《高等数学》同步练习册(上)答案
大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。
《高等数学》(一)第一章同步辅导

难点:函数的复合。
典型例题分析与详解
一、单项选择题 1 下列集合中为空集的「」 A { }B {0 } C 0D {x |x2+1=0,x ∈R } 「答案」选D 「解析」因为A 、B 分别是由空集和数零组成的集合,因此是非空集合;0 是一个数,不是集合,故C 也不是空集。在 实数集合内,方程x2+1=0无解,所以D 是空集 2 设A={x |x2-x-6>0 },B={x |x-1 ≤1 }, 则A ∩B=「」 A {x |x >3 }B {x |x C {x |-2 「答案」选B 「解析」由x2-x-6>0 得x >3 或 x3 或x 3 设A 、B 是集合{1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}的子集,且A ∩B={1,3 ,7 ,9},则A ∪B 是「」 A {2,4 ,5 ,6 ,8}B {1,3 ,7 ,9} C {1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}D {2,4 ,6 ,8} 「答案」选A 「解析」由A ∪B=A ∩B={1,3 ,7 ,9},得A ∪B={2,4 ,5 ,6 ,8} 4 设M={0,1 ,2},N={1,3 ,5},R={2,4 ,6},则下列式子中正确的是「」 A M ∪N={0,1} B M ∩N={0,1} C M ∪N ∪R={1,2 ,3 ,4 ,5 ,6} D M ∩N ∩R= (空集) 「答案」选D 「解析」由条件得M ∪N={0,1 ,2 ,3 ,5},M ∩N={1} ,M ∪N ∪R={0,1 ,2 ,3 ,4 ,5 ,6},M ∩N ∩R= . 5 设A 、B 为非空集合,那么A ∩B=A 是A=B 的「」 A 充分但不是必要条件 B 必要但不是充分条件 C 充分必要条件
高数答案 合肥工业大学 中国电力出版社 朱士信

《高等数学》练习册参考答案第一章函数练习11−1.(1);(2).(,0)(0,)22ππ−U [1,0)(0,3]−U 2.3(4)4(4)1,3,(4)6,3.x x x f x x x ⎧++++≥−+=⎨+<−⎩3.(1);(2);(3).(2,3)23(,)e e 1(2,3)(02a a a +−<<4..11,,,11x x x x x −+−5.1,0,[()]0,0,1,0;x f g x x x <⎧⎪==⎨⎪−>⎩1,1,[()]1,1,, 1.e x gf x x e x −⎧<⎪==⎨⎪>⎩6.(1);(2);(3);2cos r a θ=2cos r a θ=−2sin r a θ=(4);(5).2sin r a θ=−r a =7.,r=cos ,sin .x r y r θθθθ⎧==⎨==⎩练习12−1.奇函数.2.3.(1);(2);(3)非周期函数;(4).11,()0,0,1.x f x x x −⎧>⎪==⎨⎪<−⎩2π2π5.22,0,()30,0.a ax x f x xx ⎧−≠⎪=⎨⎪=⎩6.21lg ,100,10[()]1(lg ),10,10x x x f g x x x ⎧≥<≤⎪⎪=⎨⎪<<⎪⎩或2lg ,1,[()]lg ,00 1.x x g f x x x x ≥⎧=⎨<<<<⎩-1或练习13−1.(1);(2);2,sin y u u x ==25,21y u u x ==+(3)(4).ln ,y u v v ===1arctan ,2x y u u v −===2.(1)是;(2)不是;(3)是;(4)不是.第二章极限与连续练习21−1.(1)正确;(2)错;(3)正确.练习22−4..X ≥练习23−1..0,02.(1);(2);(3);(4);(5);(6);(7);(8).01513303(21401323..11x−练习24−1.(1);(2)..C .D 2.(1)正确;(2)错;(3)错;(4)正确;(5)错;(6)正确;(7)错;(8)错.4.(1)同阶不等价;(2)等价.5.(1)当时,;当时,;当时,;(2);(3);n m >0n m =1n m <∞812(4);(5);(6).3121!n 6..6练习25−1.(1)(2);(3);(4);(5).12π2e −8e 2.(1);(2);(3).131练习26−1.(1)是可去间断点;(2)是跳跃间断点;(3)是无穷间断点.1x =−7x =1x =2.(1)是可去间断点,是无穷间断点;0,1x x ==11,2x x =−=(2)是可去间断点,是第二类间断点.0x =(0,1,2,)2x k k ππ=+=±±L 3..4.(1);(2);(3).5.,.a b =139−0ln 221−18.,.11()x f x e−=(1)0,(1)f f −+==+∞第三章导数与微分练习31−1.(1);(2);(3);(4).78x 5414x −−65x −−5616x −2.(1);(2),.()f x =1x =()cos f x x =3x π=3.切线方程为,法线方程为.4.连续且可导.5..2x y +=0x y −=2()ag a 6.,,不可导.10练习32−1.(1;(2),.)2π+32517152.(1);(2);4323226126(6)x x x x x −−++++2cos sin x x xx −(3);(4;22cos ln sin ln cos x x x x x x x x −+(5);(6).22sec tan x x x x−23322ln 26x xx x x ++3.切线方程为,法线方程为.2y x =20x y +=4.交点处夹角为,交点处夹角为.(0,0)2π(1,1)3arctan 45.,.45(3)x +45(6)x +6.(1)错,应为;(2)错,应为;22cos x x 22(1)x x x e +(3)错,应为;(4)错,应为.2x +21111arctan1x x x −⋅++−7.(1;(2);(3);x (sin cos )axe a bx b bx +2sin 12sin x x xθθ−−+(4;(5);(6;2sin sec (cos )x x −⋅(7;(8).+232ln (1)x xx −8..()[()()()]f x x x x e f e e f e f x ′′+练习33−1..2.(1);(2).23x x −+222(32)x xe x +22232()a a x −−3..4.,.2−(2)f ϕ′′⋅+(2)f f ϕϕ′′′′′′⋅++⋅5.(1),;(2)ln 1y x ′=+()1(2)!(1)(2)n nn n y n x −−=−≥.6..14cos(42n n x π−+2练习34−1.(1);(2);(3);22cos33x x y−+2csc ()x y −+cos sin()sin sin()y x x y x x y ++−++(4;(5).2121323(3)x x x +−+−−1(ln 1)a x aa x x +−+2..3..4.5.(1);(2).1210x y −±=43212t t t −−2(1)2t t e t t−+6.,.7..cos t t −cos (cot )t t t −22()(1)2(1)t y e t yt −+−8.切线方程为,法线方程为.3πθ=56πθ=练习35−1..0.122.(1);(2);(3);(4).4211ln 42ax bx x Cx +++2sin x ln sin x 2(arcsin )x 3.(1);(2).2ln(1)1x dx x −−4..5..2(1)y dx −+(ln 21)dx −6.(1);(2);(3);(4).9.98670.4850.494960.99第四章导数的应用练习41−2.,.1223练习42−1.(1);(2);(3);(4);(5);(6);(7).232π18−112e 032..3..4.(1);(2)()f x ′′9,12a b ==−(0)f ′2()(),0,()1(0),0.2xf x f x x x g x f x ′−⎧≠⎪⎪′=⎨⎪′′=⎪⎩练习43−1.,.14360−262..234562122211222221(1)cos(2)24!6!(2)!(21)!2n n n n n x x x x x n x n n θπ−+++−+++−−++L (01)θ<<3..5..12412练习44−1.