广东省高一数学必修一第一单元《函数的概念》全套教案
高一数学教案《函数概念》

高一数学教案《函数概念》高一数学教案《函数概念》篇1一、教材分析函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在详细的几个简洁类型的函数上,把函数看成变量之间的依靠关系,而高中阶段不仅把函数看成变量之间的依靠关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步熟悉,也是学生熟悉上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。
概念是数学的根底,只有对概念做到深刻理解,才能正确敏捷地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容供应了方法和依据。
二、重难点分析二、重难点确实定依据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应当是本章的难点。
三、学情分析1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并详细讨论了几类最简洁的函数,对函数已经有了肯定的感性熟悉;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了根底。
2、不利因素:函数在初中虽已讲过,不过较为浅薄,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的力量比拟高,学生学起来有肯定的难度。
四、目标分析1、理解函数的概念,会用函数的定义推断函数,会求一些最根本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培育学生抽象、概括、归纳学问以及规律思维、建模等方面的力量。
3、通过对函数概念形成的探究过程,培育学生发觉问题,探究问题,不断超越的创新品质。
五、教法学法本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参加者,我一方面细心设计问题情景,引导学生主动探究。
高一数学教案《函数概念》

高一数学教案《函数概念》一、教学目标1.了解函数的定义;2.掌握函数的图像、定义域和值域的概念;3.能够分析并应用函数的性质。
二、教学内容1.函数的定义和符号表示;2.函数的图像、定义域和值域的概念;3.函数的性质:奇偶性、单调性和周期性;4.应用函数分析问题。
三、教学准备1.教材:《高中数学》教材(必修一);2.教辅资料:《高中数学教程》;3.工具:黑板、白板、彩色笔、课件。
四、教学过程第一步:导入1.引入问题:你们有没有听过“函数”这个概念?你们了解函数是什么吗?2.引导学生思考函数的含义。
第二步:函数的定义和符号表示1.讲解函数的定义:函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。
2.讨论函数的符号表示:函数通常用字母 f、g 或 h 来表示,例如:f(x)、g(x) 或 h(x)。
第三步:函数的图像、定义域和值域的概念1.解释函数的图像是指函数在坐标系中的图形表示。
2.定义函数的定义域为自变量的取值范围,值域为因变量的取值范围。
3.给出一些例子让学生理解图像、定义域和值域的概念。
第四步:函数的性质1.奇偶性:讲解函数的奇偶性定义和判断方法。
2.单调性:介绍函数的单调性定义和判断方法。
3.周期性:解释函数的周期性定义和判断方法。
4.分组讨论并总结函数的性质。
第五步:应用函数分析问题1.给出一些具体问题,如:某电商平台的销售额随时间的变化关系,某产品的价格和销量的关系等。
2.让学生通过分析问题,找出函数的定义、图像和性质,进而解决问题。
第六步:应用拓展1.让学生以小组形式进行项目合作,选择一个实际问题,设计一个与函数相关的调查并分析。
2.学生展示调查结果并进行讨论。
五、教学总结1.复习函数的定义和符号表示;2.梳理函数的图像、定义域和值域的概念;3.总结函数的性质:奇偶性、单调性和周期性;4.强调函数在解决实际问题中的应用。
六、课后作业1.教材上的相关练习题;2.在家自行选择一个实际问题,应用函数的概念进行分析和解答。
高中数学《函数的概念》教案

教学文档
高中数学(函数的概念)教案
一、教学目标
(知识与技能)
理解函数的概念,能对具体函数指出定义域、对应法则、值域。
(过程与方法)
通过对函数的学习,进一步体会集合与对应的数学思想方法。
(感情、态度与价值观)
在探究中感受到成功的喜悦,提高学习数学的兴趣。
二、教学重难点
(重点)函数的概念。
(难点)从具体实例中抽象出函数概念。
三、教学过程
(一)导入新课
带着学生复习初中阶段函数的概念,并举例说明,从而引出高中阶段对函数的学习。
(二)讲解新知
利用多媒体展示上一节的实例,例如:(1)加油站储油罐的储油量和高度的关系;(2)高速公路总里程与年份的关系。
引导学生分析归纳以上两个实例,变量分别是谁、变量的范围是什么、变量之间存在的关系是什么、这些例子有什么共同特点。
.。
高一数学《函数的概念(微课)》教学设计

