高中数学第三章指数函数和对数函数章末检测北师大版必修1

合集下载

北师大版高中数学必修一第三单元《指数函数和对数函数》测试卷(有答案解析)(2)

北师大版高中数学必修一第三单元《指数函数和对数函数》测试卷(有答案解析)(2)

一、选择题1.下列等式成立的是( )A .222log (35)log 3log 5+=+B .2221log 3log 32-=C .222log 3log 5log (35)⋅=+D .231log 3log 2= 2.形如221n +(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010).A .8B .9C .10D .113.已知函数2()log x f x =,在[116,m ]上的值域为[0,4],2m f ⎛⎫ ⎪⎝⎭的取值范围是( ) A .[1,2]B .[0,2]C .[1,3]D .[0,3] 4.函数()f x =的定义域是( ) A .(0,2) B .[2,)+∞ C .(0,)+∞ D .(,2)-∞ 5.已知函数)()ln f x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>6.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a << 7.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .128.设0.34()5a =,0.254b ⎛⎫= ⎪⎝⎭,125log 4c =,则a ,b ,c 的大小关系为( ) A .b a c >> B .c a b >> C .c b a >> D .b c a >> 9.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则()2f 的值为( )A .2aB .2C .154D .174 10.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ).A .b a c <<B .a b c <<C .a b c >>D .a c b <<11.函数2ln 8x y x =-的图象大致为( ) A . B . C . D . 12.函数32ln ||()x x f x x -=的图象大致为( )A .B .C .D .二、填空题13.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______. 14.72log 2338log 272lg 5lg 47-+++=______.15.已知函数()4sin 22x x f x π=++,则122019101010101010f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______. 16.已知11225x x -+=22165x x x x --+-=+-______.17.如图,在面积为2的平行四边形OABC 中,AC CO ⊥,AC 与BO 交于点E .若指数函数()01x y a a a =>≠,经过点E ,B ,则函数()a f x x x=-在区间[]1,2上的最小值为________.18.函数()213log 253y x x =--的单调递增区间为_______.19.设正数,x y 满足222log (3)log log x y x y ++=+,则x y +的取值范围是_____. 20.已知函数(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,则实数a 的取值范围是________. 三、解答题21.计算下列各式的值:(1)3224031168()281π-⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭;(2)()2log 1483log 3log 3log 22+⨯+. 22.已知函数()3lg 3x f x x+=-. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由.23.已知函数22()log (23).f x x x =-++(1)求函数()f x 的定义域和值域;(2)写出函数()f x 的单调增区间和减区间(不要求证明).24.计算下列各式:(1))()()03235232ππ--; (2)92log 2663log 4log 3.2++ 25.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >.(1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x x f -<.26.已知函数()lg(3)f x ax =-的图像经过定点(2,0).(1)求a 的值;(2)设(3),(5)f m f n ==,求21log 63(用,m n 表示);【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对数的运算法则和换底公式判断.【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误; 222log 3log 5log (35)⋅≠+,C 错误;3233log 31log 3log 2log 2==,D 正确. 故选:D .【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n ≠. 2.C解析:C【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数.【详解】根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10.故选:C【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=. 3.D解析:D【分析】由对数函数的单调性可得[]1,16m ∈,再结合对数函数的性质即可得解.【详解】 由题意,函数2()log x f x =在(]0,1上单调递减,在[)1,+∞上单调递增, 且()116416f f ⎛⎫== ⎪⎝⎭,()10f =, 结合该函数在1,16m ⎡⎤⎢⎥⎣⎦上的值域为[0,4]可得[]1,16m ∈, 所以1,822m ⎡⎤∈⎢⎥⎣⎦,[]2lo 2g 0,32m m f ⎛⎫= ⎪⎝∈⎭. 故选:D.【点睛】关键点点睛:解决本题的关键是由对数函数的图象变换及单调性确定[]1,16m ∈,即可得解.4.A解析:A【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域.【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x << 所以函数的定义域是()0,2.故选:A .【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.5.D解析:D【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021,2021log 2020的范围,即可根据单调性比较大小.【详解】 210x x +->恒成立,()f x ∴定义域为R ,))()ln ln f x x x ===-,其中y x 单调递增,则()f x 单调递减, 102021202020120>=,202020201log log 102021<=, 2021202120210log 1log 2020log 20211=<<=,b c a ∴>>.故选:D.【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出)()lnf x x =在R 上单调递减,进而可利用单调性比较. 6.B解析:B【分析】 根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<.故选:B .【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答 7.B解析:B【分析】根据()3x f x -为定值,可假设()3x f x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果.【详解】由题可知:()3x f x -为定值故设()3xf x m -=,即()3x f x m =+ 又[()3]4xf f x -=,所以()341m f m m m =+=⇒=则()31x f x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133x x =时,取等号 所以()()f x f x +-的最小值为:4故选:B【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题. 8.A解析:A【分析】根据指数函数、对数函数的 性质结合中间值0和1比较.【详解】 由指数函数性质得0.34015⎛⎫<< ⎪⎝⎭,0.2514⎛⎫> ⎪⎝⎭,由对数函数性质得125log 04<, ∴b a c >>.故选:A .【点睛】 本题考查比较幂与对数的,掌握指数函数与对数函数的性质是解题关键.解题方法是借助中间值比较大小.9.C解析:C【分析】根据奇函数()f x 与偶函数()g x ,由()()2x x f x g x a a -+=-+得到()()2﹣﹣﹣=+x x g x f x a a ,两式相加、相减并结合()g b a =求得()f x 即可.【详解】∵奇函数()f x 与偶函数()g x ,()()()(),-∴=-=f x f x g x g x .又()()2﹣+=+-x x f x g x a a ,①()()2﹣---∴+=+x x f x g x a a ,()()2﹣∴=--+x x g x f x a a .②+①②,得()24g x =,()2g x ∴=.(),2g b a a =∴=.()22﹣-∴=x x f x .22115(2)22444f -∴=-=-=. 故选:C.【点睛】本题主要考查函数奇偶性的综合应用,还考查了运算求解的能力,属于中档题. 10.A解析:A【分析】利用对数函数,幂函数的单调性比较大小即可.【详解】 解:因为12y x =在[0,)+∞上单调递增,110.32>> 所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>=所以b a c <<故选:A【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.11.D解析:D【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案.【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ;当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C.故选:D.【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.12.A解析:A【分析】判断奇偶性可排除两个选项,再确定函数值的变化趋势排除一个,得出正确选项.【详解】解:函数的定义域为{0}xx ≠∣, 因为3322()ln ||ln ||()()()x x x x f x f x x x -----===-,所以()f x 为偶函数,所以排除C ,D,又因为当0x >时,322ln ln ()x x x f x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A.【点睛】本题考查由函数解析式选择函数图象,解题方法是排除法,即通过判断函数的性质,特殊的函数值或函数值的变化趋势等,排除错误选项,得出正确答案.二、填空题13.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数 解析:9,2⎛⎤-∞ ⎥⎝⎦ 【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果.【详解】令2t x ax a =-+,则原函数化为12()log g t t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330a a a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.14.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值 解析:32【分析】根据指数幂运算法则和对数运算法则化简可得.【详解】72log 2338log 2lg 5lg 47-+++()732log 232332log 32lg52lg 27=-++++ 34222=-+++ 32= 故答案为:32 【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值. 15.2019【分析】观察的特点探究得再利用倒序相加法求解【详解】因为所以故答案为:2019【点睛】本题主要考查了函数求值中的倒序相加法还考查了抽象概括的能力属于中档题解析:2019【分析】 观察122019101010101010⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 的特点,探究得()(2)2+-=f x f x ,再利用倒序相加法求解.【详解】因为()()()2442sin sin 222222x x f x f x x x πππ-+-=+++-=++ 所以1220192[]101010101010⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 12019120191010101010101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22019=⨯1220192019101010101010f f f ⎛⎫⎛⎫⎛⎫∴+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:2019.【点睛】 本题主要考查了函数求值中的倒序相加法,还考查了抽象概括的能力,属于中档题. 16.【分析】对平方可得再平方可得即可求解【详解】两边同时平方得:所以对两边同时平方得:则故答案为:【点睛】此题考查指数式的化简求值进行整体变形处理利用平方关系得出等量关系解析:12- 【分析】对1122x x -+=13x x -+=,再平方可得227x x -+=,即可求解. 【详解】 1122x x -+=125x x -++=,所以13x x -+= 对13x x -+=两边同时平方得:2229x x -++=,227x x -+= 则22167615352x x x x --+--==-+--. 故答案为:12-【点睛】此题考查指数式的化简求值,进行整体变形处理,利用平方关系得出等量关系. 17.【分析】设点则点B 的坐标为由题意得则再根据平行四边形的面积求得由此得得函数的解析式从而得函数的的单调性与最值【详解】解:设点则点B 的坐标为∵∴∵平行四边形OABC 的面积又平行四边形OABC 的面积为2 解析:3-【分析】设点(),t E t a ,则点B 的坐标为()2,2t t a,由题意得22t t a a =,则2t a =,再根据平行四边形的面积求得12t =,由此得4a =,得函数()f x 的解析式,从而得函数()f x 的的单调性与最值.【详解】解:设点(),t E t a ,则点B 的坐标为()2,2t t a,∵22t t a a =,∴2t a =,∵平行四边形OABC 的面积24t S OC AC a t t =⨯⨯==,又平行四边形OABC 的面积为2,∴42t =,12t =,所以122a =,4a =, ∴()4f x x x =-在[]1,2为增函数, ∴函数()f x 的最小值为()4111f =-=3-, 故答案为:3-.【点睛】 本题主要考查指数函数的图象和性质,考查利用函数的单调性求最值,属于中档题. 18.【分析】先由求得函数的定义域然后令由复合函数的单调性求解【详解】由解得或所以函数的定义域为或因为在上递减在递减所以函数的单调递增区间为故答案为:【点睛】方法点睛:复合函数的单调性的求法:对于复合函数 解析:1,2⎛⎫-∞- ⎪⎝⎭ 【分析】先由22530x x -->,求得函数的定义域,然后令2253t x x =--,由复合函数的单调性求解.【详解】由22530x x -->,解得 12x <-或 3x >, 所以函数()213log 253y x x =--的定义域为{1|2x x <-或 }3x >, 因为2253t x x =--在1,2⎛⎫-∞- ⎪⎝⎭上递减,13log y t =在()0,∞+递减, 所以函数()213log 253y x x =--的单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭. 故答案为:1,2⎛⎫-∞-⎪⎝⎭【点睛】 方法点睛:复合函数的单调性的求法:对于复合函数y =f [g (x )],先求定义域,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.19.【分析】由题设知再由得到所以设由此可求出的取值范围【详解】解:正数满足又所以左右加上得到所以由得到设即解得或即或根据定义域均大于零所以取值范围是故答案为:【点睛】本题考查对数的运算法则基本不等式的应 解析:[)6,+∞由题设知3x y xy ++=,再由2220x xy y -+,得到2224x xy y xy ++,所以2()4x y xy +,设x y a +=,由此可求出x y +的取值范围. 【详解】解:正数x ,y 满足222log (3)log log x y x y ++=+,22log (3)log x y xy ∴++=,3x y xy ∴++=,又2220x xy y -+,所以左右加上4xy 得到2224x xy y xy ++,所以2()4x y xy +, 由3x y xy ++=得到2()34x y x y +++, 设x y a +=即2412a a +,解得6a ≥或2a ≤-即(],2a ∈-∞-或[)6,+∞.根据定义域x ,y 均大于零,所以x y +取值范围是[)6,+∞.故答案为:[)6,+∞.【点睛】本题考查对数的运算法则,基本不等式的应用,解题时要认真审题,仔细解答,注意公式的灵活运用,属于中档题.20.【分析】根据的值域为可知需在单调递增且即可【详解】由题意知的值域为故要使的值域为则必有为增函数且所以且解得故答案为:【点睛】本题主要考查了已知分段函数值域求参数范围属于中档题解析:112⎡⎫-⎪⎢⎣⎭, 【分析】根据()ln (1)f x x x =≥的值域为[0,)+∞,可知()(12)3(1)f x a x a x =-+<需在(,1)-∞单调递增且(1)0f ≥即可.【详解】由题意知()ln (1)f x x x =≥的值域为[0,)+∞,故要使()f x 的值域为R ,则必有()(12)3f x a x a =-+为增函数,且1230a a -+≥,所以120a ->,且1a ≥-,解得112a -≤<. 故答案为:112⎡⎫-⎪⎢⎣⎭,本题主要考查了已知分段函数值域求参数范围,属于中档题.三、解答题21.(1)1927-;(2)116. 【分析】(1)利用指数的运算法则化简求解;(2)利用对数的运算法则化简求解.【详解】(1)()3224031168281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭ ()324343224()13⎡⎤⎡⎤=-+-⎢⎥⎣⎦⎣⎦ 8194412727=-+-=-. (2)()2log 1483log 3log 3log 22++22311log 3log 3log 2123⎛⎫=++ ⎪⎝⎭ 235511log 3log 211666⎛⎫=+=+= ⎪⎝⎭. 【点睛】方法点睛:指数对数的运算化简,一般先观察指数对数的形式,再利用合适的运算法则化简求解.22.(1)()3,3-;(2)()f x 为奇函数,证明见解析.【分析】(1)利用对数式的真数大于零求解出不等式的解集即为定义域;(2)先判断定义域是否关于原点对称,若定义域关于原点对称,分析()(),f x f x -之间的关系,由此判断出()f x 的奇偶性.【详解】(1)因为303x x+>-,所以()()330x x -+<, 所以{}33x x -<<,所以()f x 的定义域为()3,3-;(2)()f x 为奇函数,证明:因为()f x 的定义域为()3,3-关于原点对称,且()()1333lg lg lg 333x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭, 所以()()f x f x -=-,所以()f x 为奇函数.【点睛】思路点睛:判断函数()f x 的奇偶性的步骤如下:(1)先分析()f x 的定义域,若()f x 定义域不关于原点对称,则()f x 为非奇非偶函数,若()f x 的定义域关于原点对称,则转至(2);(2)若()()f x f x =-,则()f x 为偶函数;若()()f x f x -=-,则()f x 为奇函数. 23.(1)定义域为(1,3)-,值域为(,2]-∞(2)递增区间为(1,1)-,递减区间为[1,3)【分析】(1)由2230x x -++>解得结果可得定义域,根据二次函数知识求出真数的值域,根据对数函数的单调性可求得()f x 的值域;(2)在定义域内求出真数的单调区间,根据底数大于1可得函数()f x 的单调区间.【详解】(1)由函数有意义可得2230x x -++>,即2230x x --<,解得13x,所以函数()f x 的定义域为(1,3)-, 因为13x ,所以2223(1)4x x x -++=--+(0,4]∈,所以()(,2]f x ∈-∞,即函数()f x 的值域为(,2]-∞.(2)因为函数()f x 的定义域为(1,3)-,且函数2y x 2x 3=-++在(1,1)-上递增,在(1,3)上递减,又对数函数的底数为21>,所以函数()f x 的递增区间为(1,1)-,递减区间为[1,3).【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 24.(1)2;(2)3.【分析】(1)直接利用指数幂的运算法则化简求解;(2)直接利用对数的运算法则和性质化简求解.【详解】(1))02 ()13|2|ππ=+-+-42ππ=-+-=2(2)92log 2663log 4log 32++ 232log 26662log 2log 3log 23=+-+3log 266log 2log 33=++=6log (23)2123⨯+=+=.【点睛】(a n =是奇数||(a n =是偶数).使用上面的公式时,一定要注意n 的奇偶性,再化简.25.(1)证明见解析;(2)证明见解析;(3){}|1x x <【分析】(1)令0m n ==,代入等式,可求得()00=f ;(2)令n m =-,代入等式,结合()00=f ,可得到()()f m f m -=-,从而可知()y f x =是奇函数,然后用定义法可证明()f x 在(),-∞+∞上为增函数;(3)原不等式可化为()()422x x f f -<,结合函数()f x 的单调性,可得出422x x -<,解不等式即可.【详解】(1)证明:令0m n ==,则()()()()000020f f f f +=+=,∴()00=f . (2)证明:令n m =-,则()()()f m m f m f m -=+-,∴()()()00f f m f m =+-=,∴()()f m f m -=-,∴对任意的m ,都有()()f m f m -=-,即()y f x =是奇函数.在(),-∞+∞上任取1x ,2x ,且12x x <,则210x x ->,∴()()()()()2121210f x x f x f x f x f x -=+-=->,即()()12f x f x <, ∴函数()y f x =在(),-∞+∞上为增函数.(3)原不等式可化为()()()()4211112x x f f f f -<+=+=,由(2)知()f x 在(),-∞+∞上为增函数,可得422x x -<,即()()12022x x +<-, ∵210x +>,∴220x -<,解得1x <,故原不等式的解集为{}|1x x <.【点睛】本题考查函数奇偶性、单调性,考查不等式的解法,考查学生的推理能力与计算求解能力,属于中档题.26.(1)2a =;(2)2m n m n++【分析】(1)根据对数运算求a 的值;(2)利用换底公式化简求值.【详解】(1)由已知得231a -=得:2a =(2)由(1)得()()lg 23f x x =-,则()()3lg3,5lg7f m f n ====, ∴21lg632lg3lg72log 63lg21lg3lg7m n m n ++===++ 【点睛】本题考查对数换底公式,考查基本分析求解能力,属基础题.。

