北师大版六年级数学下册知识点归纳

合集下载

北师大版数学六年级下册1-4单元数学知识点总结

北师大版数学六年级下册1-4单元数学知识点总结

北师大版数学六年级下册知识点总结一单元知识点1.点、线、面、体之间的关系是(点动成线),(线动成面),(面动成体)。

2.将长方形其中的一条边所在直线为轴,旋转一周所形成的的图形是(圆柱),会得到(2)种圆柱。

将正方形其中的一条边所在直线为轴,旋转一周所形成的的图形是(圆柱),会得到(1)种圆柱。

如下图这样旋转,已知长方形的a=4,b=2,可以得到圆柱的直径d=(4),C=(12.56),r=(2),h=(4)。

将直角三角形绕其中的一条直角边所在直线为轴,旋转一周所形成的的图形是(圆锥),会得到(2)种圆锥。

如下图这样旋转,已知直角三角形的两条直角边分别是1和4,可以得到圆锥的底面直径d=(2),C=( 6.28),r=(1),h=(4)。

面动成体:下面的平面图形经过旋转后形成了立体图形,请写出这些立体图形的名称。

(圆柱)(圆台)(球)(圆锥)3.圆柱各部分的名称:圆柱的上、下两个面叫作(底面),它们是(大小相同)的两个圆。

圆柱有一个曲面叫(侧面)。

圆柱两个底面之间的距离叫作圆柱的(高),圆柱有(无数)条高。

标出下列图形的底面直径和高。

(虚线画图标出d和h)4.圆锥各部分的名称:圆锥的底面是一个(圆),从圆锥的(顶点)到(底面圆心)的距离是圆锥的高。

圆锥一共有(1)条高。

表格总结和对比:底面侧面侧面展开图高圆柱2个大小相同的圆都是(曲面)长方形无数条圆锥1个圆和1个顶点(扇形)(1)条5.圆柱的侧面展开后是一个长方形(也可能是平行四边形、正方形或其他图形),这个图形相邻两边的长分别相当于圆柱的(高)和(底面周长)。

这个图形的面积就是圆柱的侧面积,因此,圆柱的侧面积=(底面周长×高)。

圆柱侧面积的大小由(底面周长)和(高)共同决定。

用字母表示为S侧=Ch=πdh=(2πrh)。

6.圆柱的表面积=侧面积+(底面积)×2,用字母表示为S表=(πdh+2πr2)。

7.圆柱的体积:把一个圆柱切拼成近似的长方体,它的体积(不变),它的长相当于圆柱的(周长的一半),它的宽相当于圆柱的(底面半径),高相当于圆柱的高。

北师大版六年级下册数学知识点归纳

北师大版六年级下册数学知识点归纳

北师大版六年级下册数学知识点归纳
1.分数
-分数的概念和表示方法
-分数的大小比较和排序
-分数的加减法运算
-分数的乘法和除法运算
-分数与整数、小数之间的转换
2.小数
-小数的概念和表示方法
-小数的读法和写法
-小数的大小比较和排序
-小数的加减法运算
-小数与分数之间的转换
3.有理数
-有理数的概念和分类
-有理数的加减法运算
-有理数的乘法和除法运算
-有理数的大小比较和排序
-有理数在数轴上的表示和位置
4.百分数
-百分数的概念和表示方法
-百分数与分数、小数的关系
-百分数的转化和计算
-百分数的应用,如百分比问题和利息问题
5.数据统计与概率
-统计图表的读取和制作,如条形图、折线图、饼图等-平均数的计算和应用
-概率的基本概念和计算,如事件发生的可能性
6.几何形状与测量
-平行线和垂直线的判断
-角的概念和分类
-三角形和四边形的性质
-长度、面积和体积的计算
-运用几何知识解决实际问题
7.图形的相似与全等
-图形的相似判定和性质
-图形的全等判定和性质
-利用相似和全等关系解决问题
8.简单方程和不等式
-一元一次方程的解法和应用
-不等式的解法和应用
-运用方程和不等式解决实际问题
以上是北师大版六年级下册数学的一些主要知识点归纳。

