七年级平方根练习题

合集下载

初一平方根练习题86899

初一平方根练习题86899

初一平方根练习题(一)填空1.16的平方根是________.3.49的平方根是____.5.4的平方根是_______7.81的平方根是________.8.25的算术平方根是_________.9.49的算术平方根是_________.]11.62的平方根是______.12.0.0196的算术平方根是________.13.4的算术平方根是________;9的平方根是________.14.64的算术平方根是________.15.36的平方根是________; 4.41的算术平方根是_______.18.4的平方根是____, 4的算术平方根是___.19.256的平方根是____.______.37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.0.1010010001…各数中,属于有理数的有________;属于无理数的有________.40.把下列各数中的无理数填在表示无理数集合的大括号里:无理数集合:{ }41.绝对值最小的实数是________.44.无限不循环小数叫做________数.45.在实数范围内分解因式:2x3+x2-6x-3=________.(二)选择46.36的平方根是 [ ]48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ]A.1个; B.2个; C.3个; D.4个.A.-36; B.36; C.±6; D.±36.50.下列语句中,正确的是 [ ]51.0是 [ ]A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.52.以下四种命题,正确的命题是[ ]A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.53.和数轴上的点一一对应的数为 [ ]A.整数; B.有理数; C.无理数; D.实数.54.和数轴上的点一一对应的数是 [ ]A.有理数; B.无理数; C.实数; D.不存在这样的数.55.全体小数所在的集合是 [ ]A.分数集合; B.有理数集合;C.无理数集合; D.实数集合.56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;(3)一个有理数与一个无理数的和一定是无理数.其中真命题是[ ]A.(1),(2)和(3); B.(1)和(3);C.只有(1);D.只有(3).数是[ ] A.4; B.3; C.6; D.5.A.2360; B.236 C.23.6; D.2.36.59.数轴上全部的点表示的数是[ ]A.自然数 B.整数; C.实数; D.无理数; E.有理数.60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.61.数轴上全部的点表示的数是 [ ]A.有理数;B.无理数;C.实数.63.和数轴上的点是一一对应的数是 [ ]A.自然数; B.整数; C.有理数; D.实数.A.1个; B.2个; C.3个; D.5个.65.不论x,y为什么实数,x2+y2+40-2x+12y的值总是[ ]A.正数; B.负数; C.0; D.非负数.数为 [ ] A.2; B.3; C.4; D.5.A.1; B.是一个无理数; C.3; D.无法确定.A.n为正整数,a为实数; B.n为正整数,a为非负数;C.n为奇数,a为实数; D.n为偶数,a为非负数.69.下列命题中,真命题是[ ] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D.最大的负数不存在.[ ] A.0.0140; B.0.1410; C.4.459; D.0.4459.A.1.525; B.15.25; C.152.5; D.1525.A.4858; B.485.8; C.48.58; D.4.858.A.0.04858; B.485.8; C.0.0004858; D.48580.74.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是 [ ]A.a与b互为相反数;B.a+b<0; C.-a<0;D.b-a<0.练习题(二)一、填空、1.144的平方根是________.5.-216000的立方根是________.6.-64000的立方根是_________.8.0的平方根有_______个,其根值是_______.9.正数a的平方根有_______个,即为_______.10.负数有没有平方根?_______.理由_______.11.25=( )2.12.3=( )2.(二)计算16.求0.000169的平方根.20.求0.0064的平方根.22.求0.000125的立方根. 23.求0.216的立方根.1.求下列各数的平方根,算术平方根:(1)121(2)0.0049(3)(4)4(5)|a|22.求下列各式中的x: (1)49x2=169 (2) 9(3x-2)2=(-7)2(3)=11 (4) 27(x-3)3=-643.判断正误: (1) 的平方根是±3。

