(工艺技术)油田压裂新技术工艺

合集下载

油田酸化压裂工艺技术

油田酸化压裂工艺技术

油田酸化压裂工艺技术摘要:石油能源是现阶段最重要的能源之一,且随着社会的发展,各方面对石油能源的需求在逐年增加,这就给石油开采带来了更大的压力。

在这种情形下,很多石油企业开始对当前的各种石油开采技术进行全方面的分析与研究,目的是进一步提升石油开采技术的利用效率,而其中酸化压裂技术是当前利用较为广泛的石油开采技术之一,对其进行探索与优化是提升石油开采量,保证社会石油供需平衡的有力措施。

文章就酸化压裂技术在石油开采中的优势、发展状况、工艺分析、前景展望展开论述与分析。

关键词:油田开采;酸化压裂技术;前景展望引言:在石油开发中应用酸化压裂技术,其意义在于能够在一定程度上实现石油开采的增注增产,特别是应用在一些属于碳酸盐岩类型的油田开采中,能够取得较为显著的效果,为全面,全面增产改造储层结构,开采人员是工作中通常会有机结合基质酸化相关措施与压裂酸化技术,以此来实现增产效果。

值得注意的是,酸化压裂技术在应用时,应把握好裂缝表层特征、岩体类型、液体注入强度与酸液侵蚀速度等相关要素,以此来稳步推进使用油田酸化压裂工艺技术。

一、酸化压裂技术在石油开采中的优势与传统形式的支撑剂压裂技术在石油开采中的应用相比,虽然原理大致相同,但是优势却十分明显,尤其是在那些油气藏均性差、孔隙度低、渗透性弱的石油层进行开采时效果更为显著。

其根本原因在于,虽然支撑剂压裂与酸化压裂两者有着相同的目的,都是加宽油田开采时的裂缝,使其有更强的流通性,以便在一定程度上提升其排液能力,但是具体来说,开采工人在采用支撑剂压裂进行开采时,通常会将石英砂与陶粒填充到裂缝,以此来避免因开采过程中的压力降低而导致裂缝逐渐闭合,通过这种方式来保证裂缝始终具备一定的流通性,然而在通过酸化压裂进行石油开采时,根本不需要支撑剂来保持流通性,而是巧妙利用裂缝不均匀的表层效应。

基于两种开采技术的差异性,开采工人开采石灰岩油田或者白云岩的油层时,能够明确分辨出酸化压裂有着更强的适用性,且操作更为简单,省去很多的开采时间,但是由于酸化压裂技术在使用过程中用到的酸液有着较高的成本,所以要普及还需很长的过程。

浅析油田酸化压裂工艺技术

浅析油田酸化压裂工艺技术

浅析油田酸化压裂工艺技术发布时间:2022-11-01T07:48:13.381Z 来源:《中国科技信息》2022年第13期作者:周涛张海龙[导读] 酸化压裂技术是低渗透油田采取的主要增产技术措施,尤其对于碳酸盐性质的油田成效极其显著。

这种技术摒弃了传统的支撑剂直接压裂的方法,而是采用酸液进行压裂,利用水力作用形成裂缝的同时酸液将会对裂缝的壁面进行溶蚀使得密闭的壁面形周涛张海龙渤海钻探井下技术服务分公司,天津300280摘要:酸化压裂技术是低渗透油田采取的主要增产技术措施,尤其对于碳酸盐性质的油田成效极其显著。

这种技术摒弃了传统的支撑剂直接压裂的方法,而是采用酸液进行压裂,利用水力作用形成裂缝的同时酸液将会对裂缝的壁面进行溶蚀使得密闭的壁面形成凹凸不平的沟槽,进一步增加地层的渗透性。