这些知识点涵盖了分数、小数、有理数、百分数、数据统计与概率、几何形状与测量、图形的相似与全等、简单方程和不等式等内容。

通过系统学习这些知识点,学生可以提高数学运算能力、几何思维能力以及解决实际问题的能力。

北师大版六年级下册数学期末复习重点知识要点归纳

北师大版六年级下册数学期末复习重点知识要点归纳

北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

北师大版六年级数学下册知识点归纳

北师大版六年级数学下册知识点归纳

北师大版六年级数学下册知识点归纳北师大版六年级数学下册主要包含了有理数、图形和变量、分数和小数、运算法则和计算、长度、面积和体积、数据和统计这几个知识点。

下面将对每个知识点进行归纳:一、有理数1. 正数和负数:正数是大于零的数,负数是小于零的数,0既不是正数也不是负数。

2. 数轴:用数轴表示有理数。

数轴上,正数在0的右边,负数在0的左边。

3. 比较和排序:可以通过数轴上的大小关系进行比较和排序。

二、图形和变量1. 坐标系:直角坐标系由x轴和y轴组成。

坐标系中,x轴是水平的,y轴是竖直的,它们都通过原点O。

2. 点与坐标:用点在坐标系中的位置来表示其坐标。

3. 图形的比较:可以通过图形的面积、周长和形状进行比较。

三、分数和小数1. 分数的概念:分数由一个分子和一个分母组成,分子表示整体的部分,分母表示被分成的份数。

2. 分数的大小比较:可以通过分数的大小关系进行比较和排序。

3. 小数的概念:小数是整数和分数的结合,整数部分位于小数点的左侧,小数部分位于小数点的右侧,如0.5、3.14等。

4. 分数和小数的转换:可以将分数转换为小数,也可以将小数转换为分数。

四、运算法则和计算1. 加法和减法运算:可以进行有理数的加法和减法运算。

2. 乘法和除法运算:可以进行有理数的乘法和除法运算。

3. 运算规律:加法和乘法满足交换律和结合律,减法和除法不满足交换律和结合律。

4. 计算顺序:在多个运算符存在的表达式中,先进行括号内的运算,再进行乘法和除法运算,最后进行加法和减法运算。

五、长度、面积和体积1. 长度的测量:用尺子、卷尺等工具可以测量线段的长度。

2. 面积的测量:用平方单位可以测量平面图形的面积。

3. 体积的测量:用立方单位可以测量立体图形的体积。

六、数据和统计1. 数据的收集:可以通过调查、观察等方式收集数据。

2. 数据的展示:可以用列表、频数表、条形图等方式展示数据。

3. 平均数和范围:可以通过计算平均数和范围来描述数据的中心和变化程度。

北师大版六年级数学下册知识点归纳总结

北师大版六年级数学下册知识点归纳总结

北师大版六年级数学下册知识点归纳总结目录1. 第一单元 (3)1.1 分数的概念与表示方法 (3)1.2 分数的基本性质 (4)1.3 同分母分数的比较 (5)1.4 异分母分数的转换 (6)2. 第二单元 (7)2.1 小数的概念与表示方法 (7)2.2 小数的性质 (8)2.3 小数与分数之间的联系与区别 (8)2.4 小数的四则运算 (9)3. 第三单元 (10)3.1 百分数的含义和表示方法 (10)3.2 百分数与小数的关系 (11)3.3 百分数在实际生活中的应用 (12)3.4 百分数与其他比的转换 (14)4. 第四单元 (14)4.1 方程的意义及类型 (16)4.2 解一元一次方程的方法 (17)4.3 方程的应用实例 (17)4.4 实际问题中的方程求解策略 (18)5. 第五单元 (19)5.1 平面图形的面积计算 (19)5.2 平面图形的周长计算 (21)5.3 立体图形的体积计算 (21)5.4 立体图形的表面积计算 (23)6. 第六单元 (24)6.1 数据的收集方法 (24)6.2 数据整理的方法与步骤 (26)6.3 如何制作统计表和统计图 (27)6.4 数据分析与解读 (29)7. 第七单元 (29)7.1 概率的含义及表示方法 (30)7.2 事件发生的可能性大小 (31)7.3 简单随机抽样的原理和方法 (32)7.4 概率在现实生活中的应用 (33)8. 第八单元 (35)8.1 图形的平移与旋转 (35)8.2 轴对称图形的性质 (36)8.3 中心对称图形的性质 (37)8.4 几何图形变换与对称的应用 (37)9. 第九单元 (38)9.1 实际问题中的数据收集与分析 (39)9.2 综合运用概率知识解决实际问题 (40)9.3 统计与概率综合题的典型例题解析 (41)10. 第十单元 (42)10.1 数学综合应用题的类型与解题思路 (43)10.2 数学综合应用题的解题技巧 (44)10.3 数学综合应用题的实践案例分析 (45)1. 第一单元自然数的认识与整数的认识。