配套K12高中数学第三章指数函数与对数函数学业分层测评18换底公式北师大版必修1

配套K12高中数学第三章指数函数与对数函数学业分层测评18换底公式北师大版必修1

【课堂新坐标】2016-2017学年高中数学 第三章 指数函数与对数函数 学业分层测评(18)换底公式 北师大版必修1(建议用时:45分钟)[学业达标]一、选择题 1.log 2716log 34的值为( ) A .2 B.32 C .1D.23【解析】 原式=lg 16lg 27×lg 3lg 4=2lg 4·lg 33lg 3·lg 4=23.【答案】 D2.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2C .5a -2D .1+3a -a 2【解析】 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2. 【答案】 A3. (2016·石景山高一检测)若x =60,则1log 3x +1log 4x +1log 5x 的值为( )A .1 B.12C .2D .以上都不对 【解析】 原式=log x 3+log x 4+log x 5=log x 60=log x x =1. 【答案】 A4.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12 B .9 C .18D .27【解析】 由题意得lg 4lg 3·lg 8lg 4·lg m lg 8=lg mlg 3=log 416=log 442=2, ∴lg mlg 3=2,即lg m =2lg 3=lg 9, ∴m =9. 【答案】 B5.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c【解析】 B 中log a b ·log c a =lg b lg a ·lg a lg c =lg blg c =log c b ,A 、C 、D 中由对数的运算法则知不成立.【答案】 B 二、填空题6.计算:log 43·log 3432=________. 【解析】 原式=lg 3lg 4·lg 432lg 3=54lg 22lg 2=58.【答案】 587.若m log 35=1,n =5m+5-m,则n 的值为________. 【解析】 ∵m log 35=1, ∴m =1log 35=log 53,∴n =5m +5-m=5log 53+5-log 53=3+5log 513=3+13=103.【答案】1038.已知log 62=p ,log 65=q ,则lg 5=________. 【解析】 因为⎩⎪⎨⎪⎧p =lg 2lg 6,q =lg 5lg 6,故lg 2lg 5=pq, 故1-lg 5lg 5=p q ,则lg 5=qp +q. 【答案】qp +q三、解答题9.求下列各式的值:(1)(2016·西城高一检测)log 427·log 258·log 95; (2)(2016·济南高一检测)log 225·log 3116·log 519.【解】 (1)原式=lg 27lg 4·lg 8lg 25·lg 5lg 9=3 lg 32lg 2·3lg 22lg 5·lg 52 lg 3=98. (2)原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-lg 3·-lg 5=16.10.已知x ,y ,z 为正数,且3x=4y=6z. (1)求使2x =py 的p 的值;(2)求证:12y =1z -1x . 【导学号:04100059】【解】 (1)设3x =4y =6z=k (显然k ≠1), 则x =log 3k ,y =log 4k ,z =log 6k , 由2x =py ,得2log 3k =p log 4k =p ·log 3klog 34,∵log 3k ≠0, ∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k=log k 6-log k 3 =log k 2=12log k 4=12log 4k =12y. [能力提升]1.设方程(lg x )2-lg x 2-3=0的两实根是a 和b ,则log a b +log b a 等于( ) A .1 B .-2 C .-103D .-4【解析】 由(lg x )2-lg x 2-3=0,即(lg x )2-2lg x -3=0, 解得lg x =3或lg x =-1,故x =103或x =10-1=110.不妨令a =103,b =110,故log a b +log b a =log 103110+log 110103=-13-3=-103.【答案】 C2.计算:1+lg 2·lg 5-lg 2·lg 50-log 35·log 259·lg 5=________. 【解析】 原式=1+lg 2·lg 5-lg 2(1+lg 5)-lg 5lg 3·lg 9lg 25·lg 5=1+lg 2lg 5-lg 2-lg 2lg 5-lg 5lg 3·2lg 32lg 5·lg 5=1-lg 2-lg 5=1-1=0. 【答案】 03.某城市为加快现代化都市的建设,决定从2007年起逐年增加城市化面积.若每年的新增绿地亩数比上一年递增10%,则该市实现绿地面积翻两番大约是在哪一年?(参考数据:lg2=0.301 0,lg1.1=0.041 4)【解】 若设该市2006年年底有绿地面积a ,则经过1年,即2007年的绿地面积是a +a ·10%=a (1+10%);再经过一年,即2008年的绿地面积是a (1+10%)2;经过3年,即2009年的绿地面积是a (1+10%)3,…,经过x 年的绿地面积是a (1+10%)x,依题意,a (1+10%)x =4a ,即(1+10%)x=4,∴x =log 1.14=2lg2lg1.1≈15.∴大约经过15年,也就是到2022年该市的绿地面积将翻两倍.。

高中数学 第三章 指数函数和对数函数 3.4 对数 3.4.1 对数及其运算素材1 北师大版必修1

高中数学 第三章 指数函数和对数函数 3.4 对数 3.4.1 对数及其运算素材1 北师大版必修1

3.4.1 对数及其运算
学情分析
对数及其运算是北师大版普通高中数学课程标准实验教科书《数学1(必修)》第三章第四单元第一节,是在系统学习研究函数的一般方法、指数的概念及运算性质,基本掌握指数函数的概念及性质的基础上引入的,既是指数有关知识的承接和延续,又是后续研究对数函数、探讨函数应用的基础,本节共两课时,本课是第一课时,重点研究对数的概念及其性质,教材以2000年国民经济生产总值增幅为背景,引入对数概念,在使学生认识引进对数必要性的同时,强化学生的数学应用意识,“思考交流”旨在引导学生进一步厘清指数式与对指数式之间的关系,明确1和底数对数的特点,深化真数取值范围的理解,为对数函数学习打下伏笔。

常用对数及自然对数是对数的特例,教材将其安排在对数性质之后,旨在引领学生经历“特殊——一般——特殊”的过程,进一步发展学生的理性思维。

因此,本节内容无论是只是传承,还是数学思想方法的强化渗透,都具有非常重要的奠基作用。

经历了义务教育阶段学习的高一学生,思维正处于由经验型向理论型过渡与转型期,思维的发散性与聚敛性基本成型,已具有研究函数和从事简单数学活动的能力,加之指数及指数函数等知识铺垫,对于本单元学习奠定了必要的知识和经验基础。

北师大版必修1数学教学练习课件第三章指数函数和对数函数第二节指数扩充及其运算性质

北师大版必修1数学教学练习课件第三章指数函数和对数函数第二节指数扩充及其运算性质

第三章 指数函数和对数函数
〔跟踪练习 4〕 (1)设|x|<3,化简 x2-2x+1- x2+6x+9; (2)如果 m<-5,化简:|6-m|-|2m+1|+ m2+10m+25; (3)已知 y= 3x-2+ 2-3x+ 26,求实数 x 及 y 的值.
数 学 必 修 ① 北 师 大A 版
返回导航
A.-1
B.14
C.12 [解析]
因为 f(-2)=2-2=14,
D.32
数 学 必
所以 f[f(-2)]=f(14)=1- 14=1-12=12,故答案选 C.