平方根解方程练习题初一

平方根解方程练习题初一

平方根解方程练习题初一解题方法一:分解因式法题目1. 解方程:x² - 9 = 0思路:将x² - 9进行因式分解,得到(x + 3)(x - 3) = 0。

根据乘法逆元的性质,当一个乘积等于零时,至少存在一个因式等于零。

所以,x + 3 = 0 或 x - 3 = 0。

解得:x = -3 或 x = 3题目2. 解方程:4x² - 16 = 0思路:将4x² - 16进行因式分解,得到4(x + 2)(x - 2) = 0。

根据乘法逆元的性质,当一个乘积等于零时,至少存在一个因式等于零。

所以,x + 2 = 0 或 x - 2 = 0。

解得:x = -2 或 x = 2题目3. 解方程:25 - x² = 0思路:将25 - x²进行因式分解,得到(5 + x)(5 - x) = 0。

根据乘法逆元的性质,当一个乘积等于零时,至少存在一个因式等于零。

所以,5 + x = 0 或 5 - x = 0。

解得:x = -5 或 x = 5解题方法二:开平方法题目1. 解方程:x² - 16 = 0思路:将方程x² = 16进行开平方,得到x = ±√16。

由于√16 = 4,所以解得:x = 4 或 x = -4。

解得:x = 4 或 x = -4题目2. 解方程:9x² - 144 = 0思路:将方程9x² = 144进行开平方,得到x = ±√(144/9)。

由于√(144/9) = 4,所以解得:x = 4 或 x = -4。

解得:x = 4 或 x = -4题目3. 解方程:16 - 4x² = 0思路:将方程4x² = 16进行开平方,得到x = ±√(16/4)。

由于√(16/4) = 2,所以解得:x = 2 或 x = -2。

解得:x = 2 或 x = -2综上所述,平方根解方程的练习题初一可以通过分解因式法或开平方法求解。

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。

(完整版)《平方根》典型例题及练习

(完整版)《平方根》典型例题及练习

平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根.3、重要公式: (1)=2)(a (2){==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.7.若一个数的立方根等于数的算术平方根,则这个数是_____________.8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、6 D 、 6±例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.下列说法中正确的是( ) A .9的平方根是3 B422. 4的平方的倒数的算术平方根是( ) A .4 B .18C .-14D .143.下列结论正确的是( ) A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个6.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是( )A 、6B 、6±C 、 6D 、 6±9.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-11.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 12.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a- C .2a - D .3a14.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )A .1± B. 4 C. 3或5 D. 515.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A.2- B. 5± C. 5 D. 5- 二、填空题: 1.2)8(-= , 2)8(= 。

七年级下册平方根练习题

七年级下册平方根练习题
二、填空题
11.若 是 的算术平方根,则 的平方根是______.
12.如图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为___.
13.若 +|b+1|=0,则a2018+b2019=_____.
14.平方等于本身的数是__________,立方等于本身的数是__________.
七年级下册平方根练习题
一、单选题
1.实数25的算术平方根是()
A.±5B.5C. D.±
2.4的平方根是()
A. B.2C. D.
3.计算 的ቤተ መጻሕፍቲ ባይዱ果为( )
A.6B.-6C.18D.-18
4.49的算术平方根是()
A.7B.±7C.﹣7D.
5.9的算术平方根是( )
A.±3B.3C. D.
6.若 ,则 的值等于( )
A.-3B.3C.-1D.1
7.下列各数:5,-3,(-3)2, , ,0, 中,在实数范围内有平方根的有( )
A.3个B.4个C.5个D.6个
8.平方根是本身的是()
A. B. C. D.
9.若整数x满足 ,则x的值是( )
A.8B.9C.10D.11
10.已知实数 满足 ,那么 的值是()
A.1999B.2000C.2001D.2002
15.已知a2=9,|b|=6,且 ,则a-b的值是_______.
三、解答题
16.计算: .
17.已知 ,求 的平方根.
18.如果一个正数a的平方根是 和 ,求a的值.
19.一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2
(1)求a和x的值;
(2)求3x+2a的平方根.

100道平方根练习题

100道平方根练习题

100道平方根练习题一、填空题1.如果x的平方等于a,那么x就是a的,所以a的平方根是2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4的平方根是5.非负的平方根叫平方根二、选择题6.9的算术平方根是A.- B. C.± D.817.下列计算不正确的是A=±2B? .下列说法中不正确的是A.9的算术平方根是B29. 4的平方根是A.±B.± C.± D10.的平方的倒数的算术平方根是A. B.三计算题11.计算:100; 0;159;1;1;0.092513_______;9的平方根是_______.四、能力训练14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是A.x+1 B.x2+1 C+1 D- 1 -15.若2m-4与3m-1是同一个数的平方根,则m的值是 A.- B.1 C.-3或1 D.-116.已知x,y2=0,则xy的值是A.4B.- C.五、综合训练17.利用平方根、立方根来解下列方程.2-169=0;42-1=0;99D.-42731x-2=0;3=4.2六、提高题18、x?3??y?5??0,求?x?y?的平方根219、4a2?b2?4a?10b?26?0,求ba的平方根20、a2?b2?2a?8b?17?0,a、b为实数,求ab?的平方根 ba- -6.1平方根练习题一、选择题1. 下列各式中正确的是 A.=±B. =-C. ±36=±D. ?100=102. 当x=-6时,x的值为A. B. - C.3 D.33. 下列说法正确的是 A.的平方根是±2B. -a一定没有平方根C. 0.9的平方根是±0.3D. a-1一定有平方根4. 已知正方形的边长为a,面积为S,则 A. S=a B. S 的平方根是aC. a是S的算术平方根 D. a=±5. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a的算术平方根是a;④的算术平方根是π-4;⑤算术平方根不可能是负数。