(1)单调递增,单调递减;(2)单调递增,单调递减.3(0,)43(,1)4(0,)e (,)e +∞2..4.(1)1y =(y=(2)为极大值,为极小值;1(123y =(1)0y =(3)为极大值,为极小值.3243(2)4k y k πππ++=24(24k y k ππππ−−=5.为极小值,无极大值.6.,极大值.3()255f =27.8.,.(f =f =2959..10.11.;.12.米.64a ≥R 84 2.366≈练习45−1.(1)在内凸,在内凹,为拐点;(0,1)(1,)+∞(1,7)−(2)在内凹,在内凸,为拐点.1(,2−∞1(,)2+∞1arctan 21(,)2e 2..4.不是极值点,是拐点.3,0,5a b c =−==0x 00(,())x f x 第五章不定积分与定积分练习51−1.(3);(4);(5).0()()f b a ξ−()b af x dx b a−∫2.(1);(2).ln 23π3.(1);(2).22211xx e dx edx −−>∫∫11(1)xe dx x dx >+∫∫4.(1);(2.22I e ππ≤≤22I e ≤≤练习52−1.(1);(2).2.(1);(2).21[(2)(2)]2f x f a −3cos 2sin xx+0()()x xf x f t dt +∫3.(1);(2).4.(1);(2).5.连续且可导.22sin yyx e −−t −12136.在内连续.32,[0,1),3()11,[1,2].26x x x x x ⎧∈⎪⎪Φ=⎨⎪−∈⎪⎩(0,2)7..8..1212arctan ln(1)2x x x C −+++9.(1);(2)当时,;当时,;(3)38π0a <31(27)3a −−0a ≥31(27)3a −.1)−练习53−1.(2);(3);(4);2sin cos x x xx −−()F x C +()()F x x C −Φ=(5);(6);(7);(8).()f x C +111x C µµ+++C 43−2.(1);(2);(3);212ln 2x x x C −++1arctan x C x −++2tan 22x x x C +−+(4);(5).522()ln 2ln 33x x C −+−1(sin )2x x C −+练习54−1.(1);(2);(3);522(2)5x C −−+122(1)x C ++2ln 35x x C +++(4);(5);(6);1ln cos 22x C −+1ln 2ln 12x C ++1arcsin 2x C ++(7);(8);(9);cos x e C −+31sec sec 3x x C −+11sin 2sin 8416x x C −+(10);(11);357121sin sin sin 357x x x C −++1sin 6212x x C −+(12);(13);33sec sec x x C −+ln csc 2cot 2x x C −+(14);(15);(16);21arctan(sin )2x C +1arctan 22x e C +122(arcsin )x C +(17);(18);(19)ln ln sin x C +523311(31)(31)153x x C ++++;C(20;(21);(22);C +C 13arcsin 32xC +(23).arcsin x e C −2.(1;(2);(3);(4);(5);(6);241(1)4e −5322π−835(7);(8);(9);(10).516π14π−1)8153..4..()ln f x x x C =+311()(2)32f x x C x =−−−+−练习55−1.(1);(2);(3)(1)xx eC −−++arcsin x x C +;11cos 2sin 224x x x C −++(4);(5);21tan ln cos 2x x x x C +−+ln(21)ln 21x x x x C +−+++(6);(7);x x C ++C −++(8);(9);(10)221()2(1)nx a C n −++−1(sin cos )2x x x e C −−+.2ln 1ln 21x x x C x ++−+++2..cos 2sin 244x x C x−+3.(1);(2);(3);(4);(5);(6)111(sin1cos1)22e −+2πln 22π−142π−.1ln 23练习56−1.(1;(2)C +21ln(22)arctan(1)2x x x C+++++(3);(4);(5);31ln ln 13x x C −++sin ln sin 1x C x ++1x e C x ++(6);(7);(8)ln(1)1xx x xe e C e −+++221tan 12x arc x C x +++;C(9);(10).1ln 1xC x x −++−12C 2.(1);(2);(3).14π+132ln 41721(1)24e π+−练习57−1..2..3..4..5..1218π23−1ln 242π+第六章定积分的应用练习62−1..2..3..4..5..6..12e −27412(1)e −23a π54π27..8..9..10.,.1ln 32−22a π53ln 122+12e e −+−22(2)2e e π−+−11..12.,.13..14.(1);(2);(3)163485π245π22π(1,1)21y x=−.30π15..16.17..18134242244()b x a y a b +练习63−1..2.(1)吨;(2)米.57697.5()KJ 660113.(1);(2)一倍;(3).216ah 2512ah 第七章常微分方程练习71−1.(1)一阶;(2)二阶;(3)不是;(4)一阶;(5)三阶;(6)一阶.2.(1)特解;(2)通解;(3)特解;(4)不是解.练习72−1.(1);(2);(3);2221x y Cx=−22(1)(1)x y C −−=(1)(1)x y e e C +−=(4).()1yC a x ay =+−2.2221,1,(1), 1.x xe x y e e x −⎧−≤=⎨−>⎩若若3.(1);(2);(3);(4)2(2)y C x y =+arctany xxy Ce−=1Cx y xe+=.2()102y x y x C −+−=4.(1);(2);(3);()y x x C =+2ln 2x y x =3214()13y x C x =++(4);(5).2sin 1x C y x +=−22y xy C −=5.(1;(2);(3).x C =+44114xx Ce y −=−++4121x Ce x y=−−练习73−1.(1)线性无关;(2)线性无关;(3)线性无关;(4)线性相关.2.(1);(2);(3).33112x x y C e C xe =+2112x x y C e C e =+33112x x y C e C e −=+3..12cos ln sin ln ln y C x C x x =++4..5.是.2129xy x e ∗=−+6.(1);(2);(3);24112xx y C eC e =+112()x y C C x e =+112(cos sin )22xx x y e C C =+(4);(5).12cos 2sin 2y C x C x =+3142x x y e e =+7.(1);(2);(3)112xxy C C e xe=++21122xx y C C e −=++.112sin x y C C e x −=++8..1()sin cos 22xf x x x =+练习74−1.(1);(2);33125ln 183x x x y C x C =−++331232C x x y C =++(3);(4).21arcsin()xy C e C =+11y x=−2..12()ln f x C x C =+3.(1);(2);(3).21C y C x x =+3122ln C y C x C x x x =++32115C y C x x x =++第八章向量代数与空间解析几何练习82−1.(1)不成立;(2)成立;(3)不成立.2.(1);2()a b ×rr (2).3.28.4.(1);(2).2()a b c ×⋅r r r1k =−15k k =−=或5..6..7..3π2λµ=4练习83−3..4..5..362490x y z −+−=320x z −=22(3)x y −+2(2)51z ++=6..7..(1,2,3),8r −=22244(4)y z x +=−练习84−1..2..3.