酸化压裂技术利用这一特性使得原油能够在地下顺畅的流动,有效改善了储油层的渗透性,提高了采油的效率和效果。

关键词:油田;酸化压裂;连续油管引言在石油需求猛增的当下迫使油田技术要做出新的改变。

而在实际运营过程中,在油田开采过程当中,酸化压裂对于油田的产量增长有着显著作用。

此项技术对于碳酸盐地质的油田的开采具有有利的技术优势,其技术特性在于可以对地层结构进行优化,起到增产增注的作用。

文章针对酸化压裂工艺技术中有连续油管定点替酸工艺、闭合酸化压裂技术、稠化酸技术的具体应用等各个具体细化环节的措施进行详细解读,以期得到在油田增产的前提下实现油田开采技术成本的最小化。

1油气田酸化压裂技术的原理概述酸化压裂技术与普通的支撑及压裂技术,最终的目的都是为了使油田裂缝更宽,产生更强的流通性,从而确保更强的排液能力。

详细说来,施工人员在运用支撑剂压裂技术过程中,一般会将陶粒与石英砂等砂石料填入裂缝,用来避免因压力降低而导致的裂缝闭合状况,从而保障了裂缝流通性。

然而,与之相对应的,酸化压裂技术,施工人员在应用过程中,仅利用不均匀的裂缝表层效应即可,而无需支撑剂的使用。

压裂工程方案

压裂工程方案

压裂工程方案一、前言随着我国石油天然气资源的逐渐枯竭,对新的油气资源的开发已成为当务之急。

而压裂技术作为一种重要的油气开采技术已经得到了广泛的应用。

本文将针对压裂工程进行详细的分析和探讨,力求为该工程提供可靠的技术支持和指导。

二、压裂工程概述压裂工程是通过高压液体将岩石层压裂,使原本不透水的岩石层形成一定规模的裂缝,以增加油气的渗透率,提高开采率的一种油气开采技术。

压裂工程的成功与否关键取决于压裂工艺、材料、设备和操作的全面配合。

压裂工程通常具有以下几个特点:1. 高压液体注入:对于高渗透率、低渗透率和硬质岩石等地层,通常需要采用高压液体进行注入。

2. 高效能液体:压裂液通常包含有助于增加压裂效率的助剂和添加剂,如助剂能够增加液体的黏度,从而减小压裂液的损失,添加剂可以增加压裂液的功能。

3. 复杂的开采环境:压裂作业通常需要在较复杂的地层条件下进行,如高温高压、高硫等。

4. 工艺精细化:压裂技术要求操作工艺流程精细化,保证操作过程稳定的运行。

三、压裂工程方案设计1. 压裂工艺设计压裂工艺设计是压裂工程实施的基础。

通过对地质构造、井筒地层、地质裂缝等情况的详细分析,并结合岩石的物理力学性质和岩石断裂机制,确定压裂设计参数。

一般来说,压裂设计需要考虑以下几个方面的因素:1) 岩石地层:地质构造、岩石物理力学性质、强度及地层性质等。

2) 裂缝模型:根据地质调查资料和井筒测试资料,确定裂缝的规模、位置和形状。

3) 压裂设计参数:确定压裂液的性质、注入量、压裂液性能的优化设计;确定压裂工艺的操作流程、排量、注入压力、压裂液的选择;确定压裂液的配方及使用方式等。

2. 压裂液设计压裂液是实施压裂作业的关键。

压裂液设计要考虑地层条件、地质构造、液压力、地温、地质压力等因素。

压裂液设计需要满足以下基本要求:1) 流变性要求:压裂液要有足够的流变性,能够承受高强度输送和高速排放的要求。

2) 稳定性要求:压裂液稳定性要好,能够适应不同地温地压的要求。

石油工程技术 井下作业 油田井下压裂技术要点分析

石油工程技术    井下作业   油田井下压裂技术要点分析

油田井下压裂技术要点分析1油田井下压裂施工技术工艺分析1.1分隔分层压裂工艺作为油田井下压裂施工中较为常用的压裂施工技术,分隔分层压裂工艺的工艺成本较高且工艺流程相对复杂。