北 师 大A 版
返回导航
第三章 指数函数和对数函数
3.若 b-3n=5m(m,n∈N+),则 b=_5_-__3m_n___.
[解析] 若 bn=am(m,n∈N+,a>0,b>0),则 b=amn ,所以由 b-3n=5m 知 b
数 学
3x-2≥0 2-3x≥0
,解得xx≥≤2323
.

修 ① 北
∴x=23,从而 y= 26.

大A

返回导航
第三章 指数函数和对数函数
空间
典例 5 已知 x-82- x-102=2x-18 成立,求 x 的取值范围.
[错解] ∵ x-82=x-8, x-102=x-10,
∴原方程可转化为(x-8)-(x-10)=2x-18.解得 x=10.

∴原方程可化为(8-x)-(10-x)=2x-18,解得 x x 的取值范围为 8≤x≤10.
北 师 大A 版
返回导航
·
第三章 指数函数和对数函数
『规律总结』 熟练掌握指数运算的性质及公式,是正确、迅速地化简、 求值的条件.

最新北师大版高中数学必修一第三单元《指数函数和对数函数》检测卷(答案解析)(2)

最新北师大版高中数学必修一第三单元《指数函数和对数函数》检测卷(答案解析)(2)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C.y =1y x =-D .lg y x =与21lg 2y x =2.若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦3.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .44.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( ) A .()4,+∞ B .()6,+∞ C .()1,4D .()4,65.已知函数3()22xf x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212 B .214C .7D .1526.一种放射性元素最初的质量为500g ,按每年10%衰减.则这种放射性元素的半衰期为( )年.(注:剩余质量为最初质量的一半,所需的时间叫做半衰期),(结果精确到0.1,已知lg 20.3010=,lg30.4771=)A .5.2B .6.6C .7.1D .8.37.已知实数1212a ⎛⎫= ⎪⎝⎭,2log 3b =,4log 7c =,则a 、b 、c 的大小关系是( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<8.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增 B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减9.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<10.已知偶函数()f x 在[0,)+∞上单调递增,131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >> 11.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>12.函数32ln ||()x x f x x-=的图象大致为( )A .B .C .D .二、填空题13.已知0a >,函数()y f x =,其中21()log f x a x ⎛⎫=+⎪⎝⎭,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()y f x =在区间[,1]t t +上的最大值与最小值的差不超过1,则a 的取值范围为_______.14.已知()(3),1log ,1a a x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.15.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log xa f x a a x =--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.16.已知43==m n k ,且20+=≠m n mn ,则k =______.17.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____. 18.下列五个命题中:①函数log (21)2015(0a y x a =-+>且1)a ≠的图象过定点()1,2015; ②若定义域为R 函数()f x 满足:对任意互不相等的1x 、2x 都有()()()12120x x f x f x -->⎡⎤⎣⎦,则()f x 是减函数;③2(1)1f x x +=-,则2()2f x x x =-;④若函数22()21x x a a f x ⋅+-=+是奇函数,则实数1a =-;⑤若log 8(0,1)log 2c c a c c =>≠,则实数3a =. 其中正确的命题是________.(填上相应的序号).19.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1af x x=+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.20.下列结论正确的是____________①1()2(0,1)x f x a a a -=+>≠的图像经过定点(1,3); ②已知28log 3,43yx ==,则2x y +的值为3; ③若3()6f x x ax =+-,且(2)6f -=,则(2)18f =; ④11()()122xf x x =--为偶函数; ⑤已知集合{}{}1,1,|1A B x mx =-==;且B A ⊆,则m 的值为1或-1.三、解答题21.已知函数()2log f x x =,()241g x ax x =-+.(1)若函数()()y f g x =的值域为R ,求实数a 的取值范围;(2)函数22()()()h x f x f x =-,若对于任意的1,22x ⎡∈⎤⎢⎥⎣⎦,都存在[]1,1t ∈-使得不等式()22t h x k >⋅-成立,求实数k 的取值范围. 22.已知函数()21log 1xf x x-=+. (1)求函数()f x 的定义域; (2)讨论函数()f x 的奇偶性;(3)证明:函数()f x 在定义域上单调递减. 23.已知函数()3lg3xf x x+=-. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由.24.已知12324xA x ⎧⎫=≤≤⎨⎬⎩⎭,121log ,264B y y x x ⎧⎫==≤≤⎨⎬⎩⎭. (1)求AB ;(2)若{}11C x m x m =-≤≤+,若C A ⊆,求m 的取值范围.25.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >.(1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数. (3)若()11f =,解不等式()422xxf -<.26.已知函数121()log 1axf x x -=-的图象关于原点对称,其中0a <. (1)当(1,)x ∈+∞时,12()log (1)f x x m +-<恒成立,求实数m 的取值范围;(2)若关于x 的方程12()log ()f x x k =+在[]2,3上有解,求k的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C .21y x =-的定义域为(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】转化为当10,2x ⎛⎤∈ ⎥⎝⎦时,函数342xy =-的图象不在log a y x =的图象的上方,根据图象列式可解得结果. 【详解】由题意知关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立, 所以当10,2x ⎛⎤∈ ⎥⎝⎦时,函数342xy =-的图象不在log a y x =的图象的上方,由图可知0111 log22aa<<⎧⎪⎨≥⎪⎩,解得114a≤<.故选:A【点睛】关键点点睛:利用函数342xy=-的图象与函数log ay x=的图象求解是解题关键.3.C解析:C【分析】由新定义可知探究y轴左侧部分图像关于原点中心对称的图像与y轴右侧部分图像的交点个数即得结果.【详解】由题意可知,函数()y f x=的图像上有不同的两点,A B,且,A B两点关于原点对称,则称点对(),A B是函数()y f x=的一对“镜像”,因为()23,02,0x xf xx x x⎧-<⎪=⎨-≥⎪⎩,由y轴左侧部分()3,0xy x=-<图像关于原点中心对称的图像3xy--=-,即3xy-=,()0x>,作函数3xy-=,()0x>和()22,0y x x x=-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”.故选:C.【点睛】本题解题关键是理解新定义,寻找对称点对,探究y轴左侧部分图像关于原点中心对称的图像与y轴右侧部分图像的交点个数,通过数形结合,即突破难点.4.D解析:D【分析】转化条件为函数()f x是周期为2的周期函数,且函数()g x、()f x的图象均关于1x=-对称,由函数的对称性可得两图象在1x =-右侧有5个交点,画出图象后,数形结合即可得解. 【详解】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g xx =+的图象可由函数log a y x =的图象向左平移一个单位可得, 所以函数()log 1a g x x =+的图象的对称轴为1x =-,当[)1,1x ∈-时,()2f x x =,所以函数()f x 的图象也关于1x =-对称,在平面直角坐标系中作出函数()y f x =与()y g x =在1x =-右侧的图象,数形结合可得,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点, 则由函数图象的对称性可得两图象在1x =-右侧有5个交点,则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D. 【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.5.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22x f x =+, 所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222xx x f x f x ⋅+-=+=++.故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题. 6.B解析:B 【分析】先根据题意列出关于时间的方程,然后利用指对互化以及对数换底公式并结合所给数据可计算出半衰期. 【详解】设放射性元素的半衰期为x 年,所以()500110%250x-=, 所以()1110%2x-=,所以0.91log 2x =,所以109log 2x =, 所以lg 2lg10lg9x =-,所以lg 212lg 3x =-,所以0.3010120.4771x =-⨯,所以 6.6x ≈,故选:B. 【点睛】思路点睛:求解和对数有关的实际问题的思路: (1)根据题设条件列出符合的关于待求量的等式;(2)利用指对互化、对数运算法则以及对数运算性质、对数换底公式求解出待求量的值.7.D解析:D 【分析】本题首先可根据2log 3b =以及2log c =得出b c >,然后根据1a <以及1c >得出c a >,即可得出结果.【详解】 因为2log 3b =,42log 7log 7c ,函数2log y x =在()0,∞+上是增函数,所以b c >,因为01211122a <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,44log 7log 41c , 所以c a >, 综上所述,a c b <<, 故选:D. 【点睛】指数、对数的大小比较,可通过寻找合适的单调函数来构建大小关系,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,考查计算能力,是中档题.8.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反, 在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.9.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<.故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.10.C解析:C【分析】偶函数()f x 在[0,)+∞上单调递增,化简1333(log 5)(log 5)(log 5)f f f =-=,利用中间量比较大小得解. 【详解】∵偶函数()f x 在[0,)+∞上单调递增1333(log 5)(log 5)(log 5)c f f f ∴==-=,∵1333170()1log log 542<<<<,133317(()(log )(log 5)42)f f f << ∴a b c <<. 故选:C 【分析】本题考查函数奇偶性、单调性及对数式大小比较,属于基础题.11.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.12.A解析:A 【分析】判断奇偶性可排除两个选项,再确定函数值的变化趋势排除一个,得出正确选项. 【详解】解:函数的定义域为{0}xx ≠∣, 因为3322()ln ||ln ||()()()x x x x f x f x x x-----===-,所以()f x 为偶函数,所以排除C ,D,又因为当0x >时,322ln ln ()x x xf x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A. 【点睛】本题考查由函数解析式选择函数图象,解题方法是排除法,即通过判断函数的性质,特殊的函数值或函数值的变化趋势等,排除错误选项,得出正确答案.二、填空题13.【分析】由函数单调性可得在区间上的最大值最小值则可得对任意恒成立利用二次函数的性质即可求出【详解】因为在区间内单调递减所以函数在区间上的最大值与最小值分别为则得整理得对任意恒成立令则的图象是开口向上解析:23⎡⎫+∞⎪⎢⎣⎭, 【分析】由函数单调性可得()f x 在区间[1]t t ,+上的最大值()f t ,最小值(1)f t +,则可得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,利用二次函数的性质即可求出.【详解】因为()f x 在区间[1]t t ,+内单调递减, 所以函数()f x 在区间[1]t t ,+上的最大值与最小值分别为()f t ,(1)f t +, 则2211()(1)log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭, 得1121a a tt ⎛⎫+≤+⎪+⎝⎭,整理得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立.令2()(1)1h t at a t =++-,则()h t 的图象是开口向上,对称轴为11022t a=--<的抛物线,所以()h t 在1,12t ⎡⎤∈⎢⎥⎣⎦上是增函数,2(1)10at a t ++-≥等价于102h ⎛⎫≥⎪⎝⎭, 即211(1)1022a a ⎛⎫⨯++⨯-≥ ⎪⎝⎭,解得23a ≥,所以a 的取值范围为23⎡⎫+∞⎪⎢⎣⎭,.