九年级上 简单事件的概率

合集下载

(基础题)浙教版九年级上册数学第2章 简单事件的概率含答案

(基础题)浙教版九年级上册数学第2章 简单事件的概率含答案

浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖.B.为了解深圳中学生的心理健康情况,应该采用普查的方式. C.事件“小明今=0.01,乙年中考数学考95分”是可能事件. D.若甲组数据的方差S 2甲组数据的方差S 2=0.1,则乙组数据更稳定.乙2、在四张大小、材质完全相同的卡片上写有“翼、装、飞、行”四个字,将四张卡片放置于暗箱内摇匀后先后随机抽取两张,则两张卡片上的汉字恰为“飞”,“行”二字的概率是()A. B. C. D.3、小明掷一枚质地均匀的骰子,骰子的6个面上分别刻有1到6的点数,则下列事件是随机事件的是()A.两枚骰子向上的一面的点数之和大于0B.两枚骰子向上的一面的点数之和等于2C.两枚骰子向上的一面的点数之和等于1D.两枚骰子向上的一面的点数之和大于124、在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A. B. C. D.5、下列事件中的必然事件是()A.车辆随机经过一个有交通信号灯的路口,遇到红灯B.购买100张中奖率为1%的彩票一定中奖C.400人中有两人的生日在同一天D.掷一枚质地均匀的骰子,掷出的点数是质数6、一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为()A.2个B.3个C.4个D.5个7、下列事件中,是必然事件的为()A.3天内会下雨B.打开电视,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩8、假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是A. B. C. D.9、下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.某彩票设中奖概率为,则购买100张彩票就一定会中奖1次C.某地会发生地震是必然事件 D.若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.2,则甲组数据比乙组波动性小10、下列事件属于确定事件的为()A.氧化物中一定含有氧元素B.弦相等,则所对的圆周角也相等C.戴了口罩一定不会感染新冠肺炎D.物体不受任何力的时候保持静止状态11、下列事件中是必然事件的是( )A.在一个等式两边同时除以同一个数,结果仍为等式B.两个相似图形一定是位似图形C.平移后的图形与原来图形对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上12、一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为( )A. B. C. D.13、已知m为﹣9,﹣6,﹣5,﹣3,﹣2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A. B. C. D.14、四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.115、袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率()A. B. C. D.二、填空题(共10题,共计30分)16、一个不透明的布袋里装有8个只有颜色不同的球,其中3个红球,5个白球,从布袋中随机摸出一个球,摸出的球是白球的概率是________.17、一个不透明的袋子中,袋中有1 个红球,2 个白球和3 个黑球,这些球除颜色外均相同,将球摇匀后,从袋子中任意摸出一个球,摸到________(填“红”或“白”或“黑”)球的可能性最大.18、一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是________.19、一个正方体的骰子六个面分别标有数字1、2、3、4、5、6,则扔一次骰子朝上的数字满足不等式x≤4的概率是________。

新浙教版九年级(上)2.2_简单事件的概率(1)

新浙教版九年级(上)2.2_简单事件的概率(1)

反面向上
正面ቤተ መጻሕፍቲ ባይዱ上
小海和小勇在玩掷骰子游戏,小海说:“我 们每次掷两枚骰子,如果掷出的两枚骰子的点 数之和为偶数,则我赢;如果掷出的骰子的点数 之和为奇数则你赢.”小勇说:“这样玩不公平, 因为和为偶数的可能性有六种:2,4,6,8,10,12; 但和为奇数的可能性只有五种:3,5,7,9,11.” 小海说:“这个游戏是公平的,因为有两种方法 可以得到3:1+2,2+1,而只有一种方法得到2.” 请问:谁的观点正确?游戏公平吗?说明理由.
(2)点数为奇数有3种可能,即点数为1,3,5, 3 1 P(点数为奇数)= 6 2 (3)点数大于2且小于5有2种可能,即点 数为3,4, 2 1 P(点数大于2且小于5)=
6
3
例2 如图,有甲,乙两个相同的转盘,每个转盘上 各个扇形的圆心角都相等.让两个转盘分别自由 转动一次,当转盘停止转动时,求: (1)两个指针落在区域的颜色能配成紫色(红, 蓝两色混合配成)的概率; 2 (2)两个指针落在区域的颜色能配成绿色(黄, 蓝两色混合配成)或紫色的概率. 4
以上两个试验有两个共同的特点: 1.一次试验中,可能出现的结果有限多个; 2.一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,我们可以从事件所 包含的各种可能的结果在全部可能的试验结果 中所占的比分析出事件的概率. 试着分析:试验1 抽出1号签的概率,抽出偶数 号的概率?
1 在上面的抽签试验中,“抽到1号”的可能性是 5
P(A)=
m n
在P(A)=
m 中,分子m和分母n都 n
表示结果的数目,两者有何区别,它们
之间有怎样的数量关系?P(A)可能小
于0吗?可能大于1吗?