封隔器作为该工艺重要设备主要由单封隔型、双封隔型以及滑套型三种。

其中,单封隔型多用于大型油井与中型油井中,主要应用在油井的最下层。

而双封隔型的应用较为广泛,可以适应任何种类的油井,同时,压裂施工受到油井层限制较小。

对于滑套性封隔器来说,则可以用于反复压裂、较深的油井中。

在应用滑套性封隔器压裂过程中,首先应保证压裂机喷砂仪上有滑套,其原因在于能够确保内部压力、压裂较大,能够实现迅速喷射。

现阶段,该项技术应用在国内油田中应用较为广泛。

1.2限流分层压裂工艺当压裂施工技术要求较高且较为复杂时,多采用限流分层压裂工艺。

主要应用于压开层数多、压裂所需压力差异性较强的施工中。

限流分层压裂工艺在实际的应用过程中需要针对具体情况进行高速喷射口的改变,也就是利用随时改变高速喷射口直径的方式有效改变喷射压力,从而进一步提升单位时间内的注入量。

施工时,首先需要采用直径相对较小的喷射口,逐渐提高井下的压力,直到压力高于油井所能承受的最大负荷后,再进行直径的改变,采用较大直径口径的喷射口。

针对不同油井层的压力,确保油井层产生裂缝能够顺利流出原油。

除此之外,对于水平油井来说,限流分层压裂工艺的应用能够依据油层厚度的不同,采取施加不同压力的方式,使得压裂能够纵向产生裂缝,进而提高工艺水平。

但同时,需要注意的是,限流分层压裂工艺往往对高速喷射井口的直径与密度有着较高的要求,所以仅适合满足其条件的油井。

由于局限性较强,在实际应用中受到了制约。

1.3注蜡球选择型压裂工艺在进行油田井下压裂时,注蜡球选择型压裂工艺的施工原理在于改变原有的堵塞剂,并将其更换为注蜡球进行后续的压裂。

一般来说,最先受压的为具有高渗透层的油井,随着蜡球不断封堵高渗透层,会导致井下压力不断增强,一旦压力到达相应程度时,油层便会随之产生裂缝。

油田压裂新技术工艺

油田压裂新技术工艺

油田压裂新技术工艺
油田压裂是一种常用的增产技术,它是利用高压液体将油藏岩
石破碎并将破碎的岩石填充到裂缝中,以增加油藏与井筒之间的流
动通道来提高采油率。

在不断的技术更新和发展中,出现了一些新
的油田压裂技术,可以更好地适应不同的地质条件,提高油田压裂
的效率和成功率。

1. 液体突击压裂技术
液体突击压裂技术又称射流压裂技术,是将高压液体通过直径
很小的喷嘴射出,通过射流产生的冲击波将岩石压裂。

这种技术可
以适用于底部对称缝、水平裂隙缝和分岔缝等多种裂缝类型,能够
提高压裂效果。

2. 葛卡技术
葛卡技术是一种新型的油田压裂技术,它采用了石油工业解决
问题中的“石墨化”模式。

该技术利用碳纤维组成的网格袋装填在
井筒中,然后注入液体。

这种技术可以使岩层达到更高的裂缝密度,更好的超声波反射效果,从而获得更高的采收率。

3. 超声波压裂技术
超声波压裂技术是将高频超声波施加到岩石表面,产生的波动
强制性地把其中的开裂流体扩展到岩石内部,从而达到压裂的目的。

该技术可以提高集流系数,实现更高的油藏采收率,同时减少对环
境的污染和对工人的危害。

4. 碳酸盐矿物压裂技术
1。

低渗透油气藏水力压裂工艺技术

低渗透油气藏水力压裂工艺技术
二、水力压裂的产生和发展
第8页/共122页
第一代压裂(1940’-1970’):小型压裂 加砂量较小,在10m3左右,主要是解除近井地带污染 第二代压裂(1970’-1980’):中型压裂 加砂量迅速增加,主要是增加地层深部油流通道, 提高低渗透油层导流能力第三代压裂(1980’-1990’):端部脱砂压裂 将压裂增产措施应用到中、高渗储层,双倍缝宽,主要是大幅度提高储 层导流能力第四代压裂(1990’- ):大型压裂、开发压裂 将压裂作为一种开发方式,从油藏系统出发,应用压裂技术