七年级数学上册综合算式专项练习题平方根的计算练习

七年级数学上册综合算式专项练习题平方根的计算练习

七年级数学上册综合算式专项练习题平方根的计算练习在七年级数学上册的学习中,综合算式是一个非常重要的内容。

综合算式包括了多个运算符,例如加减乘除等,要求学生在运算中较为熟练。

而平方根是综合算式中较为特殊的一类运算,需要用到数学公式进行计算。

在本篇文章中,我们将专门针对平方根的计算进行练习,以提高学生的计算能力。

练习题一:求平方根1. √16 =2. √25 =3. √9 =4. √36 =5. √64 =练习题二:混合运算1. 3 + √9 =2. 4 - √16 =3. √25 + 3 =4. √36 - 2 =5. 6 × √64 =练习题三:平方根的运算规律1. √a × √b = √( )2. √a ÷ √b = √( )3. √(a × b) = √( ) × √( )4. √(a ÷ b) = √( ) ÷ √( )5. (√a + √b) × (√a - √b) = ( )练习题四:平方根的应用1. 如果房屋的面积为√169平方米,那么房屋的边长是多少米?2. 圆的半径为√25米,求圆的周长。

3. 边长为√64的正方形的周长是多少?4. 如果圆的半径为4米,求圆的面积。

5. 如果正方形的周长为16米,求正方形的面积。

练习题五:解方程1. √x = 5,求x的值。

2. 2 + √(x - 3) = 7,求x的值。

3. √(2x + 1) = 3,求x的值。

4. 3 - √(x + 2) = 1,求x的值。

5. √(x + 1) + √(x - 1) = 4,求x的值。

通过以上综合算式专项练习题,我们可以加深对平方根的计算能力的理解和掌握。

希望同学们能够认真完成每道题目,并逐步提高自己的算式运算能力。

数学是一门需要不断练习的学科,只有通过大量的练习,才能够在数学上取得优秀的成绩。

加油吧!。

七年级下册数学同步练习题库:平方根(计算题:一般)

七年级下册数学同步练习题库:平方根(计算题:一般)