浙教版九年级数学(全一册)课件 第2章 简单事件的概率 简单事件的概率2

浙教版九年级数学(全一册)课件 第2章 简单事件的概率 简单事件的概率2

5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
新课讲 由列表得,同时掷两枚骰子,可能出现的结果有36 解 种,它们出现的可能性相等.
(结果1)有满6种足,两则枚P骰(子A)的36=6点 数16 相同. (记为事件A)的
新课讲
观察与思考
第一
第二次 所有可能出现解的结

果 (正、
正) (正、

反)

(反、
正)
(反、
发现:所有可能结果一
反)
样.
归纳:随机事件“同时”与“先后”的关系:“两
个相同的随机事件同时发生”与 “一个随机事件先
后两次发生”的结果是一样的.
2 用列表法求概率
新课讲 解
问题1 利用直接列举法可以比较快地求出简单事件发 生的概率,对于列举复杂事件的发生情况还有什么更好 的方法呢?
列举法
关键
常用 方法
课堂总 在于正确列举出试验结果的各结种可能性.
直接列举 画 树法状 图
法 列表法
(下节课学习)
前提条件
确保试验中每 种结果出现的 可能性大小相
基本步骤
① 列表; ② 确定m、n
值 代入概率公式 计算.
适用对象
两个试验 因素或分 两步进行 的试验.
新课导 入
问题 老师向空中抛掷两枚同样的一元硬币,如果落 地后一正一反,老师赢;如果落地后两面一样,你们 赢.你们觉得这个游戏公平吗?
1 用直接列举法求概率
新课讲 解
例 同时抛掷两枚质地均匀的硬币,求下列事件的概率: 题(1)两枚硬币全部正面向上;

九年级简单事件概率知识点

九年级简单事件概率知识点

九年级简单事件概率知识点概率是数学中一个十分重要的概念,它与我们的生活息息相关。

在日常生活中,我们经常会遇到各种各样的事件,有些是随机事件,而有些则是确定性事件。

对于随机事件,我们往往需要用概率来描述其发生的可能性。

本文将针对九年级简单事件概率的知识点进行探讨。

一、概率的定义与表示方法概率可以理解为“事件发生的可能性大小”。

在数学上,我们用P(A)来表示事件A发生的概率。

当P(A)为0时,表示事件A不可能发生;当P(A)为1时,表示事件A肯定会发生;当0<P(A)<1时,表示事件A发生的可能性介于0和1之间。

二、样本空间与事件的关系在概率论中,我们常常需要描述事件的全体情况,这就是样本空间。

比如,我们投掷一颗骰子,样本空间就是{1,2,3,4,5,6}。

事件是样本空间中的某个子集,也就是我们想要研究的一个具体情况。

三、概率的计算方法1. 等可能概型事件的概率计算如果一个事件中的每个元素在样本空间中出现的可能性相同且排列均匀,我们称之为等可能概型事件。

对于这类事件,我们可以直接通过计数的方法来计算概率。

比如,投掷一颗骰子,出现1的可能性就是1/6,即P(1)=1/6。

2. 两个事件的和事件的概率计算当我们想要计算两个事件A和B同时发生的概率时,我们可以用加法法则来计算。

加法法则的公式为P(A∪B) = P(A) + P(B) -P(A∩B)。

其中,P(A∩B)表示事件A和事件B同时发生的概率。

3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。

如果两个事件A和B是互斥事件,那么它们的交集为空集,即A∩B=∅。

这种情况下,我们可以直接使用加法法则来计算概率,即P(A∪B) = P(A) +P(B)。

四、条件概率和独立事件1. 条件概率的概念与计算方法条件概率是指在给定某个前提条件下,事件A发生的概率。

条件概率的计算方法为P(A|B) = P(A∩B) / P(B)。

其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

浙教版数学九年级上册《2.2 简单事件的概率》教学设计

浙教版数学九年级上册《2.2 简单事件的概率》教学设计

浙教版数学九年级上册《2.2 简单事件的概率》教学设计一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》是学生在学习了概率基础知识后,进一步探究简单事件概率的内容。