平行,.217511x y z −−==321421x y z −+−==−d =4..5..111x y z −=−=−2350x y z +−=6.22220x y y +−=22220,0.x y y z ⎧+−=⎨=⎩第九章多元函数微分法及其应用练习91−1.(1);(2);2{(,)210}x y y x −+≥2{(,)0,0}x y y x x ≤≤≥(3);(4).2222{(,)}x y r x y R ≤+≤22222{(,,)0}x y z z x y x y ≤++≠且2..(,(,))24f xy f x y x y xy =++练习92−1.不正确.因为此时未必有等式成立.00lim (,)(,)x x y y f x y f x y →→=3,对任给的.令,当≤0ε>2δε=时,则有02δε<<=,0ε≤<所以.00x y →→=练习93−1.,而,所以在处不连续.(0,0)(0,0)0x y f f ==0lim (,)1(0,0)x y xf x y f →==≠(,)f x y (0,0)2.连续且两个偏导数均存在.3.,4.(1),;1(2,1)2x f =(1,2)y f =22z y x x y ∂=∂+22z xxx y ∂−=∂+(2)z z x y∂∂==∂∂(3).u u uxy z ∂∂∂===∂∂∂5.(1);222222222126,12,126z z z x y xy y x x x y y∂∂∂=−=−=−−∂∂∂∂(2),22223222224csccot 4csc cot 2csc ,x x x x x x y z z y y y y yxy x y y −−∂∂==∂∂∂.22242224csccot 4csc x x xx xy zy y yy y −+∂=∂6..22222233222,2,(12)x y x y xyxy ex ye x y e −−−−−−练习94−1.(1)正确,因为可微一定是连续的;(2)不正确,因为一阶偏导数连续是可微的充分条件而不是必要条件.(3)正确,二阶偏导数连续一定有一阶偏导数连续,从而函数在点(,)f x y 00(,)x y 处一定可微.2.(1);(2);2)dz ydx xdy =−(1)(ln(1))1x xdydz y y dx y=++++(3).2222()x y z du e xdx ydy zdz ++=++3..4..5..0.150.10.250.68dz e e e =×+×=×≈ 3.97655.296.时及均存在.(0)0ϕ=(0,0)x f (0,0)y f 练习95−1..2..6)dz t dt =+22()()z y y xf xy f x y x x ∂′′′′=−∂∂3.;.2223132333u yf xyf xy f xy zf x z ∂=+++∂∂2222222233322u x f x zf x z f y ∂=++∂5..21(,2)2y x f x x −=6.(1);123123()()dz f f yf dx f f xf dy =+++−+(2).211222(f yf f xfdu dx dy dz z x x z=−+−练习96−1.(1);cos()cos()5xy xxydy x y ye e dx x y xe −−+=−++(2).20(0,1)211,1,2(1)1y x x x ydy e d y ye e e dxxe dx===−===−=−−2.(1);(2).2,()z z z z x x z y y x z ∂∂==∂+∂+2322322()z zz y ze xy z y z e e xy −−−3..dx 4..此结果表明是的一次函数.22,0dy x ay d ydx y ax dx+=−=+y x 5..6..22()(2),33u v u v z z y z z x x z y z ϕϕϕϕϕϕ∂+∂+==∂−∂−,dx y z dy x zdz x y dz y x−−==−−7..所以.1[(t dy f f dt f f F F dy dx x t dx x t F x y dx ∂∂∂∂∂∂=+⋅=+−+⋅∂∂∂∂∂∂f F f Fdy x t t x f F F dx t y t ∂∂∂∂−∂∂∂∂=∂∂∂+∂∂∂8..f g fg h du f y x yz x g g h dx x y y z∂∂∂∂∂⋅⋅⋅∂∂∂∂∂∂=−+∂∂∂∂⋅∂∂∂练习97−1.2..1,1,1),u∂=−−=−∂ol l 2(1,1,2){1,1,}gradf e −=3..2221{,,}()()()gradu x a y b z c x a y b z c −=−−−−+−+−所以当时.4..222()()()1x a y b z c −+−+−=1gradu =2π练习98−1..1(,)26(1)(1)2f x y x y =+−−−+222[10(1)2(1)(1)2(1)]x x y y R −+−−−−+2..22(,)2y f x y y xy R =+−+练习99−1.在点处取极小值6.2.在点处取极大值.(4,2)(0,0)13.时取极小值.该点是圆222222,ab a b x y a b a b ==++z 2222a b z a b =+极小222222a b x y a b+=+与直线的切点.1x ya b+=4.最大值为3,最小值为1.5.设为椭球面上的任一点,则该点处的切平面与坐标面所围成的四面体的体000(,,)x y z 积为.要求的问题是求函数满足条件的极22200016a b c V x y z =(,,)fx y z xyz=2222221x y z a b c++=大值问题,由拉格朗日乘数法可知所求的点为000x y z ===.min V =练习910−1.切线:,法线:.11211x y π−+−==402x y π+−−=2.切线:,法线:.11214132x y z −−−==−1413250x y z −+−=3.切平面:,法线:.0001ax x by y cz z ++=000000x xy y z z axby zz −−−==4..0=n =n 5.所求的点为或222.222第十章重积分练习101−1..016I ≤≤2.(1);(2).23()()D D x y d x y d σσ+≥+∫∫∫∫2(ln())ln()D Dx y d x y d σσ+≥+∫∫∫∫3..4..(0,0)f 124I I =练习102−1.(1);(2);(3);(4);(5).20312sin 1πππ−−6071163e−2.(1);(2);210(,)x x dx f x y dy ∫∫1(,)dy f x y dx ∫(3);(4);ln 10(,)exdx f x y dy ∫∫120(,)yydy f x y dx −∫∫(5).202(,)ydy f x y dx ∫∫3.(1);(2).(1)1(16x a b a x y V dx c dy abc a b −=−−=∫∫1122001()6x V dx x y dy −=+=∫∫5.(1);(2);2cos 400(cos ,sin )d f r r rdr πθθθθ∫∫4sin 02sin (cos ,sin )d f r r rdr πθθθθθ∫∫(3).23cos 04(cos ,sin )d f r r rdr πθπθθθ∫∫6.(1);(2);230cos (cos ,sin )aa d f r r rdr πθθθθ∫∫2cos 2202()d f r rdr πθπθ−∫∫(3).13cos 203()()d f r rdr d f r rdr ππθπθθ+∫∫∫7.(1);(2);(3).8..9..(1cos1)π−223π−34(33R π−3512R π54π练习103−1.(1);(2);222121(,,)x x y dx f x y z dz −−+∫∫∫2102(,,)x y dx f x y z dz ++−∫∫(3).2211(,,)x y dx f x y z dz −+∫∫2.(1(2).3..3ln 24−202()()t t f x dx t f t +∫4.柱面,球面.1101d rdr f dz πθ∫∫∫2cos 2410cos sin ()d d r f r dr ππϕϕθϕϕ∫∫∫5.(1)0;(2);(3).6415π11926.(1);(2).7.21(12π53π练习104−1.14.2..3.(1),重心为;22(2)a π−2,03y x ==2(0,)3(2).4.(1);(2).(,55a a 46320a 443()32b a π−5.重心为,球心位于原点,球体置于上半空间.3(0,0,)86.