直线的点向式方程
三维空间中的直线方程表达式

三维空间中的直线方程表达式
在三维空间中,一条直线可以用参数方程或者点向式来表示。
其中,参数方程是指用一个参数表示直线上的所有点,而点向式则是指用一个起点和一个方向向量来表示直线。
参数方程可以用以下公式表示:
x = x_0 + at
y = y_0 + bt
z = z_0 + ct
其中,(x_0, y_0, z_0)是直线上的某一点,而(a, b, c)则是直线的方向向量,t为参数。
点向式可以用以下公式表示:
r = a + tb
其中,a为直线的起点,b为直线的方向向量,而r为直线上的任一点,t为参数。
需要注意的是,当直线平行于坐标轴时,可以用一般式方程来表示:
Ax + By + Cz + D = 0
其中,(A, B, C)为直线的方向向量的系数,而D则是常数项。
使用这些方程可以方便地求解三维空间中的直线问题,比如求直线与平面的交点、直线的距离等。
- 1 -。
空间直线方程

二 、直线的一般式方程
空间直线可以看作是两个不平行平面的交线.由 于平面方程为三元一次方程.因此,两个系数不成比 例的三元一次方程组
A1 A2
x x
B1 y B2 y
C1z D1 0, C2 z D2 0
(2)
表示一条直线,称方
程组(2)为空间直线
的一般式方程.
第七节 空间直线方程
一、直线的点向式方程 二、直线的一般式程 三、直线的参数式方程 四、两直线间的关系 五、直线与平面之间的关系
一、直线的点向式方程
设有已知点M0(x0,y0,z0)和非零向s=(m,n,p).如何建 立过点M0且平行于向量s 的直线.
称s为该直线的方向向量. 设M(x,y,z)为所求直线上任意一点,则
m1m2 n1n2 p1 p2
m12 m12 p12 m22 m22 p22
1 3 (4) 111
0,
12 (4)2 12 32 12 12
故
π 2
,可知L1与L2垂直.
例4 求过点(1,–1,0)且与直线 x 1 y 3 z 1 平行 210
4
12 (1)2 12 32 12 22
2 42 21
从而 arcsin 2 42.
21
三、两直线间的关系
两条直线的方向向量所夹的角为这两条直线的夹角.
设这两条直线的方程为
L1 :
x x1 m1
y y1 n1
z
z1 , p1
L2
:
x x2 m2
y
y2 n2
z
直线的法向量与点法式方程

r 1、已知直线的一个法向量 n , r 求它的一个方向向量 v 。 r r
3、(1)直线的一个方向向量为 r v = (2, 2) ,则它的斜率k = r 它的一个法向量n = 。 r (2)直线的一个法向量为n = (1,1), r 则它的一个方向向量 v = 它的斜率 k = 。
热 身 练 习
点向式方程: v2 ( x − x0 ) − v1 ( y − y0 ) = 0
x − x0 y − y0 = (v1 ≠ 0, v2 ≠ 0) v1 v2
点斜式方程: ( y − y0 ) = k ( x − x0 ) 斜截式方程: y = kx + b
直线的法向量 与点法式方程
r 与直线平行的非零向量, 平行的非零向量 直线的方向向量: 与直线平行的非零向量,用 v 表示 直线的方向向量:
不唯一,互相平行(共线) 不唯一,互相平行(共线)
r 直线的法向量:与直线垂直的非零向量, 直线的法向量:与直线垂直的非零向量, 用 n 表示 垂直的非零向量
不唯一,互相平行(共线) 不唯一,互相平行(共线)
y
r n = ( A
r r uuuu n p0 p = 0
作 业
课本86页 —第6题 练习册62页 —B组第3题
r 3、已知直线 l 的法向量为 n = (2, −3) , 且与两坐标轴围成的三角形的面积为3, 求直线 l 的方程。 解:设直线 l与 x 轴相交于( a, 0) , 由点法式方程,得
典 题
2( x − a ) + (−3)( y − 0) = 0
A( x − x0 ) + B ( y − y0 ) = 0 1、求过点 P (1, 2),且一个法向量为 r n = (3, 4) 的直线方程。 解:由直线的点法式方程,得
第二节 直线方程的点向式与点斜式