本节课通过具体的例子,让学生理解并掌握简单事件的概率计算方法,为后续学习更复杂事件的概率打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对概率的概念和意义已经有了一定的了解。

但在实际计算过程中,可能会对如何正确运用概率公式产生困惑。

因此,在教学过程中,需要关注学生对概率公式的理解和运用情况。

三. 教学目标1.理解简单事件的概率定义及其计算方法。

2.能够运用概率公式计算简单事件的概率。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.重点:简单事件的概率定义及其计算方法。

2.难点:如何正确运用概率公式计算简单事件的概率。

五. 教学方法1.情境教学法:通过生活中的实际例子,引发学生对简单事件概率的思考,提高学生的学习兴趣。

2.互动教学法:引导学生参与课堂讨论,培养学生的逻辑思维能力和团队合作精神。

3.案例教学法:分析具体案例,让学生理解并掌握简单事件概率的计算方法。

4.实践教学法:让学生通过动手操作,巩固所学内容,提高解决实际问题的能力。

六. 教学准备1.教学PPT:制作涵盖本节课重点内容的PPT,以便于课堂展示和讲解。

2.案例材料:准备一些生活中的案例,用于引导学生思考和分析。

3.练习题:准备一些有关简单事件概率的练习题,用于巩固所学内容。

七. 教学过程1.导入(5分钟)利用PPT展示一些与概率相关的图片,如抛硬币、抽奖等,引导学生思考:这些现象中是否存在某种规律?从而引出本节课的主题——简单事件的概率。

2.呈现(10分钟)通过PPT讲解简单事件的概率定义及其计算方法,让学生理解并掌握如何计算简单事件的概率。

3.操练(10分钟)让学生分组讨论,分析案例材料中的具体问题,运用概率公式计算简单事件的概率。

浙教版数学九年级上册《2.2简单事件的概率》说课稿

浙教版数学九年级上册《2.2简单事件的概率》说课稿

浙教版数学九年级上册《2.2 简单事件的概率》说课稿一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》这一节,是在学生已经掌握了概率的定义和一些基本概念的基础上进行讲解的。

本节课的主要内容是让学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。

教材通过大量的实例,使学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的基本概念和定义已经有所了解。

但是,学生在学习过程中,对于事件的分类和概率的计算方法可能还存在一定的困难。

因此,在教学过程中,我将会注重引导学生理解事件之间的关系,掌握概率的计算方法,并能够将概率知识应用到实际问题中。

三. 说教学目标1.知识与技能:使学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过大量的实例,让学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受到数学与生活的紧密联系。

四. 说教学重难点1.教学重点:理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。

2.教学难点:事件的分类和概率的计算方法。

五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过观察、思考、交流、实践等方式,掌握概率知识。

同时,利用多媒体教学手段,展示实例和计算过程,提高学生的学习兴趣和效果。

六. 说教学过程1.导入:通过一个简单的实例,引出本节课的主题,激发学生的学习兴趣。

2.基本概念:讲解事件的分类和概率的定义,让学生理解并掌握基本概念。

3.实例分析:分析多个实例,让学生体会事件的随机性,引导学生掌握概率的计算方法。

4.方法讲解:讲解如何将概率知识应用到实际问题中,让学生学会运用概率知识解决问题。

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计一. 教材分析《简单事件的概率》是浙教版数学九年级上册第二章第二节的内容。

本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行的。

通过本节内容的学习,学生能够理解并掌握简单事件的概率的计算方法,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念已经有了一定的了解。

但是,对于如何计算简单事件的概率,学生可能还存在着一定的困难。

因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握计算方法。

三. 教学目标1.知识与技能:使学生理解并掌握简单事件的概率的计算方法。

2.过程与方法:通过具体的例子,引导学生运用概率的知识解决问题。

3.情感态度价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.重点:简单事件的概率的计算方法。

2.难点:如何引导学生理解和掌握简单事件的概率的计算方法。

五. 教学方法采用问题驱动法,通过具体的例子,引导学生理解和掌握简单事件的概率的计算方法。

同时,运用小组合作学习法,让学生在合作中思考,在思考中学习。

六. 教学准备1.教师准备:准备好相关的例子,制作好课件。

2.学生准备:预习相关的内容,准备好笔记本。

七. 教学过程1.导入(5分钟)教师通过一个简单的问题引导学生进入本节内容的学习,例如:“抛一枚硬币,正面朝上的概率是多少?”2.呈现(15分钟)教师通过课件呈现本节的内容,引导学生理解和掌握简单事件的概率的计算方法。

