防止拉坯时坯壳与结晶器黏结,同时获得良好的铸坯质量。
结晶器向上运动时,减少新生的坯壳与结晶器壁产生黏结,以防止坯壳受到较大的应力,减少铸坯表面出现裂纹;而结晶器向下运动时,借助结晶器壁与坯壳的摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕。
高效连铸对结晶器振动要求高频,小振幅,负滑脱时间不易太长,正滑脱时间里振动速度与拉速之差减小,合适的结晶器超前量。
在结晶器下振速度大于拉坯速度时,称为“负滑脱。
结晶器超前量指负滑脱时间里结晶器行程超过铸坯的那段距离。
研究认为,结晶器超前量取3—4mm较合适。
一方面,结晶器超前量应足够大,以确保坯壳在钢液面处能与结晶器较好地分离。
防止粘结;另一方面,结晶器超前量也不能太大,否则会产生深的、不均匀的振痕。
结晶器非正弦振动的优点:
拉速越高,保护渣的消耗量越低,润滑效果越差;尤其在结晶器液面附近发生漏钢的危险就越大。
如何能提高弯月液面下铸坯与结晶器的润滑就成为突出的问题。
结晶器非正弦振动波形使
正滑脱时间增长,负滑脱时间减少,减小拉坯阻力,增加保护渣的消耗量,增加铸坯与结晶器的润滑减少漏钢。