故答案为:23⎡⎫+∞⎪⎢⎣⎭,. 【点睛】关键点睛:由单调性判断出最大值和最小值,从而转化为2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,根据二次函数性质求解. 14.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤, 故答案为:31,2⎛⎤ ⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.15.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a++∞ 【分析】利用分段函数列出不等式求解即可. 【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log xa g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a ++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.16.【分析】根据对数和指数的关系将指数式化成对数式再根据对数的运算计算可得【详解】解:故答案为:【点睛】本题考查对数和指数的关系对数的运算属于基础题 解析:36【分析】根据对数和指数的关系,将指数式化成对数式,再根据对数的运算计算可得. 【详解】 解:43m n k ==4log m k ∴=,3log =n k20m n mn +=≠ 211n m ∴+=,1log 4k m =,1log 3k n = 2log 3log 41k k ∴+=2log 3log 41k k ∴+=()log 941k ∴⨯=36k ∴=故答案为:36 【点睛】本题考查对数和指数的关系,对数的运算,属于基础题.17.①③【分析】A 即为函数的定义域B 即为函数的值域求出每个函数的定义域及值域直接判断即可【详解】对①A =(﹣∞0)∪(0+∞)B =(﹣∞0)∪(0+∞)显然对于∀x ∈A ∃y ∈B 使得x+y =0成立即具有性解析:①③ 【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可. 【详解】对①,A = (﹣∞,0)∪ (0,+∞),B = (﹣∞,0)∪ (0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B = (0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A = (0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ; 故答案为:①③. 【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.18.①③⑤【分析】对①由对数函数恒过即可判断;对②由函数单调性的定义即可判断函数的单调性;对③利用换元法即可求得函数的解析式;对④由奇函数的定义即可判断;对⑤由换底公式即可求得的值【详解】解:对①令解得解析:①③⑤ 【分析】对①,由对数函数恒过(1,0),即可判断; 对②,由函数单调性的定义即可判断函数的单调性; 对③,利用换元法即可求得函数()f x 的解析式; 对④,由奇函数的定义即可判断; 对⑤,由换底公式即可求得a 的值. 【详解】解:对①,令211x -=, 解得:1x =,则(1)2015f =,()f x ∴的图象过定点()1,2015,故①正确;对②,()()()12120x x f x f x -->⎡⎤⎣⎦,当12x x <时,()()12f x f x <; 当12x x >时,()()12f x f x >;()f x ∴是R 上的增函数,故②错误;对③,令1t x =+,则1x t =-;2()2f t t t ∴=-,即2()2f x x x =-,故③正确; 对④,由题意知()f x 的定义域为R , 又()f x 为奇函数,(0)0f ∴=,解得:1a =,故④不正确; 对⑤,log 8lg83lg 2=3log 2lg 2lg 2c c a ===,故⑤正确. 故答案为:①③⑤. 【点睛】方法点睛:求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围; (3)方程法:已知关于()f x 与1f x ⎛⎫⎪⎝⎭或()f x -的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).19.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题解析:[3【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x=+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021*********222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a ≤<. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.20.①②④【分析】①根据指数函数的性质进行判断②根据对数的运算法则进行判断③根据函数的运算性质进行运算④根据偶函数的定义进行判断⑤根据集合关系利用排除法进行判断【详解】①当时(1)则函数的图象经过定点;解析:①②④ 【分析】①根据指数函数的性质进行判断,②根据对数的运算法则进行判断,③根据函数的运算性质进行运算,④根据偶函数的定义进行判断,⑤根据集合关系,利用排除法进行判断. 【详解】①当1x =时,f (1)02123a =+=+=,则函数的图象经过定点(1,3);故①正确, ②已知2log 3x =,843y=,则2823y=,282log 3y =, 则2222882log 3log log (3)log 8333x y +=+=⨯==;故②正确, ③若3()6f x x ax =+-,且(2)6f -=,则32266a ---=,即10a =-, 则f (2)32210618=-⨯-=-,故③错误;④函数的定义域为{|0}x x ≠,关于原点对称,1112()()?1222(12)xxx f x x x +=-=--, 则122112()?··()2(12)2(21)2(12)x x xx x xf x x x x f x --+++-=-=-==---, 即()f x 为偶函数,故④正确,⑤已知集合{1A =-,1},{|1}B x mx ==,且B A ⊆,当0m =时,B =∅,也满足条件,故⑤错误, 故正确的是①②④, 故答案为:①②④ 【点睛】本题主要考查命题的真假判断,涉及指数函数的性质,函数奇偶性的判断,以及对数的运算法则,综合性较强,涉及的知识点较多.三、解答题21.(1)[]0,4a ∈;(2)2k <. 【分析】(1)由()2log f x x =,()()y f g x =的值域为R ,知()g x 值域应为小于等于0的数直至正无穷,分类讨论参数a 的正负,再结合二次函数值域与判别式的关系即可求解; (2)对恒成立问题与存在性问题转化得()22tmin k h x ⋅<+在[]1,1t ∈-有解,求得()min h x ,再结合函数单调性即可求解【详解】(1)0a <时,内函数有最大值,故函数值不可能取到全体正数,不符合题意; 当0a =时,内函数是一次函数,内层函数值可以取遍全体正数,值域是R ,符合题意; 当0a >时,要使内函数的函数值可以取遍全体正数,只需要函数最小值小于等于0, 故只需0≥,解得(]0,4a ∈.综上得[]0,4a ∈;2()由题意可得2222()222t k h x log x log x ⋅<+=-+在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 则()221tmin k h x ⋅<+=在[]1,1t ∈-有解,即1<2t k 在[]1,1t ∈-有解, 122t maxk ⎛⎫∴<= ⎪⎝⎭,综上,实数k 的取值范围2k <.【点睛】关键点睛:本题考查由对数型复合函数的值域求解参数取值范围,由恒成立与存在性问题建立的不等式求解参数取值范围,解题关在在于:(1)()()()log a f x g x =值域为R ,()g x 值域范围的判断; (2)全称命题与存在性命题逻辑关系的理解与正确转化. 22.(1) (1,1)- (2) 函数()f x 为奇函数 (3)证明见解析. 【分析】(1)由()f x 的定义域满足101xx->+可得答案. (2)直接判断()f x 与()f x -的关系可得答案. (3) 设1211x x -<<<,先作差判断出212111011--<<++x x x x ,再由对数函数2log y x =在(0,)+∞上单调递增有,21222111log log 11x x x x --<++,即可得出结论. 【详解】解:(1)令101xx->+,可得()()110x x -+>,即()()110x x -+<,解得11x -<< 函数()f x 的定义域为(1,1)-(2)由(1)知函数()f x 的定义域关于原点对称 由2211()log log ()11x xf x f x x x+--==-=--+,可得函数()f x 为奇函数 (3)设1211x x -<<<设()()()()()()()()()122112212112121111211111111+--+-----==++++++x x x x x x x x x x x x x x∵1211x x -<<<∴121210,10,0x x x x +>+>-< ∴212111011--<<++x x x x 利用对数函数2log y x =在(0,)+∞上单调递增有,21222111log log 11x x x x --<++ 即()()21f x f x <故函数()f x 在(1,1)-上单调递减. 【点睛】关键点睛:本题考查函数的定义域、奇偶性的判断和用定义法证明单调性,解答本题的关键是先得出2211x x -+与1111x x -+的大小关系,再由函数2log y x =在(0,)+∞上单调递增得到21222111log log 11x x x x --<++,即()()21f x f x <,属于中档题. 23.(1)()3,3-;(2)()f x 为奇函数,证明见解析.【分析】(1)利用对数式的真数大于零求解出不等式的解集即为定义域;(2)先判断定义域是否关于原点对称,若定义域关于原点对称,分析()(),f x f x -之间的关系,由此判断出()f x 的奇偶性. 【详解】 (1)因为303xx+>-,所以()()330x x -+<, 所以{}33x x -<<,所以()f x 的定义域为()3,3-; (2)()f x 为奇函数,证明:因为()f x 的定义域为()3,3-关于原点对称,且()()1333lg lg lg 333x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭, 所以()()f x f x -=-,所以()f x 为奇函数. 【点睛】思路点睛:判断函数()f x 的奇偶性的步骤如下:(1)先分析()f x 的定义域,若()f x 定义域不关于原点对称,则()f x 为非奇非偶函数,若()f x 的定义域关于原点对称,则转至(2);(2)若()()f x f x =-,则()f x 为偶函数;若()()f x f x -=-,则()f x 为奇函数. 24.(1)[1,5]A B ⋂=-;(2)(],3-∞. 【分析】(1)根据指数运算解不等式求出集合A ,利用对数的运算求出集合B ,由此能求出A B ;(2)由{}11C x m x m =-≤≤+和C A ⊆,对C 是否为空集分类讨论,列出不等式组,由此能求出m 的取值范围. 【详解】 解:(1)1{|232}{|25}4xA x x x ==-, 12{|log B y y x==,12}{|16}64x x x =-, [1,5]A B ∴=-.(2){}11C x m x m =-≤≤+且C A ⊆,若,11,0C m m m =∅->+<若C ≠∅,则111512m m m m -≤+⎧⎪+⎨⎪--⎩,解得03m ≤≤,m ∴的取值范围是(],3-∞.【点睛】本题考查交集的运算以及根据集合间的包含关系求参数的取值范围,还涉及指对数的运算,属于基础题.25.(1)证明见解析;(2)证明见解析;(3){}|1x x < 【分析】(1)令0m n ==,代入等式,可求得()00=f ;(2)令n m =-,代入等式,结合()00=f ,可得到()()f m f m -=-,从而可知()y f x =是奇函数,然后用定义法可证明()f x 在(),-∞+∞上为增函数;(3)原不等式可化为()()422x xf f -<,结合函数()f x 的单调性,可得出422x x -<,解不等式即可. 【详解】(1)证明:令0m n ==,则()()()()000020f f f f +=+=,∴()00=f . (2)证明:令n m =-,则()()()f m m f m f m -=+-, ∴()()()00f f m f m =+-=,∴()()f m f m -=-, ∴对任意的m ,都有()()f m f m -=-,即()y f x =是奇函数. 在(),-∞+∞上任取1x ,2x ,且12x x <,则210x x ->,∴()()()()()2121210f x x f x f x f x f x -=+-=->,即()()12f x f x <, ∴函数()y f x =在(),-∞+∞上为增函数.(3)原不等式可化为()()()()4211112xxf f f f -<+=+=,由(2)知()f x 在(),-∞+∞上为增函数,可得422xx-<,即()()12022xx+<-,∵210x +>,∴220x -<,解得1x <, 故原不等式的解集为{}|1x x <. 【点睛】本题考查函数奇偶性、单调性,考查不等式的解法,考查学生的推理能力与计算求解能力,属于中档题.26.(1)[)1,-+∞;(2)[]1,1-. 【分析】(1)根据函数的奇偶性,求出a 的值,求出1122()log (1)log (1)f x x x +-=+,根据函数的单调性求出m 的范围即可;(2)问题转化为211k x x =-+-在[]2,3上有解,即2()11g x x x =-+-在[]2,3上递减,根据函数的单调性求出()g x 的值域,从而求出k 的范围即可.【详解】(1)∵函数()f x 的图象关于原点对称,∴函数()f x 为奇函数,∴()()f x f x -=-, 即111222111log log log 111ax ax x x x ax +--=-=----,解得1a =-或1a =(舍), ()()()()111122221log 1log log 1log 11x f x x x x x ++-=+-=+-, 当1x >时,()12log 11x +<-,∵当()1,x ∈+∞时,()()12log 1f x x m +-<恒成立,∴1m ≥-,即m 的取值范围为[)1,-+∞;(2)由(1)知,()()12log f x x k =+即()()11221log log 1x f x x k x +==+-, 即11x x k x +=+-,即211k x x =-+-在[]2,3上有解, ()211g x x x =-+-在[]2,3上单调递减, min max ()(3)1,()(2)1g x g g x g ,∴()g x 的值域为[]1,1-,∴[]1,1k ∈-.【点睛】本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,如果是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.。

