红宝石激光器结构1

合集下载

第六部分量子物理基础习题

第六部分量子物理基础习题

第六部分 量子物理基础 习题:1.从普朗克公式推导斯特藩玻尔兹曼定律。

(提示:15143π=-⎰∞dx e xx)解:λλπλλλd e hc d T M T M T k hc⎰⎰∞-∞-==52000112),()(令x Tk hc =λ,则dx kTxhc d 2-=λ,所以442545034234025252015212)(11)(2112)(TTch kdxexTc h k dxkTxhc e hckTx hc d e hc T M xxT k hcσπππλλπλ=⋅⋅=-=--=-=⎰⎰⎰∞∞∞-证毕。

2.实验测得太阳辐射波谱中峰值波长nm m 490=λ,试估算太阳的表面温度。

解:由维恩位移定律b T m =λ得到K bT m3931091.51049010897.2⨯⨯⨯==--=λ3.波长为450nm 的单色光射到纯钠的表面上(钠的逸出功A =2.29eV ),求: (1)这种光的光子能量和动量; (2)光电子逸出钠表面时的动能。

解:(1) 2.76eV J 1042.4104501031063.6199834==--⨯⨯⨯⨯⨯===-λhchv Es m /kg 1047.1104501063.6hp 27934⋅⨯⨯⨯---===λ(2)由爱因斯坦光电效应方程,得光电子的初动能为eV A hv E k 47.029.276.2=-=-=4.铝的逸出功是4.2eV ,现用波长nm 200=λ的紫外光照射铝表面。

试求: (1)发射的光电子的最大动能; (2)截止电压; (3)铝的红限频率。

解:(1)由光电效应方程得光电子的最大动能为J 102.3106.12.4102001031063.619199834----=⨯⨯⨯-⨯⨯⨯⨯=-=-=A hcA hv E k λ(2)截止电压V 0.2106.1102.319190=--⨯⨯==eE V k(3)红限频率Hz 1001.11063.6106.12.41534190⨯=⨯⨯⨯==--hA v5.在一次康普顿散射中,传递给电子的最大能量为MeV E 045.0=∆,试求入射光子的波长。

激光器的分类

激光器的分类

激光器的分类自从上世纪60年代以来,激光器已经发展出了众多类型,主要包括不同的工作介质、不同的脉宽,因此我们按照激光器的工作介质和输出脉冲两个思路对目前主要的激光器进行分类,并且介绍相关的激光术语。

按激光工作介质,激光器可以分为固体激光器、气体激光器、半导体激光器、光纤激光器、染料激光器和自由电子激光器。

固体激光器(晶体,玻璃):在基质材料中掺入激活离子而制成,都是采用光泵浦的方式激励。

1)钕玻璃激光器:在玻璃中掺入稀土元素钕做工作物质,输出波长:λ=1.053μm2)红宝石激光器:输出波长:λ=694.3nm,输出线宽:∆λ=0.01∼0.1nm工作方式:连续,脉冲3)掺钕钇铝石榴石(Nd:YAG):YAG晶体内掺进稀土元素钕,输出波长:λ=1064nm,914nm,1319nm工作方式:连续,高重复率脉冲连续波可调谐钛蓝宝石激光器:输出波长:λ=675∼1100nm气体激光器:在单色性/光束稳定性方面比固体/半导体/液体激光器优越,频率稳定性好,是很好的相干光源,可实现最大功率连续输出,结构简单,造价低,转换效率高。

谱线丰富,多达数千种(160nm--4mm)。

工作方式:连续运转(大多数)1)氦-氖激光器:常用的为λ=632.8nm根据选择的工作条件激光器可以输出近红外,红光,黄光,绿光(λ=3.39μm,1.15μm)2)CO2激光器:λ=10.6μm3)氩离子气体激光器:λ=488nm,514.5nm4)氦-镉激光器:波长为325nm的紫外辐射和441.6nm的蓝光5)铜蒸汽激光器:波长510.5nm的绿光和578.2nm的黄光6)氮分子激光器:紫外光,常见波长:337.1nm,357.7nm半导体激光器:由不同组分的半导体材料做成激光有源区和约束区的激光器;体积最小,重量最轻,使用寿命长,有效使用时间超过10万小时。