典例解析
【举一反三3】 已知直线l的法向量n=(-3,2),并且与 x轴、y轴围成的三角形的面积为12,求直线l的方程.
解:∵直线l的法向量n=(-3,2), ∴可设直线l的方程为-3x+2y+C=0, 又∵直线l与x轴、y轴围成的三角形的面积为12, ∴ 1 | C | | C | =12,解得C=±12,
它的一个法向量为_(_-__2_,__1_) . 8.直线ax-y+a=0(a≠0)在两坐标轴上截距之和是
___a_-__1__.
【提示】 分别令x=0,y=0得直线在y轴、x轴上的 截距分别为a,-1,所以直线在两坐标轴上的截距之和 为a-1.
同步精练
9.经过点A(2,1),且与直线2x+3y-10=0垂直的直线l 的方程为__3_x_-__2_y-__4_=__0_.
典例解析
【例1】 求过点P(-1,2),一个法向量为n=(2,1)的直 线的方程.
2x+y=0
【解析】 此题可由直线的点法式方程求得,也 可以由一般式用待定系数法求得.
方法一:将点P(-1,2)代入直线的点法式方程A(x -x0)+B(y-y0)=0,整理可得直线方程为2x+y=0.
方法二:由于法向量为n=(2,1),可设直线方程为 2x+y+C=0,代入点P(-1,2)可得C=0,即直线方程 为2x+y=0.
典例解析
【例2】 已知点A(-1,2),B(-1,4),求线段AB的垂
直平分线方程.
y=3
【解析】 由题意可知线段AB所在的直线的斜率不
存在,∴线段AB的垂直平分线的斜率为0,∵线段AB的
中点为
1 1 2
,
2
2
4
,即其垂直平分线经过点(-1,3),
三维空间中直线的方程式

三维空间中直线的方程式在三维空间中,直线的方程可以用参数方程和一般方程两种形式表示。
参数方程是将直线上的每一个点都表示为一个参数所确定的向量,而一般方程则是通过直线上两个点的坐标来表示的。
1.参数方程:直线的参数方程可以表示为:x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)为直线上的已知点,而(a,b,c)为直线的方向向量,t为参数。
2.一般方程:首先,我们需要确定直线的方向向量。
假设直线上的两个点分别为P(x1,y1,z1)和Q(x2,y2,z2),则直线的方向向量可以表示为V=PQ=(x2-x1,y2-y1,z2-z1)。
然后,我们可以通过点P的坐标和方向向量V来推导直线的一般方程。
2.1.点向式:直线的一般方程可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c其中(a,b,c)为方向向量V的分量。
2.2.对称式:直线的一般方程也可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c=t这里的t为参数。
2.3.常法式:直线的一般方程还可以表示为:Ax+By+Cz+D=0其中A,B,C为方向向量V的分量,而D为常数。
对于两个不平行的直线,我们可以通过将它们的方向向量进行叉乘来求得它们的交点。
除了参数方程和一般方程,还有其他表示直线的方法,比如点法式、斜截式等。
这些方法都根据直线上已知点和方向向量的不同形式而有所不同。
需要注意的是,在使用直线的方程时,我们需要根据实际情况选择最适合的表达形式。
有时候参数方程更方便,可以直接通过改变参数t来表示直线上的任意一点;而一般方程则适合于求直线与其他平面或直线的交点等问题。
【初中数学】初中数学直线的方程公式