3.操练(15分钟)教师给出具体的例子,让学生运用概率的知识解决问题,例如:“抛两枚硬币,两枚都是正面朝上的概率是多少?”4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容,例如:“抛三枚硬币,至少有两枚正面朝上的概率是多少?”5.拓展(10分钟)教师引导学生思考一些拓展问题,例如:“在抛硬币的过程中,出现正面的概率是否会随着抛硬币的次数的增加而改变?”6.小结(5分钟)教师对本节的内容进行小结,帮助学生梳理思路。

2.2简单事件的概率(1)教案

2.2简单事件的概率(1)教案

2.2简单事件概率(1)教案概率:在数学上,我们把事件发生的可能性的大小也称为事件发生的概率,概率用英文probability的第一个字母p来表示.在数学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用P表示。

事件A发生的概率也记为P(A),事件B发生的概率记为P(B),依此类推。

如果事件发生的各种结果的可能性相同且互相排斥,且所有可能结果总数为n,事件A包含其中的结果总数为m(m≤n),那么事件A发生的概率为:P(A)=(1)必然事件发生的概率为1,记作P(必然事件)=1;(2)不可能事件发生的概率为0,记作P(不可能事件)=0;(3)若A为不确定事件,则0<P(A)<1讲授新课三、典例精讲例1 一项答题竞猜活动,有6个式样,大小都相同的箱子中有且只有一个箱子藏有礼物。

参与选手将回答5个问题,每答对一道题,主持人就从6个箱子中去掉一个空箱子。

而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子。

求在分析某个事件发生的概率时,关键要弄清两点:(1)此事件的活动过程通过例题的解答,让学生真正掌握概率公式的应用,同时培养学生变相思考问题的能力。

4.在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球是白球的概率为12.(1)求口袋中有多少个红球;(2)求从口袋中一次摸出2个球,是一红一白的概率.要求画出树状图.解:(1)设口袋中有x 个红球, 根据题意得2x +2+1=12,解得x =1,即口袋中有1个红球.(2)记两个白球分别为白1和白2,树状图如图所示:摸到一红一白的概率为P =412=13. 5.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?解: 第一个转盘第二个转盘 红 黄 蓝红(红,红) (黄,红) (蓝,红)白 (红,白) (黄,白) (蓝,白)蓝 (红,蓝) (黄,蓝) (蓝,蓝)∴配成紫色的概率为P =29,配不成紫色的概率为P =79,∴小刚平均每次得分:29×1=29率,小明平均每次得分:79×1=79.∵29≠79, ∴游戏对双方不公平. 修改规则略.课堂小结1.等可能事件概率的计算公式如果事件发生的各种结果的可能性相同且互相排斥,且所有可能结果总数为n ,事件A 包含其中的结果总数为m(m ≤n),那么事件A 发生的概率为:P(A)=2.用列表法或树状图法求概率列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,经常采用列表法.树状图法:当一次试验要涉及三个或更多的因素时,可采用树状图法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VIP 学科优化教(学)案教学部主管: 时间: 年 月1.二次函数23y x bx =++的对称轴是2x =,则b =_______。

2.已知抛物线y=-2(x+3)²+5,如果y 随x 的增大而减小,那么x 的取值范围是_______.3.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。

4.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 。

5. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。

6.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 .㈠承上启下 知识回顾【课本相关知识点】1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。

2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。

当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。

题型一、识别事件类型例1、下列事件是必然事件的是( )A. 水加热到100℃就要沸腾B. 如果两个角相等,那么它们是对顶角C.两个无理数相加,一定是无理数D. 如果,那么a=0,b=0练习.(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球题型二、用列表、画树状图法确定简单事件发生的各种可能的结果 例2、(2011•成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试。

小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.用树状图或列表法表示出所有可能的结果练习.(2013•江西)甲、乙、丙三人聚会,每人带了一个从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件。

将“甲、乙、丙3人抽到的都不是自己带来的礼物”记为事件A ,请列出事件A 的所有可能的结果。

题型三、比较事件发生的可能性的大小例3、在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4。

随机地摸出一张纸牌然后放回,再随机摸取出一张纸牌。

甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。

这是个公平的游戏吗?请说明理由。

练习1.(2011江苏淮安)有牌面上的数都是2,3,4的两组牌,从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面上的数之和为多少的可能性最大。