高中数学第三章指数函数和对数函数3.4第2课时对数的运算性质及换底公式学案(含解析)北师大版必修1

高中数学第三章指数函数和对数函数3.4第2课时对数的运算性质及换底公式学案(含解析)北师大版必修1

第2课时 对数的运算性质及换底公式 内 容 标 准学 科 素 养 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算.2.了解换底公式、能用换底公式将一般对数化为自然对数或常用对数. 准确定义概念 熟练等价转化 提升数学运算授课提示:对应学生用书第52页[基础认识]知识点一 对数的运算性质预习教材P 80-82,思考并完成以下问题当m >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立? 提示:不一定成立.知识梳理 对数的运算性质 条件 a >0,且a ≠1,M >0,N >0性质 log a (MN )=log a M +log a Nlog a M N=log a M -log a N log a M n =n log a M (n ∈R )思考并完成以下问题(1)换底公式中的底数a 是特定数还是任意数?提示:是大于0且不等于1的任意数.(2)换底公式有哪些作用?提示:利用换底公式可以把不同底数的对数化为同底数的对数,便于运用对数的运算性质进行化简、求值.知识梳理log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 2.用换底公式推得的两个常用结论:(1)log a b ·log b a =1(a >0,且a ≠1;b >0,且b ≠1);(2)log am b n =n mlog a b (a >0,且a ≠1;b >0;m ≠0). 知识点三 常用结论思考并完成以下问题结合教材P 81-82,例4和例5,你认为怎样利用对数的运算性质计算对数式的值?提示:第一步:将积、商、幂、方根的对数直接运用运算性质转化.第二步:利用对数的性质化简、求值.知识梳理 常用结论由换底公式可以得到以下常用结论:(1)log a b =1log b a; (2)log a b ·log b c ·log c a =1;(3)log an b n =log a b ;(4)log an b m =m nlog a b ; (5)log 1ab =-log a b . 思考:M ·N >0,则式子log a (M ·N )=log a M +log a N 成立吗?提示:不一定成立.当M >0,N >0时成立;当M <0,N <0时不成立.2.换底公式一般在什么情况下应用?提示:(1)在运算过程中,出现不能直接用计算器或查表获得对数值时,可化成以10为底的常用对数进行运算.(2)在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个实数为底的对数,再根据运算法则进行化简与求值.[自我检测]1.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数是( )①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a ⎝⎛⎭⎫x y =log a x ÷log a y ; ④log a (xy )=log a x ·log a y .A .0B .1C .2D .3解析:根据对数运算性质知4个式子均不正确,③应为log a x y=log a x -log a y ,④应为log a (xy )=log a x +log a y .答案:A2.(log 29)×(log 34)=( ) A.14 B.12C .2D .4 解析:∵log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4. 答案:D3.若lg a 与lg b 互为相反数,则a 与b 的关系式为________.解析:∵lg a +lg b =0,∴lg(ab )=0,∴ab =1.答案:ab =1授课提示:对应学生用书第52页探究一 利用对数的运算性质化简求值[例1] 计算下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)lg 27+lg 8-3lg 10lg; (3)lg 52+23lg 8+lg 5·lg 20+(lg 2)2. [思路点拨] 灵活运用对数的运算性质求解. [解析] (1)法一:lg 14-2lg 73+lg 7-lg 18 =lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二:lg 14-2lg 73+lg 7-lg 18 =lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)lg 27+lg 8-3lg 10lg =lg (33)12+lg 23-3lg 1012lg 3×2210=32lg 3+3lg 2-32lg 10lg 3+2lg 2-1=32(lg 3+2lg 2-1)lg 3+2lg 2-1=32. (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.方法技巧 1.在应用对数运算性质时应注意保证每个对数式都有意义,应避免出现lg(-5)2=2lg(-5)等形式的错误,同时应注意对数性质的逆用在解题中的应用.譬如在常用对数中,lg 2=1-lg 5,lg 5=1-lg 2的运用.2.对于底数相同的对数式的化简,常用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成对数的和(差).3.对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.跟踪探究 lg 243lg 9的值. 解析:lg 243lg 9=lg 35lg 32=5lg 32lg 3=52. 探究二 利用换底公式化简、求值[例2] 已知lg 2=a ,lg 3=b ,则log 312=( )A.2a +b bB.2a +b aC.a 2a +bD.b 2a +b[思路点拨] 把log 312利用换底公式:log 312=lg 12lg 3建立log 312同a ,b 的关系. [解析] ∵log 312=lg 12lg 3=lg 3+lg 4lg 3=lg 3+2lg 2lg 3, 又lg 2=a ,lg 3=b ,∴log 312=b +2a b.[答案] A延伸探究 把题设条件换成“log 23=b a”试求相应问题. 解析:∵log 23=b a, ∴log 312=log 212log 23=log 23+2log 23=b a +2b a=b +2a b. 方法技巧 1.换底公式的主要用途在于将一般对数化为常用对数或自然对数,然后查表求值,解决一般对数求值的问题.2.换底公式的本质是化异底为同底,这是解决对数问题的基本方法.跟踪探究 2.(1)已知log 23=a,3b =7,用a ,b 表示log 1256;(2)已知log 32=a ,log 37=b ,试用a ,b 表示log 28498. 解析:(1)∵3b =7,∴b =log 37.log 1256=log 356log 312=3log 32+log 371+2log 32=3a +b 1+2a=3+ab a +2. (2)∵log 32=a ,log 37=b ,log 28498=log 3498log 328=log 349-log 38log 34+log 37 =2log 37-3log 322log 32+log 37=2b -3a 2a +b. 探究三 换底公式、对数运算性质的综合应用[例3] (1)设3x =4y =36,求2x +1y的值; (2)若26a =33b =62c ≠1,求证:1a +2b =3c. [思路点拨] 用对数式表示出x ,y ,a ,b ,c 再代入所求(证)式.[解析] (1)∵3x =4y =36,∴x =log 336,y =log 436,∴2x =2log 336=2log 3636log 363=2log 363=log 369, 1y =1log 436=1log 3636log 364=log 364. ∴2x +1y=log 369+log 364=log 3636=1. (2)证明:设26a =33b =62c =k (k >0,且k ≠1).则6a =log 2k ≠0,3b =log 3k ≠0,2c =log 6k ≠0.∴1a =6log 2k =6log k 2,1b =3log 3k=3log k 3, 1c =2log 6k=2log k 6, ∴1a +2b =6log k 2+2×3log k 3=log k 26+log k 36=log k 66=6log k 6=3c, ∴1a +2b =3c. 方法技巧 1.带有附加条件的对数式或指数式的求值问题,需要对已知条件和所求式子进行化简转化,原则是化为同底的对数,以便利用对数的运算性质.要整体把握 对数式的结构特征,灵活运用指数式与对数式的互化.2.解对数方程时,先要对数有意义(真数大于0,底数大于0且不等于1)求出未知数的取值范围,去掉对数值符号后,再解方程,此时只需检验其解是否在其取值范围内即可.跟踪探究 .(1)12(lg x -lg 3)=lg 5-12lg(x -10); (2)lg x +2log (10x )x =2;(3)log (x 2-1)(2x 2-3x +1)=1.解析:(1)方程中的x 应满足x >10,原方程可化为lgx 3=lg 5x -10, ∴x 3=5x -10,即x 2-10x -75=0.解得x =15或x =-5(舍去),经检验,x =15是原方程的解.(2)首先,x >0且x ≠110, 其次,原方程可化为lg x +2lg x1+lg x =2, 即lg 2x +lg xt =lg x ,则t 2+t -2=0,解得t =1或t =-2,即lg x =1或lg x =-2.∴x =10或x =1100. 经检验,x =10,x =1100都是原方程的解. (3)首先,x 2-1>0且x 2-1≠1,即x >1或x <-1且x ≠±2.由2x 2-3x +1>0,得x <12或x >1. 综上可知,x >1或x <-1且x ≠±2.其次,原方程可化为x 2-1=2x 2-3x +1.∴x 2-3x +2=0,∴x =1或x =2.又∵x >1或x <-1且x ≠±2,∴x =2.经检验,x =2是原方程的解.授课提示:对应学生用书第53页[课后小结]1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.[素养培优]忽略对数的真数为正致错易错案例:lg(x +1)+lg x =lg 6易错分析:解对数方程时要注意验根,以保证所得方程的根满足对数的真数为正数,底数为不等于1的正数,否则得到的新方程与原方程不等价,产生了增根,考查概念、定义、数学运算的学科素养.自我纠正:∵lg(x+1)+lg x=lg(x2+x)=lg 6,∴x2+x=6,解得x=2或x=-3,经检验x =-3不符合题意,∴x=2.。

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

最新北师大版高中数学必修一第三单元《指数函数和对数函数》检测卷(包含答案解析)