高一数学《函数的概念(微课)》教学设计教学设计:函数的概念时间:7分至8分教学目标:1.知识目标:正确理解函数的概念和定义域的概念。
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标:渗透数学来源于生活,运用于生活的思想。
重点让学生理解函数的概念和定义域的概念。
难点是如何确定定义域,当使用函数模型去研究生活中简单的事物变化规律时。
学情分析:授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。
本课之前,学生已经研究了初中函数概念,为本课的研究打下基础。
教法与学法:教法:微课视频中包含情境教学法和多媒体辅助教学法的使用。
学法:学生观看视频,听老师解说,了解函数的作用,对函数产生兴趣。
信息化教学资源:1.动画设计《世界在不断的变化》2.专业录频软件;3.视频后期处理软件;4.QQ;5.其它图片、背景音乐。
课前准备:复初中数学函数概念。
教学过程:环节一:创设情境兴趣导入:首先让学生观看视频《世界在不断的变化》。
老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。
聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。
今天我们就来研究一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。
学生活动:1.观看视频。
2.听老师解说,了解函数是研究世界变化规律的数学模型之一。
3.了解函数的作用,对函数产生兴趣。
设计意图:通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生研究热情,又回顾初中研究的数学函数的定义。
环节二:生活实例加深对知识的理解在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量。
用一个生活实例加深对知识的理解。
函数的概念 教案

函数的概念教案函数是数学中的一个重要概念,它在数学理论和实际问题中都有着广泛的应用。
本教案将介绍函数的定义、性质以及常见的函数类型。
一、函数的定义函数是一个将每个元素都从一个集合(称为定义域)映射到另一个集合(称为值域)的规则。
简单来说,函数就是根据输入值得到输出值的过程。
记作:y = f(x),其中x为自变量,y为因变量。
f(x)表示函数f对x 的输出值。
二、函数的性质1. 定义域与值域:- 定义域是函数f中所有可能的输入值x的集合。
- 值域是函数f中所有可能的输出值y的集合。
2. 一一对应关系:- 函数f的每个输入对应唯一一个输出,即不同的输入得到不同的输出。
- 一个输出可能对应多个不同的输入(但不可逆)。
3. 符号化表示:- 对于给定的函数,可以通过数学符号来表示,如多项式函数、三角函数等。
三、常见的函数类型1. 线性函数:- 定义:一个函数是线性的,当且仅当它可表示为f(x) = ax + b的形式,其中a和b是常数。
- 例子:y = 2x + 3,y = -0.5x + 1等。
2. 幂函数:- 定义:一个函数是幂函数,当且仅当它可表示为f(x) = ax^b的形式,其中a和b是常数。
- 例子:y = 2x^3,y = 0.5x^2等。
3. 指数函数:- 定义:一个函数是指数函数,当且仅当它可表示为f(x) = a^x的形式,其中a是常数。
- 例子:y = 2^x,y = 0.5^x等。
4. 对数函数:- 定义:一个函数是对数函数,当且仅当它可表示为f(x) = loga(x)的形式,其中a是常数。
- 例子:y = log2(x),y = log10(x)等。
四、总结函数是数学中的一个重要概念,它描述了输入和输出之间的关系。
我们可以通过函数来解决各种实际问题,并且函数具有很多有用的性质和种类。
熟练掌握函数的概念和常见类型,有助于我们加深对数学的理解,并能更好地应用函数的知识解决实际问题。
高中数学必修一第一节第1节 函数的基本概念(一)教案