第28页/共122页
6.岩石力学参数
岩心三轴力学参数测试压裂施工压力资料分析DSI测井
第29页/共122页
动静态杨氏模量对比
第30页/共122页
断裂韧性的测量与预测
岩石断裂韧性是描述裂尖附近的应力场的参数,是应力奇异性的度量。断裂韧性是载荷参数(如缝中压力,原地应力)和岩体参数(如裂缝尺寸)的函数它可以提供裂缝扩展的判据。但是,长期以来,由于测试手段和理论研究的局限,在水力压裂设计中往往只能给出断裂韧性的经验估计。 过建立内压式岩石断裂韧性试验,测量不同围压、不同岩性岩石的断裂韧性,建立了基于声波测井资料的岩石断裂韧性解释模型。
第31页/共122页
为了保证岩样加工的精度,专门开发了岩石断裂韧性测试岩样加工装置。
第32页/共122页
建立了利用测井资料预测岩石断裂韧性的理论模型,从而使断裂韧性的预测走向实用化
第33页/共122页
模拟地层条件下,地层岩石断裂韧性与应力变化规律研究,建立了地层断裂韧性与有效应力的线性方程,并考察了其对裂缝形状的影响。
第45页/共122页
压裂液配制的可操作性
现场配制要求:配制简单,易于操作,配液时间短,劳动强度低,工作时效高;性能可控,便于现场及时调整。经济因素要求:成本低,经济易行;货源广,易于准备。

油田压裂新技术工艺

油田压裂新技术工艺

油田压裂新技术工艺1、黑油模型:指油质较重性质的油藏类型。

黑油模型是最完善、最成熟,也是应用最为广泛的模型。

是油藏数值模拟的基础,其它模型大差不多上黑油模型的扩展。

(1)黑油模型的差不多假设:〔1〕油藏中的渗流是等温渗流。

〔2〕油藏中最多只有油、气、水三相,每一相均遵守达西定律。

〔3〕油藏烃类只含有油、气两个组分。

在油藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分那么能够以自由气的方式存在于气相中,也能够以溶解气的方式存在于油相中,因此地层内油相为油组分和气组分的某种组合。

在常规油田中,一样不考虑油组分向气组分挥发的现象。

〔4〕油藏中气体的溶解和逸出是瞬时完成的,即认为油藏中油气两相瞬时达到相平稳状态。

〔5〕油水之间不互溶;天然气也假定不溶于水。

〔2〕物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微达西~纳达西范畴,因此气体在储层中的流淌要紧取决于页岩中天然裂缝的发育情形〔3〕矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质〔石英〕含量较高比较有利。

〔4〕裂缝:裂缝发育适中。

2021-4-94、压裂工艺成果压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向压裂、控缝高压裂等压裂技术得到了成功应用,专门是水平井分段压裂技术的推广应用,在保证油气田增储上产方面发挥了庞大作用。

较好指标:水平井压裂分段数:9段深层气压裂最大支撑剂量:908.5t 〔角64-2H井〕最大注入井筒液量:4261.1m3最大酸压规模:1603 m3☐水力喷射分层加砂压裂在四川、长庆地区施工20余井次,平均单井次缩短施工周期20天以上;气井应用不动管柱分层压裂技术307井次,施工成功率99%;平均单井缩短试气周期20天以上;连续混配压裂施工405井次,累计配液88898 m3,累计缩短施工周期425天。