一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( ) A .111c a b=+ B .221c a b=+ C .122c a b=+ D .212c a b=+ 2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a b a-4.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =5.若实数a ,b ,c 满足232log log ab c k ===,其中()1,2k ∈,则下列结论正确的是( ) A .b c a b >B .log log a b b c >C .log b a c >D .b a c b >6.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减9.5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内所传信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,在不改变W 的情况下,将信噪比SN从1999提升至λ,使得C 大约增加了20%,则λ的值约为(参考数据:lg 20.3≈, 3.96109120≈)( ) A .7596B .9119C .11584D .1446910.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .511.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是A .B .C .D .二、填空题13.现有下列四个结论:①若25a b m ==且a b =时,则1m =; ②若236log log log a b c ==,则c ab =;③对函数()3xf x =定义域内任意的1x ,都存在唯一的2x ,使得()()121f x f x ⋅=成立;④存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R .其中所有正确结论的序号是_________.14.函数f (x )=lg (x 2-3x -10)的单调递增区间是______.15.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.16.72log 2338log2lg 5lg 47-+++=______.17.已知函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增,则实数a 的取值范围是_______.18.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.19.已知12512.51000x y ==,则11x y=_____.20.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________. 三、解答题21.已知函数()lg(2)lg(2).f x x x =++-(1)记函数()()103,f x g x x =+求函数()g x 的值域; (2)若对任意()0,2m ∈,[]0,1x ∈,都有2()lg 25<--+f x m m a 恒成立,求实数a的取值范围.22.已知函数()2221log 2m x f x x-=-(0m >且1m ≠) (1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 23.已知函数()()()ln 1ln 1f x x k x =++-,0k ≠. (1)当()f x 分别为奇函数和偶函数时,求k 的值;(2)若()f x 为奇函数,证明:对任意的m 、()1,1n ∈-,()()1m n f m f n f mn +⎛⎫+=⎪+⎝⎭.24.已知函数()()()lg 2lg 2f x x x =+--.(1)求()f x 的定义域; (2)判断()f x 的奇偶性并予以证明; (3)求不等式()1f x >的解集. 25.计算下列各式的值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭(2)3ln 2145log 2lg 4lg82e +++ 26.计算1132113321(4()40.1()ab a b ----⋅(其中0a >,0b >)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤, 由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.C解析:C 【分析】利用对数的换底公式可将5log 12用a 、b 表示. 【详解】根据对数的换底公式得,5lg12lg3lg 4lg32lg 22log 12lg5lg10lg 21lg 21a ba+++====---, 故选:C . 【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg 2=-是题目的一个难点和易错点.4.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可.【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.5.D解析:D 【分析】首先确定a ,b ,c 的取值范围,再根据指对互化得到2k b =,3k c =,再代入选项,比较大小. 【详解】由题意可知a ∈(0,1),b ∈(2,4),c ∈(3,9),且23k k b c ==,,对于A 选项,01b a <<,1c b >可得到b c a b <,故选项A 错误;对于B 选项,log log 2log 20k a a a b k ==<,log log 3log 30k b b b c k ==>,所以log log a b b c <,故B 选项错误;对于C 选项,22log log 3log 31k kb c a ==>>,故C 选项错误;对于D 选项,1a b b b <=,1b c c c >=,而c >b ,所以b a c b >,故D 选项正确. 故选:D . 【点睛】关键点点睛:本题考查指对数比较大小,本题的关键是首先确定,,a b c 的大小,并结合指对数运算化简选项中的对数式,再和中间值0或1比较大小,本题属于中档题型.6.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<. 故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答7.D解析:D【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反, 在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.9.B解析:B 【分析】根据题设条件列出方程,计算即可. 【详解】由题可知 ()()()22log 119991+20%log 1W W λ+⨯=+,即()221.2log 2000log 1λ⨯=+,所以()lg 1lg 20001.2lg 2lg 2λ+⨯=,即()()lg 1 1.2lg2000 1.23lg2 3.96λ+=⨯=⨯+≈,所以 3.961109120λ+≈≈,所以9119λ≈. 故选:B 【点睛】本题主要考查对属于对数函数,考查学生的运算能力.10.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩. 182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【分析】利用对数函数的图象,以及函数的奇偶性和图象的变换,即可求解,得到答案. 【详解】由题意,由函数()log a f x x =是增函数知,1a >, 当0x ≥时,函数(1)log (1)a y f x x =+=+,将函数1()log ,()a f x a x >=的图象向左平移1个单位,得到函数log (1)a y x =+的图象, 又由函数(1)y f x =+满足(1)(1)f x f x -+=+,所以函数(1)y f x =+为偶函数, 且图象关于y 轴对称, 故选B. 【点睛】本题主要考查了对数函数的图象与性质,以及函数的图象变换的应用,其中解答中熟记对数函数的图象与性质和函数的图象变换是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.①②③【分析】利用换底公式结合求得的值可判断①的正误;设利用对数与指数的互化以及指数的运算性质可判断②的正误;由求得可判断③的正误;求出函数的定义域值域分别为时对应的实数的取值范围可判断④的正误【详解析:①②③ 【分析】利用换底公式结合a b =,求得m 的值,可判断①的正误;设236log log log a b c t ===,利用对数与指数的互化以及指数的运算性质可判断②的正误;由()()121f x f x ⋅=求得21x x =-,可判断③的正误;求出函数()g x 的定义域、值域分别为R 时,对应的实数a 的取值范围,可判断④的正误. 【详解】对于①,由于250abm ==>,可得2lg log lg 2m a m ==,5lg log lg 5mb m ==, 由于a b =可得lg lg lg 2lg 5m m=,则lg 0m =,解得1m =,①正确; 对于②,设236log log log a b c t ===,可得2t a =,3t b =,6t c =,则236t t t ab c =⋅==,②正确;对于③,对任意的1x R ∈,则()()1212123331xxx x f x f x +⋅=⋅==,120x x ∴+=,可得21x x =-,③正确;对于④,若函数()()2ln g x x ax a =++的定义域为R ,对于函数2y x ax a =++,240a a ∆=-<,解得01a <<;若函数()()2ln g x x ax a =++的值域为R ,则函数2y x ax a =++的值域包含()0,∞+,则240a a ∆=-≥,解得0a ≤或1a ≥.所以,不存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R ,④错误.故答案为:①②③. 【点睛】关键点点睛:解本题第④问的关键点在于找到函数()()2ln g x x ax a =++的定义域为R的等价条件∆<0;函数()()2ln g x x ax a =++的值域为R 的等价条件0∆≥.14.(5+∞)【分析】确定函数的定义域考虑复合函数的单调性即可得出结论【详解】由x2-3x-10>0可得x <-2或x >5∵u=x2-3x-10在(5+∞)单调递增而y=lgu 是增函数由复合函数的同增异减解析:(5,+∞) 【分析】确定函数的定义域,考虑复合函数的单调性,即可得出结论. 【详解】由x 2-3x-10>0可得x <-2或x >5,∵u=x 2-3x-10在(5,+∞)单调递增,而y=lgu 是增函数由复合函数的同增异减的法则可得,函数f (x )=lg (x 2-3x-10)的单调递增区间是(5,+∞)故答案为(5,+∞). 【点睛】本题考查对数函数的单调性和应用,考查学生的计算能力,属于中档题15.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a+++++>恒成立,即10210xxa ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数,所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞【点睛】本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题.16.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值解析:32【分析】根据指数幂运算法则和对数运算法则化简可得. 【详解】72log 2338log 2lg 5lg 47-+++()732log 232332log 32lg52lg 27=-++++34222=-+++32= 故答案为:32【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值.17.【分析】根据分段函数单调性列出各段为增函数的条件并注意两段分界处的关系即可求解【详解】函数在R 上单调递增则需满足(1)当时函数单调递增;则(2)当时函数单调递增;则(3)函数在两段分界处满足即所以满 解析:23a <≤【分析】根据分段函数单调性,列出各段为增函数的条件,并注意两段分界处的关系,即可求解.【详解】 函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增 则需满足(1)当2x <时,函数()f x 单调递增;则2a > (2)当2x ≥时,函数()f x 单调递增;则1a >(3)函数()f x 在两段分界处2x =,满足()21221a a --⨯+≤,即3a ≤所以满足条件的实数a 的范围是23a <≤ 故答案为:23a <≤ 【点睛】关键点睛:本题考查由函数的单调性求参数范围,解答本题的关键是分段函数在上单调递增,从图象上分析可得从左到右函数图象呈上升趋势,即函数()f x 在[)2+∞,上的最小值大于等于函数在(),2-∞上的最大值.则()21221a a --⨯+≤,这是容易忽略的地方,属于中档题.18.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】函数11x y a+=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭, 利用二次函数的单调性, 当12t =时,()min 34f t =,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34. 故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键.19.【分析】根据指数与对数之间的关系求出利用对数的换底公式即可求得答案【详解】∵∴∴∴故答案为:【点睛】本题考查了指数与对数之间的关系掌握对数换底公式:是解本题的关键属于基础题解析:13【分析】根据指数与对数之间的关系,求出,x y ,利用对数的换底公式,即可求得答案. 【详解】∵12512.51000x y ==, ∴12512.51000100011log 1000,log 1000log 125log 12.5x y ====,∴1000100011log 125,log 12.5x y==, ∴1000111log 103x y -==. 故答案为:13. 【点睛】本题考查了指数与对数之间的关系.掌握对数换底公式:log log log c a c bb a=是解本题的关键.属于基础题.20.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1),将1,1x y ==代入()2x f x b =+,得121b +=,所以1b =-, 所以()21x f x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.三、解答题21.(1)256,4⎛⎤- ⎥⎝⎦;94a > 【分析】(1)由()()103f x g x x =+化简得()234g x x x =-++,再结合函数定义域和二次函数增减性即可求解;(2)2()lg 25<--+f x m m a 恒成立,即2max ()lg 25f x m m a <--+,求得max()f x 再分离参数a ,得22a m m >-++,即()2max 2a m m >-++恒成立,求得()2max 2m m -++即可求解a 的取值范围. 【详解】(1)()()()()2()lg 2lg 2lg 4,2,2f x x x x x =++-=-∈-,则()()2()10343,2,2f x g x x x x x =+=-+∈-,()g x 对称轴为32x =,当32,2x ⎛⎤∈- ⎥⎝⎦时,()g x 单增,当3,22x ⎛⎫∈⎪⎝⎭时,()g x 单减,故()max 32524g x g ⎛⎫== ⎪⎝⎭,当2x =-时,代入243x x -+得4466--=-,故()g x 的值域为256,4⎛⎤- ⎥⎝⎦; (2)对任意()0,2m ∈,[]0,1x ∈,都有2()lg 25<--+f x m m a 恒成立,即2max ()lg 25f x m m a <--+恒成立,当[]0,1x ∈时,()2()lg 4f x x=-单调递减,()()max02lg 2f x f ==,即22lg 2lg 25m m a <--+,化简得22a m m >-++恒成立,即()2max 2a m m >-++恒成立,当12m =时,()2max 11922424m m -++=-++=,即94a >【点睛】关键点睛:本题考查求复合函数的值域,由函数在定区间恒成立求参数取值范围,解题关键在于:(1)求复合函数值域除了正确化简表达式之外,还必须在定义域的基础之上求解对应最值;(2)恒成立问题求参数取值范围常采用分离参数法求解,关键在于能正确理解全称命题与存在命题的等价转化. 22.(1)()1log 1m x f x x+=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可; (3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可.【详解】(1)令21t x =-,则21x t =+,则()()11log log 211m mt t f t t t++==-+-, 所以()1log 1m x f x x+=-; (2)由101xx+>-得11x -<<, 又()()()11log log 11mm x xf x f x x x---===---+,所以()f x 为定义域上的奇函数;(3)由11x x -<<⎧⎨>⎩得01x <<,又1log 1log log 1mm m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】 易错点睛:(1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称; (2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件.23.(1)()f x 为奇函数时,1k =-,()f x 为偶函数时,1k =;(2)证明见解析. 【分析】(1)求出函数的定义域,利用函数的奇偶性的定义列等式即可求得k 的值;(2)根据函数解析式分别求得()()+f m f n ,1m n f mn +⎛⎫⎪+⎝⎭,即可证明结论. 【详解】 (1)由1010x x +>⎧⎨->⎩,解得11x -<<,得函数()f x 的定义域为()1,1-,当()f x 为奇函数时,()()0f x f x +-=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++-+-++=, 整理可得()()()1ln 1ln 10k x x +-++=⎡⎤⎣⎦, 因为上式恒成立,所以10k +=,所以1k =-; 当()f x 为偶函数时,()()0f x f x --=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++----+=, 整理得()()()1ln 1ln 10k x x -+--=⎡⎤⎣⎦, 因为上式恒成立,所以10k -=,所以1k =.综上,当()f x 为奇函数时,1k =-,当()f x 为偶函数时,1k =; (2)由(1)知,1k =-,()()()1ln 1ln 1ln1xf x x x x+=+--=-, ()()()()()()1111lnln ln 1111m n m nf m f n m n m n +++++=+=----, ()()()()11111ln ln ln 111111m nm n m n mn m n mn f m n mn mn m n m n mn++++++++⎛⎫+=== ⎪+++----⎝⎭-+, 所以()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭.【点睛】方法点睛:已知函数的奇偶性求参数值一般思路是:(1)利用函数的奇偶性的定义转化为()()f x f x -=(偶函数)或()()f x f x -=-(奇函数),从而建立方程,使问题获得解决;(2)取一对互为相反数的自变量的函数值,建立等式求出参数的值,但同时要对此时函数的奇偶性进行验证.24.(1)()2,2-.(2)见解析;(3)18,211⎛⎫⎪⎝⎭. 【详解】试题分析:(1)根据对数函数的定义,列出关于自变量x 的不等式组,求出()f x 的定义域; (2)由函数奇偶性的定义,判定()f x 在定义域上的奇偶性;(3)化简()f x ,根据对数函数的单调性以及定义域,求出不等式()f x >1的解集. 试题(1)要使函数()f x 有意义.则20{20x x +>->,解得22x -<<.故所求函数()f x 的定义域为()2,2-.(2)由(1)知()f x 的定义域为()2,2-,设()2,2x ∀∈-,则()2,2x -∈-. 且()()()()lg 2lg 2f x x x f x -=-+-+=-, 故()f x 为奇函数. (3)因为()f x 在定义域()2,2-内是增函数, 因为()1f x >,所以2102x x+>-,解得1811x >. 所以不等式()1f x >的解集是18,211⎛⎫⎪⎝⎭. 25.(1)53-;(2)172. 【分析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现符号错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误. 【详解】(1)原式()()1134340.321-⎡⎤=-+⎣⎦150.32143-=-+-=-.(2)原式32ln 2322log 2515lg 4lg lg 1621828log 4e ⎛⎫=+++=-+⨯+ ⎪⎝⎭ 172=. 【点晴】本题主要考查函数的定义域、指数幂的运算,属于中档题. 指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)26.85【分析】将小数转化为分数,根式转化为分数幂的形式,利用指数幂的运算性质化简求值.【详解】11131322133133221(4)1(4)()=()4410.1()()()10ab ab a b a b --------⋅⋅ 原式13113322211()()(4)()410ab a b ----=原式33333002222211848555a b a b a b --=⨯⨯=⨯⨯=【点睛】本题考查指数幂的运算,要熟练掌握基本的运算法则和运算性质,小数转化为分数,根式转化为分数幂的形式,更有利于运算.。