工作物质包括GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟),CdS(硫化镉)。

红宝石激光器讲解

红宝石激光器讲解

红宝石激光器(三能级系统)
E3 E3 (10-9s) E3
(10-3s)
E2
E2
E2
h
E1
E1
E1
在Xe(氙)灯照射下,红宝石晶体中原来处于基态E1的粒 子,吸收了Xe灯发射的光子而被激发到E3能级。粒子在 E3能级的平均寿命很短(约10-9秒)。大部分粒子通过无 辐射跃迁到达激光上能级E2。粒子在E2能级的寿命很长, 可达3×10-3秒。所以在E2能级上积累起大量粒子,形成 E2和E1之间的粒子数反转,此时晶体对频率ν满足hV= E2—E1的成分就被放大。
• 眼科:用于视网膜的焊接,治疗青光眼,虹膜的 切除等;
激光的首次在医学上 的成功应用是进行眼 内手术,无需要切开 眼球。早在1962年, 一台红宝石激光器将 病人脱落的视网膜与 眼球重新连接,使他 恢复了视力。
红宝石激光器医学应用
• 皮肤科:用于照射治疗; 红宝石激光器是1960年世界上制成的第一台激光 器,也是最早应用于医疗上的激光器。 • 红宝石激光器波长为694.3nm的可见红光,这种 波长的激光最不易被氧合血红蛋白吸收,而黑色 素对其吸收率较高,尤其适用于各种色素性疾病。 • 临床常用其长脉冲模式,深入皮肤真皮层,破坏 毛囊,永久性去除身体多余毛发; • 调Q模式,使黑色素细胞大量吸热,并在超脉冲 波的作用下破裂分解,可有效治疗蓝、黑和绿色 文身及各种良性色素性病变。
激光的诞生
1960 年 5 月 15 日 , 美 国 加利福尼亚州休斯实验 室的科学家梅曼设计和 建造了一台小型的激光 发生器。他将闪光灯线 圈缠绕在指尖大小的红 宝石棒上,从而产生一 条相当集中的纤细红色 光柱,当它射向某一点 时,可使这一点达到比 太阳还高的温度 ,激光 时代由此开启,从此和 人们的生活息息相关。

激光器原理

激光器原理

激光器原理各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢典型激光器的原理与应用激光之源--典型激光器的原理、特点及应用一前言自从1960年,美国休斯飞机公司的科学家博士研制成功世界上第一台红宝石激光器以来,人类对激光器件的研究与应用取得了迅猛的发展。

激光器的诞生,为人类开发利用整个光频电磁波段掀开了崭新的一页,也为传统光学领域注入了生机,并由此产生了量子光学、非线性光学等现代光学领域分支。

图1 第一台红宝石激光器激光器由工作物质、泵浦源和光学谐振腔三个基本部分构成。

其中,工作物质是激光器的核心,是激光器产生光的受激辐射、放大的源泉之所在;泵浦源为在工作物质中实现粒子数反转分布提供所需能源,工作物质类型不同,采用的泵浦方式亦不同;光学谐振腔为激光提供正反馈,同时具有选模的作用,光学谐振腔的参数影响输出激光器的质量。