【初中数学】初中数学直线的方程公式【—直线的方程公式】我们在初中学习的直线的方程包括有平面方程和空间方程两种,相较于空间方程来说,平面方程的运用比较的多。
直线的方程平面方程1、一般式:适用于所有直线ax+by+c=0(其中a、b不同时为0)2、点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)当k不存在时,直线可表示为x=x03、斜截式:在y轴上截距为b(即过(0,b)),斜率为k的直线由点斜式只须斜截式y=kx+b与点斜式一样,也需要考虑k存不存在4、dT式:呼吸困难用作和任一坐标轴横向的直线知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为bx+ay-ab=0特别地,当ab均不为0时,斜截式可写为x/a+y/b=15、两点式:过(x1,y1)(x2,y2)的直线(y-y1)/(y1-y2)=(x-x1)/(x1-x2)(斜率k需存在)6、法线式xcosθ+ysinθ-p=0其中p为原点至直线的距离,θ为法线与x轴正方向的夹角7、点方向式(x-x0)/u=(y-y0)/v(u,v不等同于0,即点方向式无法则表示与座标平行的式子)8、点法向式a(x-x0)+b(y-y0)=0空间方程1、通常式ax+bz+c=0,dy+ez+fc=02、点向式:设直线方向向量为(u,v,w),经过点(x0,y0,z0)(x-x0)/u=(y-y0)/v=(x-x0)/w3、x0y式x=kz+b,y=lz+b总结归纳一共有11个直线的方程公式,要运用好的时候也请大家选择了。
空间直线点向式方程和一般方程的相互转化

空间直线点向式方程和一般方程的相互转化数学中,空间直线的表示方式有很多种,其中最常见的有直线的向式方程和一般方程。
这两种方程之间的相互转化在数学中有着广泛的应用。
本文将从向式方程和一般方程的基本概念、转化方法等方面进行介绍。
一、向式方程的基本概念向式方程是指通过直线上一点和直线的方向向量,来表示直线的方程。
具体来说,若直线L上有点P(x0,y0,z0),且直线的方向向量为a(a1,a2,a3),则直线的向式方程可以表示为:(x-x0)/a1 = (y-y0)/a2 = (z-z0)/a3其中,x、y、z分别表示直线上任意一点的坐标。
二、一般方程的基本概念一般方程是指通过直线上两个不同的点来表示直线的方程。
具体来说,若直线L上有两点P1(x1,y1,z1)和P2(x2,y2,z2),则直线的一般方程可以表示为:(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1)其中,x、y、z分别表示直线上任意一点的坐标。
三、向式方程和一般方程的相互转化在数学中,向式方程和一般方程是可以相互转化的。
具体来说,有以下两种转化方式:1. 从向式方程转化为一般方程若已知直线L的向式方程为:(x-x0)/a1 = (y-y0)/a2 = (z-z0)/a3我们可以通过以下步骤将其转化为一般方程:(1)将向量a化为平面上的两个向量b和c。
具体来说,我们可以任意选取两个向量b和c,使它们与向量a不共线,然后使用向量叉积的方法求出向量n=b×c(其中×表示向量叉积)。
向量n垂直于平面,而既过点P且平行于向量a的直线L,则与平面到点P的垂线n相交于点Q,可以把向量PQ看成是平面上的向量,其分别在b、c上的投影值分别为t和s(t和s为实数)。
因此,我们可以得到以下向量表示:PQ = tb+sc(2)将向量表示化为坐标表示,具体来说,我们可以将向量b、c和n 分别表示为坐标向量:b = (x1,y1,z1)c = (x2,y2,z2) n = (a1,a2,a3)则有:PQ = tb+sc = (x-x0,y-y0,z-z0)因此,我们可以得到以下解方程组的方法:(x-x0)/a1 = (y-y0)/a2 = (z-z0)/a3(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1)2. 从一般方程转化为向式方程若已知直线L的一般方程为:(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1)我们可以通过以下步骤将其转化为向式方程:(1)选取一点P(x0,y0,z0)在直线上,我们假设刚刚选取的点为P(x0,y0,z0)。
直线的点向式方程