平方根(计算题:一般)1、如果9的算术平方根是a,b的绝对值是4,求a-b的值.2、求下列各数的平方根.(1)6.25;(2);(3);(4)(-2)4.3、我们已经学过完全平方公式,知道所有的非负数都可以看作是一个数的平方,如,那么,我们可以利用这种思想方法和完全平方公式来计算下面的题:例:求的算术平方根.解:∴的算术平方根是.你看明白了吗?请根据上面的方法化简:(3)4、计算:(1)(2)(3)+-(4)5、计算:﹣22++(3﹣π)0﹣|﹣3|6、求下列各式中的x的值,(1)(2)(3)7、计算:(1)()2+﹣(2)++﹣|1﹣|+.8、求下列各式的值(1)﹣﹣(2)﹣12+(﹣2)3×.9、(1)++(2)(﹣)2﹣|1﹣|+﹣5(3)求x值:(3x+1)2=16(4)(x﹣2)3﹣1=﹣28.10、求下列式中的x的值.3(2x+1)2=27.11、计算:|﹣3|﹣(5﹣π)0+.12、计算:(1)(2)13、(1)计算:|﹣3|+(π+1)0﹣;(2)已知:(x+1)2=16,求x.14、计算:(1);(2);(3);(4);(5);(6)(结果保留3个有效数字)15、(2015秋•宝应县月考)计算:(1)()2+﹣(π﹣3.14)0+;(2)(2x﹣1)2﹣1=8.16、(1)计算:;(2)求中x的值.(3)÷(4)17、计算:(1);(2)解方程:9x2-121=0.18、计算(1);(2);(3);(4).19、计算:(﹣1)2015+﹣20150﹣(﹣)﹣2.20、计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.21、(7分)计算:.22、计算:23、若,求2x+5的算术平方根.24、如果,求x+y的值.25、求下列各式中x的值.(1)(x+1)2=49;(2)25x2-64=0(x<0).26、求下列各数的平方根.(1)6.25;(2);(3);(4)(-2)4.27、如果,求x+y的值.28、已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求ab的值.29、已知3x-4是25的算术平方根,求x的值.30、求下列各数的算术平方根:(1)900;(2)1;(3);31、若(a-1)2+|b-9|=0,求的平方根.32、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的小正方形.(1)用、、表示纸片剩余部分的面积;(2)当,,且剪去部分的面积等于剩余部分的面积时,求正方形的边长的值.33、计算:34、已知,则的整数部分是多少?如果设的小数部分为b,那么b是多少?35、一个正数a的平方根是3x-4与2-x,则a是多少?36、物体从高处自由下落,下落的高度h与下落时间t之间的关系可用公式表示,其中g=10米/秒2,若物体下落的高度是180米,则下落的时间是多少秒?37、用计算器计算,,,.(1)根据计算结果猜想(填“>”“<”或“=”);(2)由此你可发现什么规律?把你所发现的规律用含n的式子(n为大于1的整数)表示出来.38、用计算器计算:≈________.(结果保留三个有效数字)39、若△ABC的三边长分别是a、b、c,且a与b满足,求c的取值范围.40、求下列各数的算术平方根:(1)900;(2)1;(3);41、求下列各式中x的值:(1)169x2=100;(2)x2-3=0;(3)(x+1)2=81.42、如果a为正整数,为整数,求a可能的所有取值.43、若,求2x+5的算术平方根.44、若(a-1)2+|b-9|=0,求的平方根.45、计算:(10分)(1)已知:(x+2)2=25,求x;(2)计算:46、计算:参考答案1、72、±2.5,,,±43、(1)(2)(3)4、(1)-1.6 (2)±15 (3) 1 (4)5、-46、(1)、x=;(2)、x=1;(3)、x=8或x=-47、﹣10;﹣2+.8、(1)原式=0;(2)原式=﹣39、(1)原式=9﹣3+=6;(2)原式=2﹣+1+2﹣5=5﹣6;(3)x=1或x=﹣;(4)x=﹣1.10、x=1或x=-2.11、712、(1)、=7,=-7;(2)、5.13、(1)4;(2)x=3或x=﹣5.14、(1);(2)-17;(3)-9;(4)2;(5)-36;(6)37.9.15、(1)0;(2)x1=2,x2=﹣1.16、(1)3;(2)x= 8或-2;(3);(4).17、(1)-1;(2).18、(1);(2);(3);(4).19、﹣4.20、原式=2.21、﹣1.22、23、324、1325、(1)6或-8(2)26、(1)±2.5(2)(3)(4)±427、1328、1029、330、(1)30(2)1(3)31、±332、(1);(2)33、634、35、136、637、(1)> (2)(n为大于1的整数).38、0.46439、1<c<340、(1)30,(2)1,(3)41、(1).(2).(3) x=8或x=-1042、a所有可能取的值为5、10、13、14.43、44、±345、(1)3,-7 (2)46、.【解析】1、因为9的算术平方根是3,所以a=3.因为|b|=4,所以b=4或-4.