激光器种类繁多,习惯上主要以以下两种方式划分:一种是按照激光工作物质,一种是按激光工作方式分,而本文主要是介绍按照激光工作物质划分来介绍典型的激光器。

二典型激光器1,气体激光器气体激光器利用气体或蒸汽作为工作物质产生激光的器件。

它由放电管内的激活气体、一对反射镜构成的谐振腔和激励源等三个主要部分组成。

主要激励方式有电激励、气动激励、光激励和化学激励等。

其中电激励方式最常用。

在适当放电条件下,利用电子碰撞激发和能量转移激发等,气体粒子有选择性地被激发到某高能级上,从而形成与某低能级间的粒子数反转,产生受激发射跃迁。

下面是典型激光器的示意图:图2 气体激光器示意图根据气体工作物质为气体原子、气体分子或气体离子,又可将气体激光器分为原子激光器、分子激光器和离子激光器。

原子激光器中产生激光作用的是未电离的气体原子,激光跃迁发生在气体原子的不同激发态之间。

采用的气体主要是氦、氖、氩、氪、氙等惰性气体和铜、锌、锰、铅等金属原子蒸汽。

原子激光器的典型代表是He-Ne激光器。

He-Ne激光器是最早出现也是最为常见的气体激光器之一。

红宝石激光器

红宝石激光器
显然,没有哪个自发辐射光源能达到激光光源的光谱质量。这是因为传统光源是系统处在各种能级都有的杂 乱辐射状态。传统光源的基本特征是宽光谱分布,随机极化,圆形和不规则的波阵面和较低的色温。激光的发射 原理不同于常规光,不是各种能级加在一起的自发辐射产生的,而是受激发射,各种能级的原子被泵浦到较高的 一个激发态上,由于维持的时间总体正态分布,大部分原子都在一段极短的时间内掉到同一个较低的能态上,这 种发射方式导致光处在几乎一致的能量水平,也就是我们平常所说的激光单色性。
发明者
发明者
美国物理学家、世界上第一台激光器的发明者希尔多·梅曼(Theodore H. Maiman)因病于加拿大温哥华的 不列颠哥伦比亚大学逝世,享年79岁。梅曼罹患的是系统性肥大细胞增多症(systemic mastocytosis),一种罕 见的遗传疾病。
终其一生,梅曼获得了无数的奖励。尽管1964年的诺贝尔物理学奖并没有授予发明了世界上第一台激光器的 他,而是给了此前发明了微波激射器并提出激光器原理与设计方案的美国贝尔实验室物理学家汤斯和苏联物理学 家巴索夫、普罗霍罗夫,但梅曼仍两次获得诺贝尔奖提名,并获得了物理学领域著名的日本奖和沃尔夫奖。他还 于1984年被列入“美国发明家名人堂”(National Inventors Hall of Fame)。在《自然》杂志一百周年纪念 的一本书中,汤斯将梅曼的论文称为该杂志100年来发表的所有精彩论文中“字字珠玑的最重要的一篇”。
为了维持这种翻转的粒子数够多,必须有外部的能量把掉下来的原子搬到激发态上,这就需要脉冲激光(例 如YAG激光器、红宝石激光器)中的脉冲氙灯,半导体泵浦激光(又叫DPSS激光,例如绿色的激光笔)中的半导 体激光器,气体放电激光(例如氦氖激光器、CO2激光器)中的放电,化学激光(例如武器级的氧碘激光器)中 的化学反应等能量源来提供能量了。

固体激光器原理固体激光器

固体激光器原理固体激光器

固体激光器原理-固体激光器固体激光器发展历程固体激光器发展历程固体激光器用固体激光材料作为工作物质的激光器。

1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。

固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。

这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。

在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子;(2)大多数镧系金属离子;(3)锕系金属离子。

这些掺杂到固体基质中的金属离子的主要特点是:具有比较宽的有效吸收光谱带,深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。