㈡紧扣考点 专题讲解练习2.不透明的口袋里装有2个红球、2个白球(除颜色外其余均相同) 事件A :随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B :随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球; 试比较上述两个事件发生的可能性哪个大,请说明理由练习3.袋中装有10个小球,颜色为红、白、黑三种,除颜色外其他均相同。

若要求摸出一个球是白球和不是白球的可能性相等,则黑球和红球共有 个【课本相关知识点】1、我们把事件发生的可能性的大小也称为事件发生的概率。

事件A 发生的概率记作P (A ),概率的计算公式为:P (A )=A mn事件发生的可能出现的结果数所有可能出现的结果数(m ≤n )必须事件发生的概率是1;不可能事件的概率为0;随机事件A 发生的概率范围是0<P (A )<1 2、简单事件的分类及其概率的求法①、只涉及一步实验的随机事件发生的概率当事件发生的各种结果的可能性相同时,直接找出事件A 发生的可能的结果数与所有可能出现的结果总数,再运用概率公式求解②、涉及两步实验的随机事件发生的概率(利用图表法或树状图求出事件发生的可能的结果数与所有可能出现的结果总数,再运用概率公式求解。

③、涉及三步或三步以上的实验的随机事件发生的概率(温州中考绝对不会考涉及到三步或以上的概率题) 利用树状图求出事件发生的可能的结果数与所有可能出现的结果总数,再运用概率公式求解。

题型一、应用概率计算公式P (A )=mn计算 例1、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同。

若从中随机摸出一个球,摸到黄球的概率是45,则n= 练习1、(2013•温州10分)一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同。

(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31,问至少取出了多少个黑球?练习2、(2014•温州8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,再从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.题型二、常规题型的列表法、画树状图法求概率(特别注意:① 取球是放回还是不放回;② 相同颜色的球有多个时,一定要写上如“白1、白2之类的) 例2、某校有A ,B 两个餐厅,甲、乙、丙三名学生各自随意选择其中的一个餐厅用餐。

求下列事件的概率:(1)事件M :甲、乙、两三名学生在同一个餐厅用餐(2)事件N :甲、乙、两三名学生中至少有一人在B 餐厅用餐练习、袋中有大小相同、标号不同的白球2个,黑球2个(1)从袋中连取2个球后不放回,取出的2个球中有1个白球,1个黑球的概率是多少? (2)从袋中有放回的取出2个球的顺序为黑、白的概率是多少? (3)从袋中有放回的取出2个球为一黑一白的概率是多少?题型三、求图形中的概率 例3、(2009•天水)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个 大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角 边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( )A .13 B .14 C .15 D 练习1、如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面 展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开 图的概率是( ) A .47 B .37 C .27 D .17 练习2、若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( ) A .12 B .34 C .13 D .14练习3、如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( ) A .1732 B .12 C .1736 D .1738练习4、(2011•株洲)如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球堆成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;…;那么从第2014个图中随机取出一个球,是黑球的概率是 ,则从第(n )个图中随机取出一个球,是黑球的概率是题型四、概率与方程、函数知识的综合 例4、(2013•大庆)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x+=0有实数根的概率.练习1、(2012•苏州)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上。

(1)从A 、D 、E 、F 四点中任意取一点,以所取的这一点及B 、C 为顶点三角形,则所画三角形是等腰三角形的概率是 ;(2)从A 、D 、E 、F 四点中先后任意取两个不同的点,以所取的这两点及B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).BA练习2、有三张不透明的卡片,除正面写有不同的数字外,其他均相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式y=kx+b(k ≠0)中的k 后,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b 。

(1)写出k 为负数的概率;(2)求一次函数y=kx+b 的图象经过二、三、四象限的概率。

(用树状图或列表法求解)练习3、(2013•日照)端午节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为2 5(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)题型五、判断游戏的公平性,并提出合理的建议例5、(2013•杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.练习1、(2013•赤峰)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.练习2、小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.【课本相关知识点】1、频率与概率的区别与联系:概率是客观存在的,只要有一个随机事件,这个随机事件的概率就一定存在,它是一个固定的数值;频率是通过实验得到的,它随着实验次数的变化而变化。

相关文档
最新文档