设正方体边长为,密度为,则有所求的.a 0ρ50I a ρ=第十一章曲线积分练习111−1.(1);(2);(3);411)12+−(4);(5).2.4(122a π练习112−1..2.(1);(2);(3)-32;3.4..23323965343a 3323k a ππ−5.(1);(2).(,)(,)L yP x y xQ x y ds a−+∫∫6..C u udy dx x y ∂∂−∂∂∫ 练习113−1.(1);(2);(3);(4).112−2ab π−23429π−23(2)22a b a ππ+−2.(1)不在内部时,原式;(2)在内部时,原式.(0,0)L 0=(0,0)L 2π=练习114−1.5.2.20.3..4..3412a =−C +5..6.22(,)cos cos u x y x y y x C =++522333123x x y xy y C +−+=7..8..9..32223y a x x y xy C −−−=332yx y x e C −++=2ln y x C x−=练习115−1.,重心坐标为.22m a =(0,4aπ2.(1);22224)3z I a a k ππ=+(2).22232222222222663(2),,343434ak ak k a k x y z a k a k a k ππππππ−+===+++3..R −F 第十二章曲面积分练习121−1.(1);(2).3a π练习122−2.(1);(2)3;(3);3..42R π−1132πΣ练习123−1.(1);(2).2..12415(2)16a ππ+sin()sin yz z +3.(1)0;(2).22a h π练习124−1..2.(1);(2).4π−{4,sin ,6}x y −{2,2,sin }z z y −−−第十三章无穷级数练习131−1.(1)收敛;(2)发散;(3)收敛,发散;(4)发散.1q <1q ≥2.(1)发散;(2)收敛;(3)发散;(4)发散.3.(1)发散;(2)收敛;(3)发散;(4)收敛.练习132−1.(1)收敛;(2)收敛;(3)发散;(4)收敛;(5)收敛,发散;(6)收敛;(7)收敛;1p >1p ≤(8)发散;(9)收敛;(10)收敛.4.(1)时收敛,时发散;(2)时收敛,时发散;1a >1a ≤1αβ−>1αβ−≤(3)时收敛,时发散.1b >1b ≤练习133−1.(1)收敛;(2)收敛;(3)收敛.2.(1)绝对收敛;(2)条件收敛;(3)发散;(4)条件收敛;(5)绝对收敛;(6)条件收敛.练习134−1.(1);(2);(3);111,[,]222R =−,(,)R =+∞−∞+∞0R =(4);(5);(6).4,4,4R =−()2,(3,7)R=R =−2.(1);(2);ln(1),[1,1)x −−−2,(1,1)(1)x x −−(3);,;(4),,8.2222(2)x x +−(3232(1)x x −(1,1)−练习135−1.(1),;(2),;0(1)!n nn x n ∞=−∑(,)−∞+∞20(2)!nn x n ∞=∑(,)−∞+∞(3),;(4),;2112112(1)(2)!n n n n x n −∞−+=−∑(,)−∞+∞11n n nx ∞−=∑(1,1)−(5),;(6),11(1)(1)n n n x x n n +∞=+−+∑(1,1)−2210(1)[](2)!(21)!n n nn x x n n +∞=−++∑;(,)−∞+∞(7),;(8),.11(1)!n n nx n −∞=+∑(0)x ≠10(1)2n n n n x ∞+=−∑(2,2)−2.,.3.,.11011(1)[4)532nn n n n x ∞++=−−++∑(6,2)−−210(1)421n n n x n π+∞=+−+∑[1,1]−练习136−1.(取麦克劳林展开式的前两项).0.95106cos x 2.(取被积函数的麦克劳林展开式的前三项).0.9461练习137−1..2221414(cos sin )3n x nx nx n n ππ∞==+−∑(02)x π<<2..121(){[1(1)]cos (1)sin }4n n n b a a b a b f x nx nx nn ππ∞+=−−+=+−−+−∑(,)ππ−4.,.11()2sin n f x nx n π∞==−∑(,0,1,2,)x k k π≠=±±L5.,;21122()(cos sin 22n n n f x nx n n n πππ∞==−+∑(0,2x x ππ<≤≠,.2213222()(sin cos )cos 822n n n f x nx n n n πππππ∞==+−++∑(0,)2x x ππ<≤≠6.,.7.提示:将展成余弦级数.318()sin(21)(21)n f x n x n π∞==−−∑[0,]πsin x 8.,.9.,.22174cos(21)2(21)n n x n ππ∞=−−−∑[1,1]−214()()sin sin 24n n n x f x n πππ∞==∑[0,4]。
《高等数学》练习题库含答案(大学期末复习资料) (1) (1)

华中师范大学网絡教育学院 《高等数学》练习测试题库一.选捽题1,函数y=-J —是()X + 1A, 偶函数B,奇函数 C 单调函数 2•设 f(sin —)=cosx+l,则 f(Q 为( )2卜-列数列为单潤递増数列的有(6 limsincr-l)=(Il X -]AJ B,0C2IXI/27.设L*X=c h则 k=()AJ B 、2 C.6 DJ/68?'|x->l 时,下列与无穷小(x-1 )等价的无穷小是( A. x 2-! B. x ?-l C.(x-l)2D.sin(x-I)9. f(x)在点处有定义是f(x)在NXQ 处连续的() A,心要条件 B.充分条件 C.充分必要条件 D,无关条件 10、 当 |x <1 Ht, y= /】京(.)D 无界函数A 2x 2-2 B 2—2/ C I +/D l-x 2A. 0,9 t 0.99, 0,9991 0.9999B.—为奇数 I +n丄,网为偶数 U -科4, 数列有界是数列收敛的() A.充分条件 C.充要条件 5. 卜列命题正确的是( )A.发散数列必无界C.两发散数列之狷必发散C. {f(n)h 其中 f(n)=; B. D 必要条件 既非充分也非必要 R.D. 2N + 1 2tl两无界数列之和必无界 两收敛数列之用[必收A、是连续的无界函数C、有最大值勺最小值IL无最小值11、设函数f (x) = (1-xL要使f (x)在点:戸。
连续,则应补充定义1 (0) 为< )A、丄B、e 。
、-e D. _e 1e12、下列有跳跃间断点x=0的函数为()A-, sarctiinl /x B、 arctan 1/xC\ tetr 1 /x D、cosl/x13、设f (妇在点为连续,g(x)在点舔不连续,则下列结论成立是()A、f(X)-g(X)在点Xa必不连续B、f(x) Xg(x)在点为必不连续须冇C、复合函数f [g(x)]在点为必不连续*)D、gW在点为必不连续1 li1L设f (,x)= ]+@户在区间(1 8,+ 8)卜连续,冃J5f(x)=0,则a, h满足 ()A. a>0, b>0B. a>0h b<0C. a<0,b>0 Ik a<0, b<015、若函数「6)在点险连续,则下列复合函数在x*也连续的有( )A. K) B、貯3C、Un[f(x)]D、f[f(x)]16、函数f (x)=tanx能取最小最大值的区间是下列区向中的< )A、[0, ]B、『0,」)C、[- ■! /I, Ji /4] D* (-.'1/4:J]/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A,充分条件B、必要条件C、充要条件IX无关条件18、「(a)「(b) VQ是在[H,b] ±连续的函「(x)数在(a, b)内取零值的( )L 充分条件 B 、必要条件 C 、充要条件D 、无关条件19、 下列函数中能在区间(。
高等数学练习册第八章习题参考答案(1)

解 令x a cos t, y a sin t,
I
2 0
1 a2
[a 2
(cos
t
sin
t
)(
sin
t
)
(cos
t
sin
t
)
cos
t
]dt
2
0 dt 2 .
p55. 2.计算 ( x2 2xy)dx ( y2 2xy)dy,其中 L
L为抛物线y x2上从点(1,1)到点(1,1)的一段弧.
C
(2)曲线弧C的重心坐标为
xG
1 x( x, y)ds
MC
,yG
1 y( x, y)ds .