(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测题(包含答案解析)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C.y =1y x =-D .lg y x =与21lg 2y x =2.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310B .5310C .7310D .93103.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知函数||()2x f x =,记131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .c a b >>5.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .126.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>7.已知函数 ()lg 2x xe ef x --=,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减8.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( )A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 9.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c10.已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a - B .2a -C .23(1)a a -+D .231a a --11.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.函数12()log (2)f x x =-的定义域为______.14.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 15.已知函数log (3)a y ax =-在(1,2)上单调递减,则实数a 的取值范围为___________. 16.已知函数22()log ()f x ax x a =++的值域为R ,则实数a 的取值范围是_________ 17.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.18.函数()()212log 56f x x x =-+的单调递增区...间是__________. 19.设函数()f x =,则()()()()()()543456f f f f f f -+-+-++++=_____.20.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.三、解答题21.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间(1,3)上单调递增,求实数a 的取值范围. 22.设131()log 1axf x x -=-为奇函数,a 为常数. (1)求a 的值.(2)若[2,4]x ∀∈,不等式1()3xf x x m ⎛⎫+>+ ⎪⎝⎭恒成立,求实数m 的取值范围.23.设函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,且()312f =. (1)求k ,a 的值;(2)求函数()f x 在[)1,+∞上的值域; (3)设()()222xx g x a a m f x -=+-⋅,若()g x 在[)1,+∞上的最小值为2-,求m 的值;(4)对于(3)中函数()g x ,如果()0g x >在[)1,+∞上恒成立,求m 的取值范围. 24.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.25.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 26.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数;C .y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.D解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.3.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<. 故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答4.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.5.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.6.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.7.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xx e e e >∴>解得0;x >所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A 【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.8.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可.【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22xxy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确; 对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.9.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.10.B解析:B 【解析】试题分析:33333333log 82log 6log 22log 233log 22(log 2log 3)-=-⨯=-+3log 222a =-=-,所以答案选B .考点:指数对数的计算11.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】 当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D. 故选:B. 【点睛】 本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.【分析】根据二次根式和对数式有意义的条件得到不等式组求解函数的定义域即可得结果【详解】根据题意可得:解得所以函数的定义域为故答案为:【点睛】该题考查的是有关求函数的问题涉及到的知识点有求给定函数的定 解析:(2,3]【分析】根据二次根式和对数式有意义的条件,得到不等式组求解函数的定义域即可得结果. 【详解】根据题意可得:1220log (2)0x x ->⎧⎪⎨-≥⎪⎩,解得23x <≤,所以函数()f x =(2,3],故答案为:(2,3]. 【点睛】该题考查的是有关求函数的问题,涉及到的知识点有求给定函数的定义域,在解题的过程中,注意二次根式和对数式需要满足的条件即可得结果.14.【分析】画出分段函数的图像根据图像结合解析式进行求解【详解】根据分段函数的解析式以及函数为奇函数作图如下:由图容易知因为在区间上关于对称且在区间上关于对称故其与直线的所有交点的横坐标之和为0故所有根解析:21-【分析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =. 21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.15.【分析】由复合函数的单调性:同增异减由于递减因此必须递增即有还要考虑函数定义域即在时恒成立【详解】∵∴是减函数又在上是减函数所以且∴故答案为:【点睛】本题考查对数型复合函数的单调性掌握复合函数单调性 解析:3(1,]2【分析】由复合函数的单调性:同增异减,由于3u ax =-递减,因此log a y u =必须递增,即有1a >,还要考虑函数定义域,即在(1,2)x ∈时,30ax ->恒成立.【详解】∵0a >,∴3u ax =-是减函数,又log (3)a y ax =-在(1,2)上是减函数,所以1a >, 且320a -≥,∴312a <≤. 故答案为:3(1,]2.【点睛】本题考查对数型复合函数的单调性,掌握复合函数单调性是解题关键,同时要考虑函数的定义域.16.【分析】设值域为根据题意对分类讨论结合根的判别式即可求解【详解】设值域为函数的值域为当时值域为满足题意;当时须解得综上实数a 的取值范围是故答案为:【点睛】本题考查对数函数的性质复合函数的性质二次函数 解析:10,2⎡⎤⎢⎥⎣⎦【分析】设2()u x ax x a =++值域为A ,根据题意(0,)A +∞⊆,对a 分类讨论,结合根的判别式,即可求解. 【详解】设2()u x ax x a =++值域为A ,函数22()log ()f x ax x a =++的值域为,(0,)R A +∞⊆,当0a =时,2()log f x x =值域为R ,满足题意;当0a ≠时,须20140a a >⎧⎨∆=-≥⎩,解得102a <≤, 综上,实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦.故答案为:10,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查对数函数的性质,复合函数的性质,二次函数的取值和根的判别式的关系,属于中档题.17.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】 函数11x y a+=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭, 利用二次函数的单调性,当12t =时,()min 34f t =,则函数()11142xxf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34.故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键.18.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间. 【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >.所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞.故答案为:(),2-∞. 【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.19.【分析】根据指数的运算律计算出的值由此可计算出所求代数式的值【详解】因此故答案为【点睛】本题考查指数幂的化简计算解题的关键在于观察代数式结构并计算出为定值考查计算能力属于中等题解析:【分析】根据指数的运算律计算出()()1f x f x +-=的值,由此可计算出所求代数式的值. 【详解】()f x =()1122xx f x ∴-====, ()()12x x x f x f x ∴+-=+===,因此,()()()()()()5434566f f f f f f -+-+-++++==.故答案为 【点睛】本题考查指数幂的化简计算,解题的关键在于观察代数式结构并计算出()()1f x f x +-为定值,考查计算能力,属于中等题.20.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可. 【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-, 故()f x 关于1x =对称; 又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-, 故可得()()()()4222f x f x f x f x +=++=-+=, 故函数()f x 是周期为4的函数. 则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-,则()()()()()320191131eff f e f e f e e-=-=--=--=-.故答案为:31e e --. 【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期.三、解答题21.(1)20,3⎡⎤⎢⎥⎣⎦;(2)[)2,+∞.【分析】(1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围. 【详解】(1)因为()22log 46y ax x =-+的值域为R ,所以246y ax x =-+的值域包含()0,∞+,当0a =时,246y ax x =-+即46y x =-+,此时46y x =-+的值域为R ,满足; 当0a ≠时,则有016240a a >⎧⎨∆=-≥⎩,所以203a <≤,综上可知:20,3a ⎡⎤∈⎢⎥⎣⎦;(2)当1a >时,log a y x =在()0+∞,上单调递增,所以2()46f x ax x =-+在()1,3上递增,所以()2110a f ⎧≤⎪⎨⎪>⎩,所以2a ≥,当01a <<时,log a y x =在()0+∞,上单调递减,所以2()46f x ax x =-+在()1,3上递减,所以()2330a f ⎧≥⎪⎨⎪>⎩,此时a 无解,综上可知:[)2,a ∈+∞. 【点睛】思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有0a >⎧⎨∆<⎩; 若函数的值域为R ,则有0a >⎧⎨∆≥⎩. 22.(1)1a =-;(2)89m <. 【分析】(1)由奇函数的性质()()0f x f x ,代入运算后可得1a =±,代入验证即可得解;(2)转化条件为131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,结合函数的单调性求得()min g x 即可得解.【详解】(1)因为131()log 1axf x x -=-为奇函数, 则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦ ()21231log 01ax x-==-, 则()22111ax x -=-,所以21a =即1a =±, 当1a =时,()11331()log log 11xf x x -==--,不合题意; 当1a =-时,131()log 1x f x x +=-,由101xx +>-可得1x >或1x <-,满足题意; 故1a =-;(2)由1()3xf x x m ⎛⎫+>+ ⎪⎝⎭可得131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-,则131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,因为函数12111x y x x +==+--在[2,4]上单调递减,所以函数131log 1xy x +=-在[2,4]上单调递增, 所以()g x 在[2,4]上单调递增,所以()()1min 32log 182993g x g -===+, 所以89m <. 【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值. 23.(1)2a =,2k =;(2)3,2⎡⎫+∞⎪⎢⎣⎭;(3)2m =;(4)17,12⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由奇函数性质求得k ,由3(1)2f =可求得a ; (2)利用函数的单调性得值域;(3)换元,设22x x t -=-,则3,2t ⎡⎫∈+∞⎪⎢⎣⎭,()g x 转化为()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,由二次函数的性质求得最小值,再由最小值为2-可得m , (4)在(3)基础上,由()k t 的最小值大于0可得m 的取值范围.【详解】解:(1)∵函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,∴()00f =,即()110k --=,2k =, ∵()312f =.∴132a a -=,2a =, ∴2a =,2k =, (2)1()2222xxx x f x -=-=-是增函数,∴1≥x 时,13()222f x ≥-=,即值域中3,2⎡⎫+∞⎪⎢⎣⎭; (3)()()2222222xx x x g x m --=+--,设22xxt -=-,[)1,x ∈+∞,3,2t ⎡⎫∈+∞⎪⎢⎣⎭, ∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,∵若()g x 在[)1,+∞上的最小值为2-,∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭的最小值为2-,∴23222m m ⎧≥⎪⎨⎪-+=-⎩或3293224m m ⎧<⎪⎪⎨⎪-+=-⎪⎩ 即2m =,或2512m =(舍去), 故2m =;(4)()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭, ∵()0g x >在[)1,+∞上恒成立, ∴()0k t >在3,2t ⎡⎫∈+∞⎪⎢⎣⎭上恒成立,∴23220m m ⎧≥⎪⎨⎪-+>⎩或3293204m m ⎧<⎪⎪⎨⎪-+>⎪⎩, 解不等式得出x ∈∅或1712m <, ∴m 的取值范围为17,12⎛⎫-∞ ⎪⎝⎭.【点睛】方法点睛:本题考查指数函数的性质,考查奇偶性,由奇偶性同函数解析式,由单调性是函数的值域,在求函数()g x 的最值问题,不等式恒成立问题时,解题方法是换元法,即设22x x t -=-,把指数函数转化为二次函数,然后利用二次函数性质求解.24.(1)2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x yx yx y--====--+.(2)原式22(lg2)lg5(1lg2)(lg2)lg5lg2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.25.(1)1;(2)1010.【分析】(1)根据4()42xxf x=+的表达式,求出()(),1f a f a-的表达式,再进行分式通分运算,可得()()11f a f a+-=.(2)设12320202021202120212021S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S的表达式运用加法交换律改写成20201202120212021202321S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x+-=求出S的值.【详解】(1)4()42xxf x=+,x∈R.∴()()1f a f a+-1144444442424224a a a aa a aa--=+=+++++4214224aa a=+=++,(2)设12320202021202120212021S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则20201202120212021202321S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:202022011 09211,1,,221202120212021202120220101f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,∴220201010S S=⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力. 26.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t=+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.。