☐裸眼封隔器分段压裂取得突破性进展。

全年在苏里格等地区现场应用22井次,并取得良好成效。

油井服务压裂技术

油井服务压裂技术

克拉玛依职业技术学院学生毕业设计(论文)题目:油井服务压裂技术学生姓名:专业年级:油气开采指导教师:辅导教师:评阅日期:完成日期:摘要水力压裂是油田增产、增注,保持油田稳产的一项重要工艺技术。

它利用液体传导压力的性能,在地面利用高压泵组,以大于地层吸收能力的排量将高粘度液体泵入井中,在井底憋起高压,此压力超过油层的地应力和岩石抗张强度,在地层产生裂缝,继续将带有支撑剂的携砂液注入裂缝,裂缝边得到延伸,边得到支撑。

停泵后就在油层形成了具有一定宽度的高渗透填砂裂缝,由于这个裂缝扩大了油气流动通道,改变了流动方式,降低了渗流阻力,可起到增产增注作用,这一施工过程就叫油层水力压裂。

水力压裂包括理论力学、材料力学、热化学、高分子化学、机械制造等多个学科。

关键词:油田增产;油井服务;压裂工艺;压裂设备;压裂液;支撑剂目录第1章前言 (1)第2章压裂液的功能介绍 (2)2.1压裂液的作用 (2)2.2压裂液的性能 (2)2.3压裂液的分类 (3)2.4水基压裂液 (3)第3章压裂支撑剂的性能 (6)3.1支撑剂的种类 (6)3.2压裂支撑剂的主要性能 (7)第4章压裂设备和压裂管柱 (10)4.1地面压裂设备 (10)4.2压裂车组 (10)4.3压裂工具和压裂管柱 (11)第5章压裂工艺技术 (13)5.1普通压裂工艺 (13)5.2多裂缝压裂工艺 (13)5.3选择性压裂工艺 (13)5.4限流法压裂工艺 (14)5.5复合压裂工艺 (14)5.6 CO₂泡沫压裂工艺 (14)5.7端部脱砂压裂工艺 (15)第6章压裂油层保护技术 (16)6.1地层伤害的因素 (16)6.2压裂施工油层中保护措施 (16)第7章压裂施工和质量要求 (18)7.1压裂施工过程 (18)7.2压裂施工质量要求 (18)7.3压裂施工异常情况处理 (20)第8章压裂新工艺 (22)8.1注入井树脂砂压裂技术 (22)8.2新井压裂高效助排剂的应用 (23)8.3保护薄隔层压裂工艺 (24)8.4聚驱采出井防砂压裂 (25)结论 (27)参考文献 (28)致谢 (29)第1章前言石油是一种非常重要的能源和战略资源,与当今的国际政治、经济形势密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年4月8日星期日1、黑油模型:指油质较重性质的油藏类型。

黑油模型是最完善、最成熟,也是应用最为广泛的模型。

是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。

(1) 黑油模型的基本假设:(1)油藏中的渗流是等温渗流。

(2)油藏中最多只有油、气、水三相,每一相均遵守达西定律。

(3)油藏烃类只含有油、气两个组分。

在油藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可 以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层 内油相为油组分和气组分的某种组合。

在常规油田中,一般不考虑油组分向气组分 挥发的现象。

(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相 瞬时达到相平衡状态。

(5)油水之间不互溶;天然气也假定不溶于水。

煤层气:赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体。

全国煤层气试验区分布图J3-K1哈尔滨283、页岩气页岩气形成的条件(1) 岩性:形成页岩气的岩石除页岩外,还包括泥岩、粉砂岩、甚至很细的砂岩(2) 物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微 达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况(3 )矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。

(4)裂缝: 裂缝发育适中。

2012-4-9 4、压裂工艺成果压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向 压裂、控缝高压裂等压裂技术得到了成功应用,特别是水平井分段压裂技术的推广应用,保障油气田增储上产方面发挥了巨大作用。