所以当a=3,b=4时,a-b=-1;当a=3,b=-4时,a-b=7.2、(1)因为(±2.5)2=6.25,所以6.25的平方根是±2.5.(2)因为,所以的平方根是,即.(3)因为,所以的平方根是.(4)因为(±4)2=(-2)4,所以(-2)4的平方根是±4.3、试题分析:仿照例题直接利用完全平方公式开平方得出即可.利用中所求代入进而得出答案.仿照例题分别化简各二次根式,进而求出即可.试题解析:4、试题分析:根据平方根和立方根的意义解方程即可.试题解析:(1)=(2)=(3)=-3+3+1=1(4)==-3-++=考点:立方根与平方根5、试题分析:分别进行乘方、二次根式、零指数幂和绝对值的化简等运算,然后合并求解.试题解析:﹣22++(3﹣π)0﹣|﹣3|=﹣4+2+1﹣3=﹣4考点:实数的运算6、试题分析:(1)、首先根据等式的性质得出,然后根据平方根的性质得出x的值;(2)、首先根据等式的性质得出的值,然后根据立方根的计算法则得出答案;(3)、首先根据题意得出,然后根据平方根的性质得出x-2=6,从而求出x的值.试题解析:(1)、解得:x=(2)、=8 x+1=2 解得:x=1(3)、 x-2= 6 解得:x=8或x=-4考点:解方程7、试题分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用立方根定义,以及绝对值的代数意义化简,合并即可得到结果.解:(1)原式=9﹣4﹣15=﹣10;(2)原式=﹣1﹣2+﹣+1+=﹣2+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.解:(1)原式=3﹣6+3=0;(2)原式=﹣1﹣1﹣1=﹣3.9、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用二次根式性质,平方根定义,绝对值的代数意义化简,合并即可得到结果;(3)方程利用平方根定义开方即可求出x的值;(4)方程整理后,利用立方根定义开立方即可求出x的值.解:(1)原式=9﹣3+=6;(2)原式=2﹣+1+2﹣5=5﹣6;(3)开方得:3x+1=4或3x+1=﹣4,解得:x=1或x=﹣;(4)方程整理得:(x﹣2)3=﹣27,开立方得:x﹣2=﹣3,解得:x=﹣1.10、试题分析:先两边都除以3,再根据平方根的定义进行求解.试题解析:(2x+1)2="9"2x+1=±3.2x+1=3或2x+1=-3x=1或x=-2.考点:平方根.11、试题分析:首先根据绝对值、0次幂以及二次根式的计算法则求出各式的值,然后进行求和. 试题解析:原式=3﹣1+5=7.考点:有理数的计算12、试题分析:(1)、利用直接开平方法进行求解;(2)、首先根据算术平方根以及立方根的计算法则求出各式的值,然后进行有理数的加减法计算.试题解析:(1)、=49 解得:=7,=-7(2)、原式=3-(-4)-2=5.考点:(1)、解一元二次方程;(2)、根式的计算.13、试题分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用立方根定义计算即可得到结果;(2)方程利用平方根定义开方即可求出x的值.解:(1)原式=3+1﹣2+2=4;(2)开方得:x+1=4或x+1=﹣4,解得:x=3或x=﹣5.考点:实数的运算;平方根;零指数幂.14、试题分析:(1)因为的平方等于0.09,据此求值;(2)先计算根号下的运算,然后根据平方根的定义求值;(3)因为-9的立方等于-729,据此求值;(4),根据去绝对值的法则化去代数式中的绝对值符号,然后进行合并;(5)首先计算乘方和开方部分,然后按照有理数的运算法则进行计算;(6)先应用乘法分配律去掉小括号,再化去中括号,进行合并,然后取的近似值,得出结果.试题解析:(1);(2);(3);(4)=2;(5)==-32-1-3=-36;(6)==37.9.考点:实数的运算.15、试题分析:(1)分别根据数的乘方及开方法则、0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.(2)直接利用开方法求出x的值即可.解:(1)原式=2+3﹣1﹣4=0;(2)原方程可化为(2x﹣1)2=9,两边开方得,2x﹣1=±3,解得x1=2,x2=﹣1.考点:实数的运算;平方根;零指数幂.16、试题分析:(1)由零指数幂和负整数指数幂的意义得到原式=4﹣2+1,然后进行加减运算;(2)先变形得到,然后由平方根的定义求解;(3)先由二次根式的乘除法法则进行计算,然后利用二次根式的性质化简后合并即可;(4)先把变成,再由,即可得到结论.试题解析:(1)原式=4﹣2+1=3;(2),∴x-3=±5,∴x= 8或-2;(3)原式==;(4)原式====.考点:1.实数的运算;2.平方根;3.零指数幂;4.负整数指数幂;5.二次根式的混合运算.17、试题分析:(1)先根据平方根和立方根的定义、去绝对值的法则、零指数幂法则对原式进行化简,再进行合并;(2)通过移项得到的值,再通过开平方得到x的值.试题解析:解:(1)原式=3+-1-2-1=-1;(2)移项,得9x2=121,,所以x=.