判断从集合A到集合B在对应关系f下,能否构成一个映射,关键是看集合A中的每 一个元素在f下都能在集合B中找到唯一的元素与之对应.可以允许“多对一”或集合B 中有的元素无A中元素对应. 返回目录
备考指南
基础梳理
函数的表示法
典例研习
考点演练
【例 3】 (2010 年广东云浮市石榴中学模拟)如图,有一直角墙角,两边的长度足够长, 在 P 处有一棵树与两墙的距离分别是 a m(0<a<12)、4 m,不考虑树的粗细.现在想用 16 m 长的篱笆,借助墙角围成一个矩形的花圃 ABCD.设此矩形花圃的面积为 S m2,S 的最大值为 f(a),若将这棵树围在花圃内,则函数 u=f(a)的图象大致是( )
返回目录
备考指南
基础梳理
典例研习
考点演练
两个函数是否是同一函数,关键是看两个函数的定义域和对应关系是否相同, 定义域和值域分别相同的两个函数不一定是同一函数.特别注意,自变量习惯用x 表示,当然也可以用其他字母表示,这对函数本身无影响,如f(x)=x+1与f(t)=t+1, g(m)=m+1都表示同一函数.
返回目录
备考指南
基础梳理
典例研习
考点演练
质疑探究1:若两个函数的定义域与值域相同,它们是否是同一函数? 提示:不一定,如f(x)=x+2和g(x)=2x-1的定义域和值域相同,即都为R,但它们不是同 一函数. 2.映射 设A,B是两个非空的集合,如果按照某一确定的对应关系f,使对于集合A中的任意一个元 素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合 B的一个映射. 质疑探究2:映射与函数有什么区别? 提示:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数 集,而函数中的两个集合必须是非空数集.
人教版高中数学必修一《函数概念》教学设计
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
函数的概念(单元教学设计)高中数学人教A版2019必修第一册
《函数的概念及其表示》单元教学设计一、内容及其解析(一)内容1 函数的三个要素:定义域,值域,对应关系2 “对应说”的函数概念3 函数的表示法:解析法,图象法,表格法4 分段函数的概念及表示(二)内容解析1. 内容本质:两个数集之间建立对应关系(单射)是函数概念的本质,用集合语言和对应关系刻画函数概念是数学抽象素养得到提升的重要标志。
用解析式、图象与表格等不同方法表示函数,是进一步理解函数、认识函数对应关系f的重要过程,也是数学思维的重要特征。
2 蕴含的思想方法运用函数观察、研究事物的运动与变化及其规律是一种重要的思想,因此,函数思想自然是函数概念与表示教学中最重要的数学思想;在函数的表示中,函数不同表示法之间的转化渗透着数形结合的思想;同时,函数与方程、不等式之间的相互转化,蕴含着等价转化的思想。
3 知识知识的上下位关系:函数是数学的核心概念,是刻画客观世界中运动变化规律的重要数学模型。
在高中阶段,函数不仅贯穿数学学习的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础,在物理、化学、生物等其它领域也有广泛的应用;在高等数学和实际应用中,函数是基本数学对象,是数学建模的重要模型。
4 育人价值:函数所蕴含的集合间的“对应”是一种重要的数学思想与方法,这种思想方法帮助人们在不同事物之间建立联系,并运用这种联系去研究、发现事物变化的规律,掌握事物本身的性质,这对于提高人们的思想认识,指导日常行为有着重要的意义与价值,函数的表示是数学表示的典范,除帮助人们提高抽象能力外,其本质也是建立具体函数到数学符号之间的对应,可以帮助学生进一步体会函数思想的本质,发展学生的数学抽象与直观想象素养.5 教学重点:实例归纳概括函数的基本特征,建立用集合与对应的语言刻画概念,选择适当的方法表示函数二、目标及其解析(一)单元目标1在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。
人教版高中数学必修一《函数概念》教学设计
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
广东省揭阳一中高中数学函数的概念教案1新人教版必修1
课题:函数的概念(一)课 型:新授课教学目标:(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的三要素;(3)能够正确使用“区间”的符号表示某些集合。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。
表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的概念:思考1:(课本P 15)给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-。
B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见课本P 15图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
(见课本P 16表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
(4)备用实例:
我国2018年4月份猪瘟疫情统计:
日期
22
23
24
25
26
27
28
29
30
新增确诊病例数
106
105
89
103
113
126
98
152
101
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、 新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
五、板书设计
举例,例题
(4)f ( x ) = | x |;g ( x ) =
(三)课堂练习
求下列函数的定义域
三、归纳小结
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28习题1.2(A组)第1—7题(B组)第1题
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点
理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点
符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2、判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域课本P20例1解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。与g(x)是否表示同一个函数,说明理由?
(1)f ( x ) = (x-1)0;g ( x ) = 1
(2)f ( x ) = x;g ( x ) =
(3)(3)f ( x ) = x2;f ( x ) = (x + 1)2
第一章集合与函数概念
课题
教材分析
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
课型
新授课
教学目标
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;