MC
p51.2.设光滑曲线L关于x轴对称, L1是L在x轴上方的部分, (1)若f ( x, y)在L上连续,且关于y为奇函数,则Biblioteka f ( x, y)ds 0 ; L
(2)若f ( x, y)在L上连续,且关于y为偶函数,
(1)当p点从点A(a , 0)经位于第一象限的弧段到 B(0,b)时, F所作的功;
(2)当p点经过全椭圆时,F所作的功.
p56. 解 F | F | F 0 x2 y2 ( x , y ) x2 y2 x2 y2
( x, y),
(1) W F d s ( x)dx ( y)dy
0
22
a2
2
| cos
t
| dt
2a 2
2 cos udu 2a2 .
20
2
0
p52. 3.计算 | xy | ds,其中L :圆周x2 y2 a2. L
解法1
I 4
2
a3
sin t
高等数学练习册(1-5章)带答案

高等数学习题册(上册)目录习题1-1 函数 (1)习题1-2 常用的经济函数 (5)习题2-1 极限 (9)习题2-2 无穷小与无穷大,极限运算法则 (13)习题2-3 极限存在准则,两个重要极限及无穷小的比较 (17)习题2-4 函数的连续性 (21)习题2-5 闭区间上连续函数的性质 (25)第二章综合题 (29)第二章自测题 (36)习题3-1 导数概念 (40)习题3-2 求导法则与基本初等函数求导公式(一) (44)习题3-2 求导法则与基本初等函数求导公式(二) (48)习题3-3 高阶导数 (52)习题3-4 隐函数及由参数方程所确定的函数的导数 (56)习题3-5 函数的微分 (60)习题3-6 边际与弹性 (64)第三章综合题 (68)第三章自测题 (74)习题4-1 中值定理 (78)习题4-2 洛必达法则 (82)习题4-3 导数的应用(一) (86)习题4-3 导数的应用(二) (90)习题4-4 函数的最大值和最小值及其在经济中的应用 (94)习题4-5 泰勒公式 (98)第四章综合题 (100)第四章自测题 (104)习题5-1 不定积分的概念、性质 (108)习题5-2 换元积分法(一) (112)习题5-2 换元积分法(二) (116)习题5-3 分部积分法 (120)习题5-4 有理函数的积分 (122)第五章综合题 (124)第五章自测题 (128)微积分(上)模拟试卷一 (134)微积分(上)模拟试卷二 (138)参考答案 (142)习题1-1 函数1. 填空题:(1)()x y 32log log =的定义域 。
(2)523arcsin3xx y -+-=的定义域 。
(3)xxy +-=11的反函数 。
(4)已知31122++=⎪⎭⎫ ⎝⎛+xx x x f ,则=)(x f 。
2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。
高等数学同步习题集(答案)

) &!!![\B]"#&##-!!#"#&##-!#">= ^) =)%"% 1-=-!
% "% , - .
! !!!0!#!%!$!"! " !!!45 !#!!!$!(7
* !1. *
:;+<=>2?@
!"#$
) & !!!##"((#=)&1.)!!#!4"&##&=(!4)1!$!=?::;+.7
& ' &!!!*"""#"&71$%#!槡""&"!&"#"$##&*"!$$ #""!&!$&"#5"&!("#&#(! %$!88#")#-##88"###).-#!
%(,-.
! !!!0!#3/!$3%! " !!!1!!!151!#1!!!%#!!("#9$-"8"%$!+,-"#*" &!!!"!$8# ")1)(8"%"#$8#)(#""#&&####8"%#!1!4!
! !!!%!#!/!$!0! " !!!&(!#$'%#!#! &!!!#+,(+$%%-.,("( '#1$- . / 0"1#& '$- . 1 2%3 4 ,(3 4 $ %%5 6 ,(7
高数练习册答案(完整版)

高等数学1C 习题解答习题一一.单项选择题1、A2、D3、C 二.填空题1、22)1(133-+-x x x 2、(-9,1)三.计算题 1、(1)解 函数要有意义,必须满足⎩⎨⎧≥-≠0102x x 即⎩⎨⎧≤≤-≠110x x 定义域为]1,0()0,1(⋃- (2)解 函数要有意义,必须满足⎪⎪⎩⎪⎪⎨⎧≤≤-≠≥-111003x x x 解得1-≤x 或31≤≤x 3.(1)解 由1-=x e y 得 1ln +=y x 交换x 、y 得反函数为1ln +=x y(2)解 由11+-=x x y 得 y y x -+=11 交换x 、y 得反函数为xxy -+=114.(1)解 只有t=0时,能;t 取其它值时,因为 112>+t ,x arcsin 无定义 (2)解 不能,因为11≤≤-x ,此时121-=x y 无意义 5.解(1)12arccos 2-====x w wv v u ey u(2) 令22y y y += 则11ln 21+=+==x u uv v yx w e m m x v v u ey wu2)sin(32==+===6.解 ⎪⎩⎪⎨⎧-≤+≤<-+->-=1101)1(0)]([22x x x x x x x f g7.解 设c bx ax x f ++=2)(所以⎪⎩⎪⎨⎧==++=++41242c c b a c b a 解得 25214-===b a c习题二一.单项选择题1、A2、B3、D 二.填空题1、>12、单调增加 三.计算题1、(1)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数 (2)解 因为)()1ln(11ln )1ln()(222x f x x xx x x x f -=-+-=-+=++=-所以函数是奇函数(3)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=⎪⎩⎪⎨⎧>+-=<--=⎪⎩⎪⎨⎧<---=->-+-=- 所以函数是奇函数 2.解 因为 x x y 2cos 2121sin 2-== 而x 2cos 的周期为π,所以x y 2sin =是周期函数,周期为π 3.解 由h r V 231π=得23rv h π= 表面积: )0(919221226224222222≥++=++=+⋅+=r r v r r r r v r r r r h r s πππππππ四 证明 )()1()1(11)(x f e e e e e e x f x x x x x x -=+-=+-=---习题三一.单项选择题1、C2、C3、B4、C 二.填空题1、12、a3、≥4、2,05、1 三.判断正误1、对;2、对;3、错 四.(1) 证明 令12+=n nx n ε<=<+=-nn n n n x n 11022只要ε1>n ,取]1[ε=N当N n >时,恒有ε<-0n x 所以01lim2=+∞→n nn(2)证明 因为)0()(lim >=+∞→A A x f x ,对取定的2A=ε,存在M>0,当x>M 时,有 2)()(A A x f A x f <-<- 故当x>M 时,2)(A x f > 习题四一.单项选择题1、B2、B3、B4、D 二.填空题1、ae 2、0,6 3、6 4、2,-2 三.判断正误1、错;2、错;3、错; 四.计算题 1、原式=2112lim )1)(1()1)(2(lim11=+--=+---→→x x x x x x x x2、原式=01111lim11lim=++=+++∞→+∞→xxxx x x 3、原式=2311lim)1)(1()1)(1(lim32313231=+++=-+++-→→xx x x x x x x x x 4、原式=31)32(131)32(31lim )32(13233lim 1111=-⋅+=-++∞→++++∞→n n n n n n n n n 5、原式=]21)121121(21)5131(21)311[(lim ⋅+--++⋅-+⋅-+∞→n n n21)2112121(lim =⋅+-=∞→n n6、、原式=23232223)12)(1(21lim 3)21(3lim n n n n n n n n n n -++=-+++∞→+∞→ 2132123lim 22=+=∞→n nn n 7、因为 0lim =-+∞→xx e1sin ≤x 所以 0sin lim =-+∞→x exx习题五一、1.B , 2.A, 3. B二、1.sin tan x x x << 2.0 三、1.(1)0sin 77limtan 55x x x →=解:(2)0lim sin0x x xπ→=解:这是有界函数乘无穷小量,故(3)000sin 5sin 5115sin 55lim lim lim 1sin 3sin 3sin 31133x x x x x x x x x x xx x x x→→→---===-+++解: (4)00sin 1lim lim sin 1()x x x x x x++→→+=解:原式=后一项是无穷小量乘有界函数2.