考点:实数的运算;开平方的应用.18、试题分析:(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开方即可求出解;(3)利用算术平方根和立方根的定义开方,再进行加减计算,即可解答;(4)先分别求出立方根和算术平方根,再进行有理数的计算.试题解析:解:(1),,开方得:;(2)方程变形得:,开立方得:x﹣3=3,解得:x=6;(3)原式==;(4)原式==.考点:1.立方根;2.平方根.19、试题分析:首先按照顺序进行计算,然后熟练掌握乘方运算法则、立方根化简、零指数幂、负整数指数幂运算法则是正确解题的关键.试题解析:-1的奇数次方是-1,8的立方根是2,任何不是0的数的0次幂都等于1,∴原式=﹣1+2﹣1﹣4=-4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.20、试题分析:分别利用乘方的意义,二次根式性质化简,零指数幂,负整数指数幂,最立方根定义计算出各项的结果后在合并即可.试题解析:解:原式=﹣1+3﹣2+1﹣3+4=2.考点:绝对值;零指数幂;负整数指数幂;立方根;实数的运算.21、试题分析:利用负整数指数幂、零指数幂、二次根式性质、特殊角的三角函数值分别进行计算即可.试题解析:原式=﹣3﹣4+5+1=﹣1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.22、试题分析:原式= =.考点:实数的计算23、∵,∴x+2=4,∴x=2,∴2x+5=9.∴.24、由题意可知解得x=3.把x=3代入原式,得y=10,所以x+y=3+10=13.25、(1)∵(x+1)2=49,∴x+1=±7,∴x=6或x=-8.(2)∵25x2-64=0,∴25x2=64,∴或(不合题意舍去).∴.26、(1)因为(±2.5)2=6.25,所以6.25的平方根是±2.5.(2)因为,所以的平方根是,即.(3)因为,所以的平方根是.(4)因为(±4)2=(-2)4,所以(-2)4的平方根是±4.27、由题意可知解得x=3.把x=3代入原式,得y=10,所以x+y=3+10=13.28、由题意知2a-1=9,解得a=5.3a+b-1=16,解得b=2,所以ab=5×2=10.29、因为25的算术平方根是5,所以3x-4=5,解得x=3.所以x的值为3.30、(1)因为302=900,所以900的算术平方根是30,即.(2)因为12=1,所以1的算术平方根是1,即.(3)因为,所以的算术平方根是,即.31、由题意得a=1,b=9,所以.因为(±3)2=9,所以的平方根是±3.32、(1)根据题意可知纸片剩余部分的面积=矩形的面积-四个小正方形的面积;(2)根据剪去部分的面积等于剩余部分的面积列方程,然后解方程即可.试题解析:(1).(2)依题意.即:∵x取正数答:正方形的边长是.点睛:本题主要考查用字母表示数或式子的能力. 解题的关健在于要把握好题中的数量关系:纸片剩余部分的面积=矩形纸片面积-4小正方形的面积,即可得出第(1)的结果,在第(2)问中,利用“剪去部分的面积=剩余部分的面积”列方程,并用平方根的定义进行求解,同时注意答案要符合题意.33、试题分析:=3,=4,任何不是零的数的零次幂等于1,=2.试题解析:原式=3+4+1-2=6.考点:无理数的计算.34、由,知的整数部分是5,小数部分.35、根据题意,得3x-4+2-x=0,∴x=1,∴3x-4=3×1-4=-1,∴a=(3x-4)2=1.36、由题意知,所以t2=36,解得t=6.答:下落的时间是6秒.37、(1)>.(2)(n为大于1的整数).(详解:借助计算器可知,根据这一结果,猜想.进而推断出一般结论)38、用计算器计算,所以.39、∵,∴a=1,b=2.又2-1<c<2+1,∴1<c<3.40、(1)因为302=900,所以900的算术平方根是30,即.(2)因为12=1,所以1的算术平方根是1,即.(3)因为,所以的算术平方根是,即.41、(1)∵169x2=100,∴,∴,∴.(2)∵x2-3=0,∴x2=3,∴.(3)∵(x+1)2=81,∴,∴x+1=±9,∴x=8或x=-10.42、∵,且为整数,a为正整数,∴或1或2或3.∴当a=14时,;当a=13时,;当a=10时,;当a=5时,.故a所有可能取的值为5、10、13、14.43、∵,∴x+2=4,∴x=2,∴2x+5=9.∴.44、由题意得a=1,b=9,所以.因为(±3)2=9,所以的平方根是±3.45、试题分析:(1)根据平方根的意义可先求出x+2的值,然后可求出x的值;(2)先将各根式化简,然后进行有理数的加减即可.试题解析:(1)因为(x+2)2=25,所以,所以;(2)=4-2+=.考点:1.平方根;2.二次根式;3.三次根式.46、试题分析:根据负整数指数幂、二次根式、零次幂、特殊角的三角函数值的意义进行计算即可求出代数式的值.试题解析:考点:1.负整数指数幂;2.二次根式;3.零次幂;4.特殊角的三角函数值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_______ . 8 . 25 的算术平方根是 _________ . 