【高中】高中数学第三章指数函数和对数函数章末检测北师大版必修1

【关键字】高中2016-2017学年高中数学第三章指数函数和对数函数章末检测北师大版必修1班级__________ 姓名__________ 考号__________ 分数__________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数y=的值域是( )A.(0,1] B.[1,+∞)C.(0,1) D.(1,+∞)答案:A解析:由题意得0<≤0=1.2.已知函数f(x)=ln |x-1|,则f(x)( )A.在区间(-∞,1)和(1,+∞)上都是增函数B.在区间(-∞,1)上是增函数,在区间(1,+∞)上是减函数C.在区间(-∞,1)和(1,+∞)上都是减函数D.在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数答案:D解析:∵|x-1|在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,y=ln x 在区间(0,+∞)上是增函数,所以f(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数.3.若函数f(x)=,则f[f(-3)]=( )A.2 B.3C.4 D.5答案:B解析:f(-3)=(-3)2-1=8,所以f[f(-3)]=f(8)=log28=3.4.不等式x>x-1的解集是( )A.(-1,+∞) B.C.(-∞,-1) D.(-∞,-2)答案:C解析:2x<x-1,x<-1.5.已知a=log20.6,b=20.2,c=log2,则( )A.a<b<c B.b<a<cC.c<b<a D.a<c<b答案:D解析:∵a=log20.6<0,b=20.2>1,c=log2=,∴a<c<b.6.函数f(x)=的定义域是( )A. B.C. D.答案:A解析:log0.5(3-4x)≥0,0<3-4x≤1,≤x<.7.函数y=是奇函数,则实数a=( )A.1 B.0C.-1 D.任意实数答案:A解析:f(0)=(1-a)=0,∴a=1.16.如右图,开始时,桶1中有a L 水,t min 后剩余的水符合指数衰减曲线y 1=a e -nt,那么桶2中水就是y 2=a -a e -nt,假设过5 min 时,桶1和桶2的水相等,则再过________ min 桶1中的水只有a8L.答案:10解析:由题意,5 min 后,y 1=a e -5n,y 2=a -a e-5n,y 1=y 2,∴n =15ln2.设再过t min桶1中的水只有a8L ,则y 1=a e-n (5+t )=a8,解得t =10. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)计算:3-63+41-34+80.25×42+125÷425.(2)lg 14-2lg 73+lg 7-lg 18.解:(1)原式=-6+(3-1)+(23)14×214+53224-=-6+3-1+2+5= 3.(2)解法一:lg 14-2lg 73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.解法二:lg 14-2lg 73+lg 7-lg 18=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.18.(12分)现有命题P 和Q 如下. P :函数y =c x 在R 上单调递减.Q :函数f (x )=ln(2x 2+4x +1c)的值域为R .如果P 和Q 中有且只有一个命题是真命题,求非负实数c 的取值范围.解:函数y =c x在R 上单调递减⇔0<c <1.函数f (x )=ln(2x 2+4x +1c )的值域为R ⇔Δ=42-4×2·1c ≥0,所以1c≤2,又c >0,所以c ≥12.根据题设可知,命题P 和Q 有且仅有一个正确.(1)如果P 正确,Q 不正确,则0<c <12;(2)如果Q 正确,P 不正确,则c ≥1.所以,正数c 的取值范围为(0,12)∪[1,+∞).19.(12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12x -1+a x ,a ∈R . (1)求函数的定义域;(2)是否存在实数a ,使得f (x )为偶函数.解:(1)由2x-1≠0,得x ≠0,即函数定义域为(-∞,0)∪(0,+∞).(2)在定义域内任取x ,由f (x )-f (-x )=0得⎝ ⎛⎭⎪⎫12x -1+a x -⎝ ⎛⎭⎪⎫12-x -1+a (-x )=0. 所以2a =-12-x -1-12x -1=1,解得a =12.存在实数a =12,使得f (x )-f (-x )=0成立,即使得f (x )为偶函数.20.(12分)已知函数f (x )=log 2(1-x ),g (x )=log 2(x +1),设F (x )=f (x )-g (x ). (1)判断函数F (x )的奇偶性; (2)证明函数F (x )是减函数.解:(1)F (x )=f (x )-g (x )=log 2(1-x )-log 2(x +1)=log 21-x1+x.由⎩⎪⎨⎪⎧1-x >0,x +1>0,得-1<x <1.∴函数F (x )的定义域为(-1,1).∴函数F (x )的定义域关于原点对称,又∵F (-x )=log 21+x 1-x =-log 21-x1+x=-F (x ).∴函数F (x )为奇函数.(2)由(1)知函数F (x )的定义域为(-1,1),任取-1<x 1<x 2<1,则log 2⎝ ⎛⎭⎪⎫1-x 11+x 1-log 2⎝ ⎛⎭⎪⎫1-x 21+x 2=log 21-x 11+x 21+x 11-x 2=log 2⎝ ⎛⎭⎪⎫1-x 1+x 2-x 1x 21+x 1-x 2-x 1x 2. 又(1-x 1+x 2-x 1x 2)-(1+x 1-x 2-x 1x 2)=2(x 2-x 1)>0,所以1-x 1+x 2-x 1x 21+x 1-x 2-x 1x 2>1,所以log 2⎝ ⎛⎭⎪⎫1-x 11+x 1-log 2⎝ ⎛⎭⎪⎫1-x 21+x 2>0,即log 2⎝ ⎛⎭⎪⎫1-x 11+x 1>log 2⎝ ⎛⎭⎪⎫1-x 21+x 2,所以函数F (x )是减函数.21.(12分)求函数y =(12)212x x +-的值域和单调区间.解:令t =1+2x -x 2,则y =⎝ ⎛⎭⎪⎫12t,而t =-(x -1)2+2≤2,所以y =⎝ ⎛⎭⎪⎫12t ≥⎝ ⎛⎭⎪⎫122=14.即所求的函数的值域是[14,+∞).函数y =⎝ ⎛⎭⎪⎫12212x x +-在(-∞,1]上是减函数,在(1,+∞)上是增函数.22.(12分)已知函数f (x )=log a 1-m x -2x -3(a >0,a ≠1),对定义域内的任意x 都有f (2-x )+f (2+x )=0成立.(1)求实数m 的值;(2)若当x ∈(b ,a )时,f (x )的取值范围恰为(1,+∞),求实数a ,b 的值.解:(1)由f (x )=log a 1-m x -2x -3及f (2-x )+f (2+x )=0对定义域内任意x 都成立,可得:log a 1-m [2-x -2]2-x -3+log a 1-m [2+x -2]2+x -3=0.解得m =±1.当m =1时,函数f (x )无意义,所以,只有m =-1.(2)m =-1时,f (x )=log a 1-m x -2x -3=log a x -1x -3(a >0,a ≠1),其定义域为(-∞,1)∪(3,+∞).所以,(b ,a )⊆(-∞,1)或(b ,a )⊆(3,+∞). ①若(b ,a )⊆(3,+∞),则3≤b <a . 为研究x ∈(b ,a )时f (x )的值域,可考虑f (x )=log a x -1x -3在(3,+∞)上的单调性.下证f (x )在(3,+∞)上单调递减. 任取x 1,x 2∈(3,+∞),且x 1<x 2,则 x 1-1x 1-3-x 2-1x 2-3=2x 2-x 1x 1-3x 2-3>0. 又a >1,所以log a x 1-1x 1-3>log a x 2-1x 2-3,即f (x 1)>f (x 2).所以当(b ,a )⊆(3,+∞)时,f (x )在(3,+∞)上单调递减.由题:当x ∈(b ,a )时,f (x )的取值范围恰为(1,+∞),所以,必有b =3且f (a )=1,解得a =2+3(因为a >3,所以舍去a =2-3).②若(b ,a )⊆(-∞,1),则b <a ≤1.又由于a >0,a ≠1,所以0<a <1. 此时,同上可证f (x )在(-∞,1)上单调递增(证明过程略).所以,f (x )在(b ,a )上的取值范围为(f (b ),f (a )),而f (a )为常数,故f (x )的取值范围不可能恰为(1,+∞).所以,在这种情况下,a ,b 无解.综上,符合题意的实数a ,b 的值为a =2+3,b =3.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
3 C.-∞, 4 答案:A
1 D.-∞, 2
1 3 解析:log0.5(3-4x)≥0,0<3-4x≤1, ≤x< . 2 4 x e -a 7.函数 y= x 是奇函数,则实数 a=( ) e +1 A.1 B.0 C.-1 D.任意实数 答案:A 1 解析:f(0)= (1-a)=0,∴a=1. 2 |lnx| 8.函数 y=e -|x-1|的图像大致是( )
A
B
C 答案:D 1, x≥1, 解析:y=e|lnx|-|x-1|= 1 x+ -1,0<x<1, x
D
找分段函数图像即可. x 9.函数 y=2 +1 的图像关于直线 y=x 对称的图像大致是(
)
A
B
C
D
答案:B x 解析:函数 y=2 +1 的反函数为 y=log2(x-1),其图像为 B. 10.若[a]表示不超过 a 的最大整数.我们定义 lgx 的首数为[lgx],lgx 的尾数为 lgx -[lgx].现有 x,y>10,若 lgx,lgy 的首数分别为 a,c,lgx,lgy 的尾数分别为 b,d, 而|a-1|+ c-4=0,b+d=1,则 xy 的值为( ) A.10 000 000 B.1 000 000 C.100 000 000 D.100 000 答案:B 1x 11.已知函数 f(x)满足当 x≥4 时,f(x)= .当 x<4 时,f(x)=f(x+1),则 f(2+ 2 3 log2)=( ) 1 1 A. B. 24 12 1 3 C. D. 8 8 答案:A
2 2
16. -nt 如右图,开始时,桶 1 中有 a L 水,t min 后剩余的水符合指数衰减曲线 y1=ae ,那 -nt 么桶 2 中水就是 y2=a-ae ,假设过 5 min 时,桶 1 和桶 2 的水相等,则再过________ min 桶 1 中的水只有 L. 8 答案:10 解析:由题意,5 min 后,y1=ae 桶 1 中的水只有 L, 8 则 y1=ae = ,解得 t=10. 8 三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. 4 3 4 4 3 4 0.25 17.(10 分)(1)计算: -6 + 1- 3 +8 × 2+ 125÷ 25. 7 (2)lg 14-2lg +lg 7-lg 18. 3
13.已知 a -a 答案:6
-1
1 2

1 2

=2,则 a+a =________.
1
2
-1
1
解析:a+a =(a 2 -a 2 ) +2=6. x-2 14.函数 y=a +4(a>0,且 a≠1)的图像恒过点________. 答案:(2,5) 解析:借助于指数函数的零次幂为 1 解题. 2 2 15.若函数 f(x)=loga(x+ x +2a )是定义域为 R 的奇函数,则 a=________. 2 答案: 2 解析:∵函数 f(x)=loga(x+ x +2a )是奇函数,∴f(0)=0. 2 2 ∴f(0)=loga( 2|a|)=0=loga1,∴ 2|a|=1,|a|= .又∵底数 a>0,∴a= . 2 2
2
1 3+log3 2 =13·1 log 3 2 =1×1= 1 3 3 解析:f(2+log2)=f(3+log2)= 2 2 8 3 24 2 2 x 12.已知集合 A={x|x -2013x+2012<0},B={x|log2<m,m∈z}若 A⊆ B,则整数 m 的 最小值是( ) A.0 B.1 C.10 D.11 答案:D 2 x m 解析:由 x -2013x+2012<0⇒ 1<x<2012 ∴A=(1、2012),log2<m ∴0<x<2 ∴B= m m 11 (0,2 ) A⊆ B ∴2 ≥2012 m≥log22012 ∵2 =2048 ∴m 最小值为 11. 第Ⅱ卷(非选择题 共 90 分) 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上.
2016-2017 学年高中数学 第三章 指数函数和对数函数章末检测 北 师大版必修 1
班级__________ 姓名__________ 考号__________ 分数__________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 60 分,第Ⅱ卷 90 分,共 150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中, 只有一个选项是符合题目要求的. 1 1 x 的值域是( 1.函数 y= ) 3 A.(0,1] B.[1,+∞) C.(0,1) D.(1,+∞) 答案:A 1 1 x ≤10=1. 解析:由题意得 0< 3 3 2.已知函数 f(x)=ln |x-1|,则 f(x)( ) A.在区间(-∞,1)和(1,+∞)上都是增函数 B.在区间(-∞,1)上是增函数,在区间(1,+∞)上是减函数 C.在区间(-∞,1)和(1,+∞)上都是减函数 D.在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数 答案:D 解析:∵|x-1|在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,y=ln x 在区间(0,+∞)上是增函数,所以 f(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上 是增函数. 2 x -1,x≤1 3.若函数 f(x)= ,则 f[f(-3)]=( ) log2x,x>1 A.2 B.3 C.4 D.5 答案:B 2 解析:f(-3)=(-3) -1=8,所以 f[f(-3)]=f(8)=log28=3. 1x 1x-1 4.不等式 > 的解集是( ) 4 2 1 A.(-1,+∞) B.- ,+∞ 2 C.(-∞,-1) D.(-∞,-2) 答案:C 解析:2x<x-1,x<-1. 0.2 5.已知 a=log20.6,b=2 ,c=log2 2,则( ) A.a<b<c B.b<a<c C.c<b<a D.a<c<b 答案:D 1 0.2 解析:∵a=log20.6<0,b=2 >1,c=log2 2= ,∴a<c<b. 2 6.函数 f(x)= log0.53-4x的定义域是( 1 3 3 A. , B. ,1 2 4 4 )
相关文档
最新文档