(1)22222222222lim(1)lim[(1)]lim(1)1n n n n n e e n n n⨯+→∞→∞→∞=+=++==原式 (2)()1()1111lim(1)lim 1xx x x x x e ---•-→∞→∞⎡⎤⎛⎫-=-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦原式=(3)22322(3)3332233lim(1)lim(1)22x x x x e x x -++-•---→∞→∞⎡⎤-=-=⎢⎥++⎢⎥⎣⎦原式= (4)13330lim(13)xx x e •→=+=原式(中间思维过程同前)(5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nn n n n nn n n n n nn•→∞→∞→∞→∞+==+=+=+=原式 四.1.证明:2......n n n π<+<+1,,.n n ==而故由夹逼准则知原式成立2.证明:只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->>n 即而0<x <1,故即故数列单调递增且有界,极限存在.22212(21)11(1)1lim 1n n n n n n n n x x x x x x x +→∞=-+=--++=--<∴=习题六一、1.B,2.B,3.B,4.B,5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 极限与连续1.1 函数1、(1) x -- (2) ]3,0()0,( -∞(3) 奇函数 (4))(101log 2<<-x x x(5) 22+x (6) xe1sin 2-2、⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-==<<=e x e x e x e x e x e x g f 或或1011011)]([ 3、⎪⎩⎪⎨⎧>+-≤<--≤+=262616152)(2x x x x x x x f 4)(max =x f 1.2 数列的极限1、(1) D (2) C (3) D1.3 函数的极限1、(1) 充分 (2) 充要1.4 无穷小与无穷大1、(1) D (2) D (3) C (4) C1.5 极限运算法则1、 (1) 21- (2) 21(3) ∞ (4) 1- (5) 02、(1)B (2)D3、(1)23x (2)1- (3)62(4) 1 (5) 4 (6) 1 4、a = 1 b = -1 1.6 极限存在准则 两个重要极限1、(1) 充分 (2) ω,0 (2) 3e -,2e2、(1)32(2) 2 (3) 1-e 1.7 无穷小的比较1、(1) D (2) A (3) C2、(1) 23- (2) 23 (3) 32-3、e1.8 函数的连续性与间断点1、(1) 2 (2) 跳跃 ,无穷 ,可去2、(1) B (2) B (3) B3、21-e4、a =1 , b = 25、 (1))(2,0Z k k x x ∈+==ππ是可去间断点,)0(≠=k k x π是无穷间断;(2) 0=x 是跳跃间断点,1=x 是无穷间断点 6、e b a ==,01.10 总习题 1、(1) 2 (2) },,,max{d c b a (3)21(4) 2 (5) 2 8-(6) 2 (7) 23(8) 0 1- (9) 跳跃 可去 (10) 2 2、(1) D (2) D (3) D (4) C (5) D (6) B (7) D (8) D (9) B (10) B (11) B3、(1)⎪⎩⎪⎨⎧≥<<-≤≤=11575115100190100090)(x x x x x p (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=11515115100130100030)60(2x x x x x x x x p P(3)15000=P (元)。
4、(1) x (2)32(3) 21- (4) 1 (5) 1-e (6) 0 (7) e1 (8)21(9)a ln (10)n n a a a 21 (11) 16、x x x x f ++=232)( (提示:b ax x x x f +++=232)(令) 7、a =1 b =21-8、 0=x 和)(2Z k k x ∈+=ππ是可去间断点)0(≠=k k x π是无穷间断点9、1±=x 是跳跃间断点 10、3lim =+∞→n n x11、)(x f 在),(+∞-∞处处连续第2章 导数与微分 2.1 导数的定义 1、(1) 充分, 必要 (2) 充要 (3))(0x f ',)()(0x f n m '+(4) !9- (5) 21x -,x 21,4743--x2、切线方程为12ln 21-+=x y ,法线方程为42ln 2++-=x y4、2=a , 1-=b5、在0=x 处连续且可导 2.2 求导法则1、(1) xxe x xe 22+ (2) x x1sin 12 (3) 222)1(21x x x +-- (4) 2)ln 1(2x x +-(5)21x x+ (6) x x e e tan -(7)322)(x a x - (8) )()(23x f x f '-2、(1)⎪⎩⎪⎨⎧=≠-0001cos 1sin 2x x xx x (2) 221xa +(3) 323sin ln cos ln sin 2xx x x x x x x -- (4) )]()([(2222x f x f xe x '+ 3、)(2a ag4、(1) xyxy xexy x y xy y ye -+-)sin(2)sin( (2) y x yx -+(3))3121411(31+-+++x x x 323)12)(1(+++x x x(4) )]1ln(1)1(1[)1(21x xx x x x +-++5、0=-y x6、(1) 212t t- (2) 1-2.3 高阶导数及相关变化率1、 (1) 2)64(3x e x x + ,)(4)(2222x f x x f ''+'(2) )2sin(πnax a n + , )2cos(πn ax a n + (3) n x a a )(ln , nn xn )!1()1(1---(4) 1)(!)1(+±-n na x n , nnn x n x n )1()!1()1()!1()1(1--++---(5) )24cos(212πn x n +-2、 )2sin 2cos 502sin 21225(2250x x x x x -+ 3、(1) ⎩⎨⎧<>0206x x (2) 2 (3)3)1(y y+ (4) 2)cos 1(1t a --(5) )(1t f ''2.4 微分1、(1) 0.110601y ∆=,0.11dy = (2) C x++-11,C x +2 (3)C e x +441 (4) C x n n +++111 (5) C x ++)13sin(312、(1) A (2) B3、(1) dxx xx)33ln 31(232-⋅ (2) dx x x 2tan - (3) dx x f x f x f )]())(cos()21(2['+-'-4、dx y x y x )ln(3)ln(2-+-+5、)cos(22x x ,)cos(2x ,xx 3)cos(222.5 总习题1、(1) 1- (2) ①0>n ,②1>n ,③2>n (3) 1-,1- (4)34cos sin t t t t - (5)32sin cos xx x x - (6))(200x f x ' 2、(1) B (2) B (3)C (4) A (5) B4、(1) x x x x x xcos ln 3ln 3tan 232cot 21-+(2) 113+x (3) x x x x )ln 1(2sin 2ln 2-- (4) 212)(1ln sec a a xx x ax a a a ++⋅- (5) mx x x n x mx m n n sin sin cos cos cos 1⋅⋅-⋅- (6))(2)()(ln 2)()(ln 2)()(ln 22x f x x x f x g x x f x g x x f x xg '-'+(7) ⎩⎨⎧-<><<-222220x x x x 或(8) ])1(2cot 1[21xx e e x x --+xe x x -⋅1sin (9))()(x x ϕψ)()()())(ln()()()(2x x x x x x x ψϕϕψψϕψ'-'(10) 22ln