9.49 的算术平方根是 ________ .]11.62的平方根是 _____ 12 .0.0196 的算术平方根是 _______ . 13 .4 的算术平方根是 14 .64 的算术平方根是 _______ .15 .36 的平方根是 _____0.1010010001 ⋯各数中,属于有理数的有 __________ ;属于无理数的有 40 .把下列各数中的无理数填在表示无理数集合的大括号里:41 .绝对值最小的实数是一)填空 1. 16 的平方根是 初一平方根练习题3.49 的平方根是5 . 4 的平方根是 7 . 81 的平方根是18 .4 的平方根是 , 4 的算术平方根是19 .256 的平方根是9 的平方根是 __ 4.41 的算术平方根是37 .与数轴上的点一一对应的数是.38 .统称整数;有理数和无理数统称无理数集合: {}44 .无限不循环小数叫做 ______ 数. 45 .在实数范围内分解因式: 2x 3+x 2-6x-3= ________(二)选择46 .36 的平方根是[ ]A . 2360 ;B .236C . 23.6 ;D .2.36 .59 .数轴上全部的点表示的数是 [ ]A .自然数 B .整数; C .实数; D .无理数; E .有理数. 60 .和数轴上的点成一一对应关系的数是 [ ]A .无理数; B .有理数; C .实数; D .自然数.61 .数轴上全部的点表示的数是 [ ]A .有理数; B .无理数; C .实数.63 .和数轴上的点是一一对应的数是 [ ]A .自然数;B .整数;C .有理数;D .实数.A .1 个;B .2 个;C .3 个;D .5 个.65 .不论 x ,y 为什么实数, x 2+y 2+40-2x+12y 的值总是 [ ]A .正数; B .负数; C .0; D .非负数. 数为 [ ]A .1;B .是一个无理数;C .3 ;D .无法确定.A .n 为正整数, a 为实数;B .n 为正整数, a 为非负数;C .n 为奇数, a 为实数;D .n 为偶数, a 为非48 .在实数范围内,数 0 ,A . 1 个;B .2 个; 7, -81C .(-5) 2中, 个;有平方根的有个.D .4 A . 50 51 A . 52 A .53-36 ;B .36 ;.下列语句中,正确的是 .0 是 [ ] 最小的有理数; B .绝对值最小的实数; .以下四种命题,正确的命题是 0 是自然数; B . 0 是正数; .和数轴上的点一一对应的数为 C . ±6; D .± 36 .C .最小的自然数; ]D .最小的整数.C .0 [是无理数; D . 0 [是整数.]D .实数. [ ]D .不存在这样的数.整数; B .有理数; C .无理数; .和数轴上的点一一对应的数是 有理数; B .无理数; C ..全体小数所在的集合是 分数集合; B .有理数集合; .下列三个命题:( 1 )两个无理数的和一定是无理数;( 2) (3)一个有理数与一个无理数的和一定是无理数.其中真命题是 A .( 1),( 2)A . 54 A . 55 A . 56 和( 3 ) 实数; [C .无理数集合;D . B .( 1)和( 3);C .只有(1)实数集合.两个无理数的积一定是无理数;[ ]; D .只有( 3 ).A .4;B . 3;C .6;D .5.数是A .2;B .3 ;C .4;D .5.负数.69 .下列命题中,真命题是[ ] A .绝对值最小的实数不存在; B .无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D .最大的负数不存在.[ ]A .0.0140 ;B.0.1410 ;C.4.459 ; D .0.4459 .A. 1.525 ;B.15.25 ;C.152.5 ;D.1525 .A .4858 ;B .485.8 ;C.48.58 ; D .4.858 .A .0.04858 ;B .485.8 ;C.0.0004858 ;D.48580 .74.a,b 是两个实数,在数轴上的位置如图10-1 所示,下面正确的命题是[ ]A.a 与 b 互为相反数; B .a+b <0;C.-a <0; D .b-a <0.练习题(二)一、填空、1.144 的平方根是_____ .5.-216000 的立方根是 _______ .6.-64000 的立方根是_________ .8.0 的平方根有____ 个,其根值是______ .9.正数 a 的平方根有______ 个,即为______ .10 .负数有没有平方根? _____ .理由______ .11 .25=( )2.12 .3=( )2.(二)计算16 .求0.000169 的平方根.20 .求0.0064 的平方根.22 .求0.000125 的立方根.23 .求0.216 的立方根.1. 求下列各数的平方根,算术平方根:(1)121 (2)0.0049(3)2(4)4 (5)|a| 22. 求下列各式中的x: (1)49x 2=16922(2) 9(3x-2) 2=(-7) 23(3) =11 (4) 27(x-3) 3=-643.判断正误: (1) 的平方根是± 3。