较好指标:2、 乌鲁木齐J1-2J3-K1J3-K1J3-K1J3-K1 J2J1-2J1-P2J1-2 J1-2西宁兰州J1-21-2西安P2成都2"|C-P北京1♦济南39C-P长春EJ3-K11开滦 15韩城2大城 16蒲县3济南 17柳林4淮北 18吴堡5淮南 19三交 6平顶山 20 临县7荥巩 21兴县8焦作 22 丰城9安阳 23 冷水江10晋城 24 涟邵11屯留 25 沈北12阳泉 26 红阳 29 阜新13澄合 27 铁法 30辽河14彬长 28 鹤岗T3武汉二 长沙2:P2上海P2P2福州卢台北水平井压裂分段数:9段深层气压裂最大支撑剂量:908.5t (角64 - 2H井)最大注入井筒液量:4261.1m3最大酸压规模:1603 m3水力喷射分层加砂压裂在四川、长庆地区施工20余井次,平均单井次缩短施工周期20天以上;气井应用不动管柱分层压裂技术307井次,施工成功率99% ;平均单井缩短试气周期20天以上;连续混配压裂施工405井次,累计配液88898 m3,累计缩短施工周期425天。

裸眼封隔器分段压裂取得突破性进展。

全年在苏里格等地区现场应用22井次,并取得良好效果。

长城钻探在苏里格气田采用裸眼封隔器进行压裂投产后产量是临近直井的5倍以上。

川庆钻探与美国EOG公司合作,在角64- 2H井应用水平井泵送电缆桥塞压裂技术,成功完成水平井9段分层加砂压裂施工,注入液体4261.1m3,支撑剂908.5t,刷新此项工艺技术作业时间最短、段数最多(9段)、注入砂量最大、注入液量最多、累计作业时间最长等5项亚洲记录,2010年,国产水平井裸眼封隔器及配套工具的成功研发和推广应用,打破了外国公司的垄断,取得了很好的增产效果,产量是临近直井的3倍以上。

2010年,川庆钻探在合川2 口井成功进行了连续油管喷砂射孔环空6 —7级分段压裂现场施工;西南油气田的威201页岩气井也已进行了2次的页岩气压裂改造施工,为非常规气藏有效开发探索出了新的途径。

5、机械分段压裂技术机械分段压裂技术包括裸眼封隔器分段压裂技术、动管柱套管内多封隔器卡封分段压裂技术、不动管柱套管内多封隔器卡封分段压裂技术、封隔器+桥塞分段压裂技术等。

1、裸眼封隔器分段压裂♦裸眼封隔器分段压裂是苏里格水平井储层改造的主要方式:到目前苏里格共完成裸眼分段压裂36井(167段),占整个水平井改造总井数的81.8%。

♦应用规模逐年扩大:09年8井次、10年1~7月28井次。

♦技术水平逐步提高:分段数从3段到10段(工具已下井,近期压裂施工),最长水平段1512m,最大下入深度5235m。

7"套管,N80,壁厚:9.19mm7/ 8"油管,扣型:EUE,7"水力锚:3388m座圭寸球座+浮鞋套管鞋:3698.81悬挂封隔器:3390m投球滑套4裸眼封隔器投球滑套33720 3750 3865 3906 39363 1/2 "油管,扣型:EUE投球滑套2投球滑套1压差滑套3985 4015 4035 4130 4170 4190 4210筛管+引鞋43862、遇水(遇油)膨胀封隔器分段压裂该井分段酸压4段,采用VersaFlexTM膨胀式尾管悬挂器+ 3只SWELLPACKER 遇油膨胀封隔器+ 4只Delta Stim Sleeve压裂滑套。