ln x x xy y y xy --(11) )()(2)()(22y f x x yf y f x f y x '+-'-(12) ⎪⎪⎩⎪⎪⎨⎧<-≥+='0,sin 2sin 0,11)(22x x x x x x xx f (13) 2-e (14) 283e (15) θθ4cos sin 31a (16) 3481t t -(17) ])1(1)1(1[!)1(211+++---⋅n n n x x n(18) )24cos(41πn x n +- (19)dx xye x xy xye y yx y x ++--+ 7、)1(21-''=f a ,)1(-'=f b ,)1(f c = 8、2第3章 中值定理与导数应用3.1 中值定理1、(1) 是,2π(2) 4,)2,1)(1,0(),0,1(),1,2(--- 2、(1) B (2) B3.2 洛必达法则1、(1) 1-,4- (2) 12、(1) A (2) C3、(1)21(2) 31 (3) 1 (4) 1 (5)81-3.3 泰勒公式1、(1) )(!!3!2132n n x o n x x x x ++++++ (2) )()!12()1(!3121213---+--++-n n n x o n x x x (3) )()!2()1(!21222n nn x o n x x +-++- (4) )()1(212n nn x o nx x x +-++-- (5) )(12n n x o x x x +++++2、4324()4(11)4(37)4(2156)-+-+-+-+-x x x x3、)()!1()1(3132n n n x o n x x x x +--++-- 4、31,34-==b a3.4 函数的单调性和极值1、(1) (0,2) ,),2()0,(+∞-∞ (2) 531和=x 2、(1) C (2) C (3) A3、(1) 单调递增区间为),3[]1,(+∞--∞ ,单调递减区间为)3,1(-(2) 单调递增区间为),1(+∞e ,单调递减区间为)1,0(e4、极小值为0)0(=y5、23=a , 21=b7、当e a 1>时,方程无实根;当e a 1=时,方程有一个实根ex =当ea 10<<时,方程有两个实根。
8、最大值为7)2(=-f , 最小值为21)4(-=-f9、32πV r =,34πV h =3.5 函数图形的描绘1、(1) 凹 , > (2) 拐点 (3) )4,1(2、(1) C (2) A3、),1(21--e 和),1(21-e 为拐点, 凸区间为)1,1(-, 凹区间为),1()1,(+∞--∞4、23-=a , 29=b3.6 总习题1、(1) 1 (2) 1-,0 (3) 1 (4) 82±(5) 2 2、(1) A (2) C (3) D (4) D (5) B (6) A (7)B (8) C (9) D7、(1) 121- (2) π2-e (3) 121-(4) 41- (5) 2e -9、 1)0(-=f ,0)0(='f ,37)0(=''f10、2=a , 1-=b13、(1) 极大值2)0(=f 极小值e e ef 2)1(-=(2) 极大值0)1(=-y 极小值为343)1(⋅-=y15、R 3216、当3-=x 时函数有最小值2717、3318、(1) )2ln ,1(-和)2ln ,1(为拐点, 凸区间为),1()1,(+∞--∞ ,凹区间为)1,1(- (2) 凸区间为)1,0()1,( --∞ , 凹区间为),1()0,1(+∞-拐点为)0,0(, 1=x ,1-=x 为垂直渐近线方程 ,x y =为斜渐近线方程19、e x 1-=为垂直渐近线 , e x y 1+=为斜渐近线20、(1)当34316163a b =时该方程有唯一实根 (2)当34316163a b >时该方程无实根1、是同一函数的原函数2、x x cot arc 2arctan 或π+-3、(1)C x x x x +--+2215225 (2) C x e x +-arcsin (3) C x x ++cos (4) C x +tan 214、1ln +=x y4.2 换元积分法4.2.1 第一类换元法1、(1)C x ++ln 21ln 21 (2) C x+-461(3) C x +sin 2 (4) C x ++-)cos 4ln((5) C x +3arcsin 31 (6) C x +32arctan 61(7) C e x ++)2ln( (8) C x +4)(arctan 41(9) C x +--232)1(31 (10) C e F x +--)(2、(1)C x x +-+2949123arcsin 31 (2)C x x ++-)]4ln(4[2122(3)C x x C x +-+2cot 2csc ln tan ln 或 (4) C xx +-ln 14.2.2 第二类换元法1、C x x ++-)21ln(22、C x xx +--212arcsin 214、C x xx +-+-211arcsin 5、C x x++12 6、C x x +-12 4.3 分部积分法1、(1) C x x x ++-2sin42cos 2 (2) C x x x +--1ln 1(3) C x x x x x ++-2ln 2ln 2(4) C x x e x +++--)22(2(5) C x x e x +--)cos (sin 2 (6) C x x x ++)]sin(ln )[cos(ln 22、(1) C x xx x x +-+-2214arcsin 41arcsin 21(2) C x e x +-)1(2 (3)C x x x x +++-cos ln tan 212(4) C x x x x +---cot )ln(sin cot(5) C x x e x ++-)22sin (sin 512 3、C x e x+-)1(4.4 有理函数和可化为有理函数的积分1、C x x x x x x ++---+++1ln 41ln 3ln 8213123 2、C x x ++-+1ln )1ln(212 3、C x x ++-)6ln(481ln 6184、C x xx +-++]sin ln 2tan ln 2)cos 2[ln(315、C x+)3tan 2arctan(3216、C x x ++661ln 64.5 总习题1、 (1) C x +cos (2) C e x x ++ (3) )3(x f2、 (1) C (2) B (3) A (4) D3、(1) C e x +2361 (2) C x x +--tan cot (3) C x +2)tan (ln 41(4) C x x x +-++-23arctan 4)136ln(212(5) C x x x +++⋅-)1ln(44244(6) C x C x+-+1arctan 1arccos 2或 (7)C e e x x ++-+4347)1(34)1(74 (8) C x x x x x ++++++++)34412ln(453444122(9) C x x +--)2arctan 21(2ln 1 (10) C e x +2sin 21(11) C x +2tan 21(12) C x x++cos ln cos 212(13)C x x x +--cot 21sin 22 (14)C x x +--2cos 418cos 161(15)C xx ++2sec 812tan ln 412 (16) C x x x ++-844181arctan 81 (17) C xx x +-ln(18) C x x +-+-2]ln )1[ln(21 (19) C x +)ln(sin ln(20)C x x x x ++-+--)4cot()4csc(ln 221)cos (sin 21ππ (21) C x x x ++-tan ln 2)sin 1cos 1(2122(22) C x x x x x ++-+--)1ln(21ln )(arctan 21arctan 122(23) C x xf +)(sin4、C e x ee x xx ++-++-)1ln()1ln( 5、⎪⎩⎪⎨⎧>++≤++=⎰1112)1()(22x C x x C x dx x f6、C x x +---)1ln(2127、C x x +-+1ln2 8、2C第5章 定积分及其应用5.2 定积分的性质1、(1) 0 (2) 1 (3) 23(4) 24R π (5)⎰+512)12(dx x2、(1) D (2) C3、⎰21ln xdx 较大4、⎰+10211dx x 5、41022222---≤≤-⎰e dx e e xx 5.3 微积分基本定理1、(1)101±(2)t cot - (3))(a af (4) )41,0( (5) 02、(1) A (2) A (3) B3、1sin cos -x x 4、315、(1) 41π+ (2) 1ln 1+-a ae (3) 4 (4) 3346、⎪⎪⎩⎪⎪⎨⎧>≤≤-<=ππx x x x x F ,10),cos 1(210,0)( 7、a = 4 ,b = 15.4 定积分的换元积分法与分部积分法5.4.1 定积分的换元积分法1、(1) 232- (2) 211--e(3) 26-+e e(4) 6483π(5) π1652、(1) D (2) A3、(1) 41π-(2)23ln 2311- 5.4.2 定积分的分部积分法1、(1)1 (2)44ln 4- (3)π (4)1582、(1)214-π(2) 2ln 31 (3))11cos 1sin (21+-e e(4))2(51-πe (5) 214-π3、05.5 广义积分1、(1)发散 (2)a1 (3)发散 (4) -1 (5) 322)1(23-e (6)发散 2、(1) 0 (2) 2π (3) )32ln(2++π 3、时当1>k ⎰+∞2)(ln k x x dx 收敛,时当1≤k ⎰+∞2)(ln k x x dx发散 5.6 定积分的几何应用 1、(1) 29(2) 6a (3) ⎰b a dx x xf )(2π2、2316-+π3、23ln 211+ 4、π7128,π564 5、290π5.7 定积分的物理应用1、g πρ18752、44gR ρπ3、g ρ724、g ρ1685.8 总习题1、(1) 0 (2) 1 (3) e22- (4) 0 (5)25(6) 23ln(7))32ln(6++ (8)24π (9)8 2、(1) D (2) A (3) D (4) C (5) B3、(1) 61- (2) 121 (3) yx y x y 2)(cos )(cos 122---+ (4)432x e x - (5) 23810-(6) π12835(7) 2π (8)463ππ- (9)21 (10) 34(11) 2ln 418-π (12)ee e +++12ln1 (13) 4π (14) 16π (15)2ln 21- (16)51 (17)4π(18)发散 (19) 316-e(20) ⎪⎪⎪⎩⎪⎪⎪⎨⎧>+-≤≤---<+=243211,421,41)(22x x x x xx x x x F 10、2112、22-π 13、2ln =a 14、4π,2π15、334+π16、 1 17、6π18、)(7273732为比例常数k a kc19、g r 434π第6章 常微分方程6.1 常微分方程的基本概念6.2 一阶微分方程6.2.1 可分离变量的微分方程1、(1) 33x Cey -= (2)222)1)(1(Cx y x =++(3) C x x y =++)1(22、(1) Cx xe y = (2) 333y x Ce y =6.2.2 一阶线性微分方程1、(1) )(C x e y x +=- (2) )1(12+=yCe y x 2、(1) )(213x x y += (2) 1sin 2sin -+=-x e y x 3、53525Cx x y +=- 4、)cos (sin 21)(x e x x x f --+=6.2.3 几类可降阶的高阶微分方程1、(1) 21)(C e x C y x +-=- (2) 21)cos(ln C C x y ++-=2、(1) xy 11+= (2) 1)1(+-=x e y x6.3 高阶线性微分方程6.3.1 高阶线性微分方程解的结构 1、2)(21x e x C C y += 2、1)1()1(221+-+-=x C x C y 6.3.2 常系数线性微分方程1、(1) xxeC eC y 3231-+= (2) xeC C y 421+=(3) xxe C e C y )21(2)21(1-++=(4) )23sin 23cos(2121x C x C ey x +=- (5) x e x C C y λλ-+==)(,1212时当xxe C e C y )1(2)1(1222,1----+-+=>λλλλλ时当)1sin 1cos (,122212x C x C e y x λλλλ-+-=<-时当(6) x C x C C y sin cos 321++= (7) x x e x C C e x C C y 24321)()(-+++= 2、(1) =*y )sin cos (x b x a e x +(2) =*y ]2sin )(2cos )[(4x d cx x b ax xe x +++ (3) =*y )(23c bx ax xe x ++ (4)=*y x d cx x b ax sin )(cos )(+++(5) x e dx x b ax Ce x sin )(cos )(++++ 3、(1) )1(41)(221x e x C C y x +++= (2) )cos (sin 2121x x e C C y x +-+=- (3) xx e e x C C y 2221161)(-++=4、(1) x x y cos 813cos 241+= (2) )sin (x x e y x -=-6.3.3 欧拉方程1、 x x C x C y 212231++= 2、 )sin(ln 21)]ln 3sin()ln 3cos([21x x x C x C x y ++=6.4 总习题1、(1) 211ln(1)ln 222xy e =++- (2))sin(x y Ce x =(3) 2321y Cy x += (4) xCx x x y +-=-ln 23 (5) 212111ln 1C x C C C x y ++-=(6) 1)1(=-y x2、(1) 43161)(2221+++=-x x e e x C C y(2) x x C x C e y x 2cos 263)23sin 23cos (2121++=- 212sin 131+-x(3) 421)2343(2x x xe e x e x y -+++= (4) x xe y x sin 2=《高等数学》同步练习册(上)3、1ln )(+=x x f4、x e x f 2)(-=5、)(2x C x y -=6、]1,0[,156)(2∈++-==x x x x f y7、x xx x f cos 2sin 21)(+=高等数学(上)期中模拟试卷(一)一、1. C 2. B 3. C 4. B 5. B 二、1.41 2. 313. x xe 244. 05. )90609(3238++x x e x6. dx ee21+ 7. (-2,0) (0,2) (-∞,0)三、1.21 2. 213.)1cos ln 1sin 1(1121sin2xx x x x xx x-++ 4. 切线方程2πe y x =+ 四、3lim =+∞→n n x五、 当e 1>β时原方程无实根 当e 1=β时原方程有唯一实根 当e1<β时原方程有两个相异实根七、当半径r R 2=时体积最小参考答案高等数学(上)期中模拟试卷(二)一、1. B 2. B 3. C 4. B 5. C 二、1. 4ln 2. 0 1 3. e 4. 10)1(!9x -5. dx x xx x x x )sin ln (cos sin +6. (-∞,0) ),21(21-±e 三、1. 1 2. 61-e 3. 切线方程1+=x y四、251+ 五、当ea 1>时原方程无实根 当e a 1=时原方程有唯一实根当01≤<a e a 且时原方程有唯一实根当e a e a 101<<<且时原方程有两个相异实根七、H R 2274π高等数学(上)期末模拟试卷(一)一、1. B 2. B 3. D 4. C 5. D 二、1. 22ππa x y =+2. (b ,+∞) ,(b ,a )3. 14.34π5. )(C e x y x += 三、1. 21-e 2. C x x e x ++--)cos (sin 23. )12(4-4. ⎪⎪⎩⎪⎪⎨⎧≤<--≤≤=216722103)(23x x x x x x F ,,六、4250gr π七、1. Cx x y +=2 2. 133++=x x y 八、x x x e x f x 231)(23+-+=- 高等数学(上)期末模拟试卷(二)一、1. D 2. A 3. A 4. C 5. D 二、1.)2,2(2e2.2-3.2ln 32-4. 15.052=+'+''y y y 三、1. e 2. 0 ,-2 3.C x x ++212arctan 21 4. 324ln - 四、当k < 0时原方程无实根,当k = 0时原方程有唯一实根, 当k > 0时原方程有两个相异实根 六、)(5.247KJ 七、x y arcsin =八、x x x e x x e e x y ----+-=)63(78)(2。