( ) (2) = ±。

( ) (3)16的平方根是 4 。

( )(4)任何数的算术平方根都是正数。

( ) (5) 是 3 的算术平方根。

()(6)若a2=b 2,则a=b。

( )(7)若 a=b, 则 a 2=b 2。

( ) (8)729 的立方根是± 9()(9)-8 的立方根是 -2 。

( )(10) 的平方根是± 。

( )(11)- 没有立方根。

() (12)0 的 平方根和立方根 都是 0 ( )4.填空: (1)(-3) 2的平方根是 _____ ,算术平方根是 ______ 。

(2)169 的算术平方根的平方根是 _______ (3) 的负的平方根是 _____。

(4)-是 __ 的_一个平方根,(- )2的算术平方根是 。

_ (5)当m= __ 时_,有意义;当m= _ 时_, 值为0。

(6)当 a 为 __ 时,式子 有意义。

3.在实数范围内下列判断正确的是( )A 、若 |m|=|n|,则 m=n B, 若 a 2>b 2,则 a>bC 、若() 2=|b|, 则 a=b D 、若,则 a=b4.下列四个命题中,正确的是()A 、绝对值等于它本身的实数只有零B 、倒数等于它本身的实数只有1C 、相反数等于它本身的实数只有零D 、算术平方根等于它本身的实数只 有15.在实数范围内, A 、无法确定 B 、只能等于 2 C 、只能等于 1 D 、以上都不对 6.下面说法正确的是() A 、-1的平方根是-1; B 、若x 2=9,则x=3;C 、10-6没有平方根;D 、6 是(-6)2的算术平方根7.的平方根是( ) A 、±2; B 、2; C 、±; D 、8.的算术平方根是( )A ; B 、; C 、; D 、 9.下列各式中,无意义的一个是( )A 、 ; B 、 ; C 、 ; D 、 10.若=0,则( ) A 、x=2;B 、x>2; C 、x<2; D 、x 为任意数)在实数范围内分解因式275 .x 2-5 .76 . x 4-4 .77.x 3-3x . 78 . 2 2 4 2 2x 2+2xy+y 2-7 . 79 . x 4-12x 2+11 .80 . x 2-2x-9自测题答案(一 )填空(7) 是4 的 __ 一_,个数的立方根是-4,这个数是_(9) 已知 x 2=11, 则 x= ____ 。

5.选择题 :(单选) (1)在实数运算中 , 可进行开平方运算的是 (2)若 =5,则x=( )(A)0 (B)10 (3)下列各式中无意义的是_。

_ (8)当x 为 __ 时_, 有意义。

(10)当a<0 时, = ______ 。

)。

(A)负实数 (C)20 (D)30 (B)正数和零 (C) 整数 (D)实数(B) (C)(C)- =-5 (D) = (4) 下列运算正确的是 ( )(A)- =13 (B) =-6 (5)如果 a<0, 那么 a 的立方根是 ( (6)下列各题运算过程和结果都正确的是 (C) =7+ =7 (D) =a+b 4.求下列各式中 x 的值 :(1)4x 2-100=0 选择题1 .等式成立的条件是 ( ) 自然数的算术平方根是x ,则下一个自然数的算术平方根是( ))(A) ((B) (C)- )(A) (B) =2 2.(D)± (D) ±(2)64(x+1) 3+27=0 5. 如果 +|6y-5|=0 ,求 xy 的值。

A 、a 是任意实数B 、a>0C 、a<0D 、 a ≥ 02A 、x+1B 、x 2+1C 、 +1D 、23.-2 ,2 24 .425 .5 26 .3;4二)选择46 .B47.D48 .C49 .C50 .C51 .B52.D53 .D54 .C55 .D56 .D57.B58 .D59 .C60 .C61 .C66.A63 .D64 .B65 .A66 .B67.C68 .A69.D70 .D71 .D72.C73 .A74 .B(一)填空15 .1 .提示:由非负数和为零的性质可知x+1=0 ,x+y=0 ,所以x=-1 ,y=1 ,所以2x+y=-2+1=-1(二)计算(三)在实数范围内分解因式1.判断正误:(1) ×(2) ×(3) ×(4) ×(5) √(6) ×(7) √(8) ×(9) √(10) √(11) ×(12) √2.填空(1) ±3;3 (2)± (3)-(4)3;(5)m≥;m=3(6)a ≥2且 a ≠3(7)立方根;-64 (8)x 为任意实数(9) ± (10)-a3.选择题:(1)B(2)D(3)D(4)C (5)A (6)A4. 求x的值:(1)x=±5(2)x=-5.x= ,y=,xy= 。

答案:1、D 2、D 3、D 4、C 5、C 6、D 7、C 8、A 9、B 10 、A。

相关文档
最新文档