北师大版数学六年级下册知识点总结大全

北师大版数学六年级下册知识点总结大全

北师大版六年级下册第一单元知识汇总
圆柱和圆锥
—、面的旋转
1. II点、线、面、体'之间的关系是:点的运动衫成彩浅的运动形成面面的旋转形成体
2.圆柱的特征:
a. 啤郎]两个底鄱启经相鄂泗谭
b两个底面间的距离叫做圆柱皓高。

c柱有无数条商,且高的长度都相等。

3.圆锥的特征:
a. 圆锥的底面是—个圆。

b. 圆锥的侧面是—个曲面。

c圆锥只有一条高。

二、圆柱的表面积
1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形或正方形。


果不是沿高剪开,有可能还会是平行四拐织
2.圆柱的侦面积=底面司长x高,用字母表示为:s侧=c h
3.圆柱的侧面积公式的应用
(1)已知民面周长和高,求侧面积,可运用公式:s侧=c h
(2)已知民面直径和高,求侧面只,可运用公式:s侧=皿h
(3已知底面半径和嵩,求侧面积,可运用公式:S侧=2n:r h
4. 圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,s。

北师大版六年级数学下册知识点归纳

北师大版六年级数学下册知识点归纳

北师大版六年级数学下册知识点归纳The document was prepared on January 2, 2021圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

3.圆锥的特征:(1)圆锥的底面是一个圆。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。

(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πd h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πr h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2=或S表=2πrh+2πr25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。

2.圆柱的体积=底面积×高。

如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

北师大版六年级数学下册知识点归纳(1)

北师大版六年级数学下册知识点归纳(1)

圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

3.圆锥的特征:(1)圆锥的底面是一个圆。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。

(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧= dh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2 rh4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,Sd表示底面直径,r表示底面半径,h表示高,那么这底表示底面积,个圆柱的表面积为:S表=S侧+2S底或S表= dh+d2/2=或S表=2rh+2 r25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、圆柱形物体。

三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。

2.圆柱的体积=底面积×高。

如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

3.圆柱体积公式的应用:(1)计算圆柱体积时,若题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V= r2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=(C/2 )2h;4.圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版六年级数学下册知识点归纳Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

3.圆锥的特征:(1)圆锥的底面是一个圆。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。

(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πd h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πr h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2=或S表=2πrh+2πr25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。

2.圆柱的体积=底面积×高。

如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

四、圆锥的体积1.圆锥只有一条高。

2.圆锥的体积=1/3×底面积×高。

如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh3.圆锥体积公式的应用:(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3 Sh”这一公式。

(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr2h(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)2h (4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)2h正比例和反比例一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

2.应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

三、画一画正比例的图像是一条直线。

四、反比例1.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

2.判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

五观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。

六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。

七比例尺1.比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离=实际距离×比例尺实际距离=图上距离÷比例尺2.比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。

根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

3.比例尺的应用:(1)、已知比例尺和图上距离,求实际距离比例尺=图上距离÷实际距离图上距离=实际距离×比例尺实际距离=图上距离÷比例尺正比例与反比例知识梳理1. 生活中存在着大量相互依存的变量,一种量变化,另一种量也随着变化。

2. 像正方形的周长与边长;速度一定时的路程与时间;单价一定时的总价与数量之间。

一种量变化,另一种量也随着变化,而且它们的比值(也就是商)一定,那么,我们说它们之间成正比例。

这样的两种量叫作成正比例的量,它们的关系叫作正比例关系。

3. 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成比例的量,它们的关系叫做反比例关系、4.判断比例的方法是5. 表示正比例关系的两个相对应量中的各点在同一直线上,即正比例关系的图像是一条过原点的直线;当两个量成反比例关系时,它们的图像是一条曲线。

(北师大版)六年级数学下册第一单元检测试卷班级_____姓名_____得分_____一、填空。

1. 把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。

2. 415平方厘米=( )平方分米立方米=( )立方分米立方分米=( )升( )毫升 4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米 538 升=()升()毫升3. 将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是( )平方分米,体积是( )立方分米。