如:已知点P0(x0,y0)、P(x,y),求向量 P0P的坐标 P0P =(x-x0,y-y0)
2、向量P0P =(x-x0,y-y0)与 v= (v1,v2)平行 的充要条件
v2(x-x0)- v1(y-y0)=0
方向向量:与一条(1)点M(-3,-4),方向向量v=(-2,5)。
(2)点M(-2,5),方向向量v=(0,-3)。
(3)点M(6,-7),方向向量v=(-4,3)。
练习2
选出唯一正确答案
已知直线过点M (-2,3),方向向 量v=(-1,4),则直线方程为( D )
y 3 x 2 A 1 4
这条直线的方向向量,通常用v表示。 y
注:一条直线的方向向量
不是唯一的。如果v=(v1,v2) 是直线的一个方向向量, 则tv(t≠0,t∈R)也是这个直 线的一个方向向量。
o
x
y P(x,y)
l
P0(x0,y0)
v v1 , v2
P0 P x x0 , y y0
o
x
v v1 , v2
P0 P ∥ v v2(x-x0)-v1(y-y0)=0
特别地:如果v1≠0,v2≠0,则方程还可以写成 点向式 方程
x x0 y y0 v1 v2
1、v1=0, v2≠0
y
2、v1≠0, v2=0
y P0(x0,y0)
x=x0
P0(x0,y0)
y=y0
x
O x
O
例1、求通过点A(1,-2),且一个方向向量为v =(-1,3)的直 线方程。
x2 y3 C 4 1 x2 y3 B 4 1 x2 y3 D 1 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业:P22
1-(1)(2)
有三个人去住店,三人共住一间房, 一 晚三十块钱,每人给了十块钱,但这天刚好 了打特价,只需要25元一晚,所以老板将剩 下的五元交给服务生.让其退还给那三个 人,但服务生却从中拿出二元放入自己的 口袋,剩下的三元还给那三个人,一人一块. 就是三个人每人分别给了九块,那就是 3*9+2(服务生偷放口袋的2元)=29块,那还 有一块钱哪去了呢???
v (2,0)
y3
求过点P(-4,2),且平行于向量 v (3,6)
的直线方程。
2x y 6 0
例 题 训 练
例2:求过点 A(1,2) 和 B(2,4) 的直线方程 解:先求
AB (3,2)
依直线的点向式方程(2),得
x 1 y 2 3 2
直线的点向式与点斜式方程
直线的点向式方程
在直角坐标系XOY中,过已知点 P ( x , y ) 作与一非零向量v (v , v )
0 0 0 1 2
平行的直线L,这条直线L是唯一确定的。下面我们来求直线L的方程。 L y
P
P0
0
v x
(1)
设 P ( x, y ) 是一动点,则点P在直线L上的充分必要条件是向量 P P 和向量 v
解:依直线的点向式方程(2)式,得直线的方程为
x (3) y 1 2 1
整理得所求的直线方程为
x 2y 1 0
练习:
1。求过点P(5,3),且平行于向量 的直线方程。
v (2,1)
x 2 y 11 0
2。求过点P(5,3),且平行于向量 的直线方程。
整理得所求直线的方程为
2x 3y 8 0
练习:求过点
A(3,1)
和 B(3,0) 的直线方程。
x 6y 3 0
小结:通过本节的学习,要掌握直线点向式方程,
v (x x ) v ( y y ) 0
2 0 1 0
xx yy v v
0 1,2,3
直线L平行于y轴,方程变为
0
y0 0 x0
y=y0 x
0
当 v 0, v 0 时, (1)式可化为
1 2
xx yy v v
0 1 2
0
(2)
结论:(1)和(2)式都叫做直线的点向式方程。
例 题 训 练
例1:求过点P(-3,1),且平行于向量 v (2,1)
的直线方程。 分析:我们可选择(2)式来解
0
的坐标成比例(图(1)),即
x x tv tR y y tv
0 1 0 2
在此方程中消去t,得
v (x x ) v ( y y ) 0
2 0 1 0
(1)
x=x0 y
当 v 0, v 0
1 2
当 v 0, v 0
2 1
xx 直线L平行于x轴,方程变为 y y