用作晶体类基质的人工晶体主要有:刚玉、钇铝石榴石、钨酸钙、氟化钙等,以及铝酸钇、铍酸镧等。

用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。

与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。

对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;;具有适于长期激光运转的物理和化学特性。

晶体激光器以红宝石和掺钕钇铝石榴石为典型代表。

玻璃激光器则是以钕玻璃激光器为典型代表。

工作物质固体激光器的工作物质,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。

这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。

玻璃激光工作物质容易制成均匀的大尺寸材料,可用于高能量或高峰值功率激光器。

但其荧光谱线较宽,热性能较差,不适于高平均功率下工作。

常见的钕玻璃有硅酸盐、磷酸盐和氟磷酸盐玻璃。

80年代初期,研制成功折射率温度系数为负值的钕玻璃,可用于高重复频率的中、小能量激光器。

晶体激光工作物质一般具有良好的热性能和机械性能,窄的荧光谱线,但获得优质大尺寸材料的晶体生长技术复杂。

红宝石激光器的工作原理

红宝石激光器的工作原理

红宝石激光器的工作原理红宝石激光器是一种利用红宝石晶体产生激光的装置。

它的工作原理基于激光的受激辐射,通过加载能量到红宝石晶体中,使晶体产生激光放大效应。

首先,让我们来了解红宝石晶体的结构和性质。

红宝石晶体的结构是由氧化铝(Al2O3)组成的,其中掺杂有少量的铬离子(Cr3+)。

这些掺杂的铬离子是红宝石激光器产生激光的关键。

在红宝石激光器中,首先通过能量输入装置将能量传递到红宝石晶体中。

这个能量输入装置通常是一个弧光灯,它会通过通电形成电弧,产生高温和高压的气体,进而激发红宝石晶体。

在激发的过程中,红宝石晶体会吸收能量并使其原子的电子跃迁到高能级。

这个高能级是红宝石晶体内激光产生的起始位置。

在这个高能级上,电子处于不稳定的状态,会很快回到基态。

当电子从高能级回到基态时,会通过辐射的方式释放能量。

这个能量释放的过程中,电子会向基态过渡并释放光子。

这些光子具有相同的频率和相位,并且在晶体中以一定的模式传播。

此时,一个光学谐振腔被放置在红宝石晶体的两端。

这个光学谐振腔由两个高反射镜和一个部分透射镜组成,用于反射和放大激光。

当光子从红宝石晶体中发射出来时,它们会在光学谐振腔中来回地反射。

反射的光子与基态的电子再次发生能量交换,更多的光子被释放,这就是激光放大效应。

在光学谐振腔中,激光光束会不断被反射和放大,最终形成一个强大且定向的激光束。

为了维持激光的连续输出,需要一个能量反馈机制。

在红宝石激光器中,一个部分透射镜会允许一小部分光子从光学谐振腔中逸出。

这些逸出的光子会被光学器件收集起来,通过反馈系统传递回红宝石晶体,补充能量。

这样,红宝石晶体就能够持续地产生激光输出。

总结一下,红宝石激光器的工作原理是通过加载能量到红宝石晶体中,使晶体产生激光放大效应。

在这个过程中,红宝石晶体的铬离子扮演着重要的角色,通过光子的辐射和电子的能量交换释放激光。

激光通过光学谐振腔的反射和放大,最终形成一个强大和定向性的激光束。

第3讲 典型激光器介绍及光线传输矩阵

第3讲 典型激光器介绍及光线传输矩阵

能级

封离式CO2激 光器结构示意 图
12
3.1 典型激光器介绍
13
3.1 典型激光器介绍
▪ Ar+离子激光器
➢ Ar+激光器一般由放电管、谐振腔、轴向磁场和回气管等几部分组 成。如下图所示为石墨放电管的分段结构 。
分段石墨结构Ar+激光器示意图
14
3.1 典型激光器介绍
15
3.1 典型激光器介绍
3、不同介质介面(平面)

ro ri 0

ro


0
1 2
ri

1

ro ro



0
0
1 2


ri ri

Байду номын сангаас
由近轴近似,折射定律可以写成
1 sin ri 2 sin ro 1 ri 2 ro
辐射不是基于原子分子或离子的束缚电子能级间的跃磁韧致辐射带电粒子在磁场中受到洛伦兹力的作用会作加速运动从而产生辐射当速度接近光速的电子作圆周运动时将会辐射出光子由于这种辐射1947年在同步加速器上被发现的因而被命名为同步辐射synchrotronradiation切伦科夫辐射当电子在介质中运动时如果它们的速度比光在介质中的相速度大电子也会产生光辐射其波长随着电子速度而变化虽然光很弱但却是单色性很好的辐射光
➢ 谱线范围宽 ---目前有数百种气体和蒸气可以产生激光,已经观测到 的激光谱线近万余条,谱线覆盖范围从亚毫米波到真空紫外波段, 甚至 X射线、射线波段。
➢ 光束质量优---工作物质均匀一致保证了气体激光束的优良光束质量, 在光束的相干性、单色性方面优于固体、半导体激光器,如He-Ne 激光的单色性很高,Δλ很容易达到10-9~10-11nm,其发散角只有l~ 2毫弧度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红宝石激光器是世界上最早实现激光输出的器件,它是一种输出波长为694.nm(红光)的脉冲器件。

它具有输出能量大、峰值功率高、结构紧凑、使用方便等优点。

目前已广泛应用于打孔划片、动态全息、信息存储等方面。

固体红宝石激光器通常由工作物质、谐振腔、泵浦光源和聚光腔所组成。

1.工作物质。

红宝石激光器以掺杂离子型绝缘晶体红宝石棒为工作物质。

红宝石激光晶体是以刚玉(或称白宝石)单晶为基质,掺入金属铬离子(Cr3+)为激活粒子所组成的晶体激光材料。

呈淡红色,其掺杂波度一般为0.05%(重量)。

工作物质要求有较好的光学质量。

在红宝石晶体中,Cr3+的吸收带有两个,分别在410nm和560nm波长附近,吸收带宽度约为100nm波长左右。

2.光泵。

红宝石激光器采用光激励,脉冲激光器中一般采用发光效率较高的脉冲氙灯。

脉冲氙灯用石英管制成,两端用过渡玻璃封以钍钨电极,管内充以300-500Torr氙气。

灯管由高压充电电源和高压触发器控制点燃。

3.聚光腔。

为了使光泵的光更集中地照射在激光棒上,常用的聚光腔有:圆柱面聚光腔、单椭圆柱面聚光腔、双椭圆柱面聚光腔。

为提高对光线的反射率聚光腔常采用黄铜或不锈钢材料制成,内壁经抛光处理后镀银。

4.光学谐振腔。

红宝石激光器谐振腔多采用平行平面镜腔,全反射镜是反射率为99%以上的多层介质膜,输出镜透过率为50%以上。

近年来,为了减小激光光斑尺寸,也有采用平凹腔结构的,全反射镜采用凹球面镜,其曲率半径约为腔长的3-4倍。

相关文档
最新文档