4.一个圆柱底面半径2分米,侧面积是平方分米,这个圆柱体的高是( )分米。

5.一根长20厘米的圆钢,分成一样长的两段,表面积增加20平方厘米,原钢材的体积是( )立方厘米。

6.一个圆柱体的底面半径为r,侧面展开图形是一个正方形。

圆柱的高是( )。

7. 一个圆柱的底面周长是厘米,高是6厘米,那么底面半径是()厘米,底面积是()平方厘米,侧面积是()平方厘米,体积是()立方厘米。

8.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆柱的体积是圆锥的()倍,圆柱的体积的()就等于圆锥的体积。

9.底面积85立方厘米、高是12厘米的圆锥的体积是()立方厘米,与它等底等高的圆柱体积是()立方厘米。

10.一个长方体、一个圆柱体和一个圆锥体的底面积相等、体积也相等,那么圆锥的高是圆柱的(),长方体高是圆锥高的()。

11.把一根圆柱形木料截成3段,表面积增加了平方厘米,这根木料的底面积是()平方厘米。

12.一个圆锥体的底面半径是6厘米,高是1分米,体积是()立方厘米。

13.等底等高的圆柱体和圆锥体的体积比是( ),圆柱的体积比圆锥的体积多()%,圆锥的体积比圆柱的体积少(----)14.把一个圆柱体钢坯削成一个最大的圆锥体,要削去立方厘米,未削前圆柱的体积是()立方厘米。

15.一个圆柱体的侧面展开后,正好得到一个边长厘米的正方形,圆柱体的高是()厘米。

16.用一个底面积为平方厘米,高为30厘米的圆锥形容器盛满水,然后把水倒入底面积为平方厘米的圆柱形容器内,水的高为()。

17.等底等高的一个圆柱和一个圆锥,体积的和是72立方分米,圆柱的体积是(),圆锥的体积是()。

18.底面直径和高都是10厘米的圆柱,侧面展开后得到一个()面积是( )平方厘米,体积是()立方厘米。

19.把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了()。

20.底面半径2分米,高9分米的圆锥形容器,容积是()毫升。

21.已知圆柱的底面半径为 r,高为 h,圆柱的体积的计算公式是()。

22.容器的容积和它的体积比较,容积()体积。

二、判断:1. 圆柱体的体积与圆锥体的体积比是3 ∶1。

()2. 圆柱体的高扩大2倍,体积就扩大2倍。

()3. 等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍。

( )4. 圆柱体的侧面积等于底面积乘以高。

()5. 圆柱体的底面直径是3厘米,高是厘米,它的侧面展开后是一个正方形。

()三、选择:(填序号)1. 圆柱体的底面半径扩大3倍,高不变,体积扩大()。

A、3倍B、9倍C、6倍2. 把一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是()立方分米。

A、 B、 C、643. 求长方体,正方体,圆柱体的体积共同的公式是()。

A、V= abhB、V= a3C、V= Sh4. 把一个圆柱体的侧面展开得到一个边长4分米的正方形,这个圆柱体的体积是()立方分米。

A、16B、C、5. 把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。

A、扩大3倍B、缩小3倍C、扩大6倍D、缩小6倍四、应用题:1. 一个圆锥体的体积是立方分米,底面积是平方分米,它的高有多少分米。

2. 工地上运来 6 堆同样大小的圆锥形沙堆,每堆沙的底面积是平方米,高是米。

这些沙有多少立方米如果每立方米沙重吨,这些沙有多少吨3. 圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。

做这样的2只水桶要用铁皮多少平方分米(得数保留整十平方分米)4. 会议大厅里有10根底面直径米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆千克,刷这些柱子要用油漆多少千克5. 从一根截面直径是6分米的圆柱形钢材上截下2米,每立方分米钢重千克,截下的这段钢重多少千克6. 一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米7. 压路机的前轮是圆柱形,轮宽米,直径米,前轮每分钟转动10周,每分钟前进多少米每分钟压路多少平方米8. 有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件。

如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米9·一个圆柱形油桶,从里面量的底面半径是20厘米,高是3分米。

这个油桶的容积是多少9. 一个圆柱,侧面展开后是一个边长分米的正方形。

这个圆柱的底面直径是多少分米 10 一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的 35 后,还剩12升汽油。

如果这个油桶的内底面积是10平方分米,油桶的高是多少分米圆柱、圆锥体积专项练习1、一个圆柱形油桶,从里面量的底面半径是20厘米,高是3分米。

相关文档
最新文档