N£ 10K>p下IlSSRdF探:4T7«,45m安全脚=遇油腌胀封PH聽STIflG Sl-I7.12m■上fe■垢將套S F^R;迴紬臨脈封隔鬲2 I' ^t S22K.Om 1>仟皙衍奁工b iSts 5245.^ Im 週池膨胀対:制器1下濒r 5299.28m L>SSj# £1 "Fi^i卜独7" MHR=fet^ 需;43M3»hOm卜略列x严VF務胀堀代■畐排牖F探;-^4111.1 Mm遇紬膨胀砂油膨廉浮濮.浮軽対隔瘵13、双封隔器(连续上提)分段压裂技术4、多封隔器滑套分段压裂*姬簟・W甲・■ ■ *5、水平井环空分段压裂技术先射孔一段,光油管压裂,再射孔一段,利用带封隔器管柱封堵下部开层,环空压裂上部层段,后续压裂依次重复进行。

6、圭寸下压上和圭寸上压下圭寸隔器分段压裂技术工艺原理为:连接管柱下井,油管加液压坐封封隔器,再提高压裂等级,打开压裂上部(下部)压裂通道,进行压裂施工;投球棒解封封隔器,洗井后起出压裂管柱。

工艺管柱形式:油管+SPAJ-103安全接头+FXY444 —114水平井封上压下封隔器或FX-DY-Y444 —114水平井封下压上。

7、封上压下封隔器与压裂桥塞组合分段压裂技朿/b>工艺原理为:在水平井重复压裂过程中,水平段上、下都有开层,用压裂桥塞封堵下部开层,用封上压下封隔器封堵上部开层,从而对水平井中间的射孔层段进行压裂,实现了选层压裂的目的。

8、桥塞封隔分层压裂技术桥塞封隔分层压裂技术是运用桥塞坐封实现封隔压裂,分层改造完毕后下工具将隔离的桥塞打捞出井实现全井连通。

适用于套管固井射孔完井的水平井, 优点有:各段之间封隔可靠;可进行分段试油;施工和垂直井常规大规模压力相同,不受井眼方位与最大水平主应力方向限制;能按照设计规模有效控制裂缝等。

缺点是施工工序复杂,作业周期长、成本高,一般应用高分子材料,以低粘状态下注入水平井筒预定位置,在井筒温度和压力下, 聚合形成类似橡胶的高弹性胶塞,实现隔水平井筒的安全、有效隔离,作业后胶塞可定时软化易 舞柱推厲牺摊1卜moo 鞠ifa :<K |10、填砂+液体胶塞分段压裂技术于清除。

64-2H Wellbore Diagram11、投球选择性压裂12、水平井限流分段压裂技术限流压裂技术是通过调整不同层段的射孔孔数和孔径, 造成不同的孔眼压差,从而使各层段获得所需的井底压力,以达到对各层段同时处理的目的。

限流压裂技术适用于套管固井射孔完井的水平井,可一次改造多个层段, 施工风险小,费用低。

缺点是必须在新井投产时综合考虑限流压裂对射孔的要求,不适于已多段射孔的老井; 分段改造针对性差;改造井段长时由于施工排量和压力的要求,对施工设备的要求较高。

13、 电缆传输射孔+泵送桥塞分段压裂技术 14、 连续油管喷砂射孔环空加砂压裂技术15、水平井连续油管拖动布酸 +酸压增产技术444.5mm) hole drilled to / 8.7 ppg water, gel spud1/4" (311.2mm) Directional le to 2360m MD (2350m TVD) h 9.5 ppg OBMsurvey:3219.50m MD / 3078.72 m TVD 292.35m MD / 3109.49 m TVD 3379.40m MD / 3130.63 m TVD 3466.26m MD / 3137.36 m TVD .14 @3843.33 m MD/ 3160.15 m TVD牛1/2" (114.3mm),15.1 #, P-110, SL Apex set @13-3/8" (339.7mm), 54.5 #, J-55, STC casing set @土 157m. Cemented to surface.Top of Cement ?1,350m MD/TVD(4-1/2" (114.3mm), 15.1#, P-110, SL Apex )9-5/8" (244.5mm), 53.5 #, P-110 LTC casing set at 2,365m MD (2,357m TVD).。

相关文档
最新文档