九年级数学上册 第一章 特殊平行四边形 1 菱形的性质与判定《菱形》知识讲解及例题演练北师大版

合集下载

北师大版九年级数学上册 知识点归纳

北师大版九年级数学上册 知识点归纳

九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。

※一条腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。

※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。

※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。

北师大九年级数学上册--第一单元 1.1 菱形的性质与判定 1 课件

北师大九年级数学上册--第一单元 1.1 菱形的性质与判定 1 课件

∴AB=AD,OB=OD
∴AC⊥BD,AC平分∠BAD
(等腰三角形的三线合一)
同理得:AC平分∠BCD, BD平分∠ ABC和∠ADC
D

菱形的两组对边平行且相等
菱形的四条边相等
A
菱形的两组对角分别相等
56
1 2
O
3 4
C
78
B
角 菱形的邻角互补
几何语言
∵四边形ABCD是菱形
对角线
= 菱菱每形形一的的条两两对条条 角对对线角角平线线分互互一相相组平垂对∴分直角∠∴∴,。∴DA∴O∴AABAA∠∠BDA=∠∠=B+BDACO∠13C∥∥AD==C⊥=AB∠∠CB;CO=CB=C24BD∠CB∠D=D==DADO1CBA8DBC0° = 菱形是中心对称图形,对称 ∠5=∠6
的长为 ,则另一条对角线的长为 .
12.如图所示,两个全等菱形的边长为 1 米,
一个微型机器人由 A 点开始按 A﹣>B﹣>C
﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A 的
顺序沿菱形的边循环运动,行走 2015 米
停下,则这个微型机器人停在
点.
(1)图中有哪些线段是相等的? 哪些角是相等的?
(2)图中有哪些等腰三角形?直 角三角形?
(3)两条对角线AC、BD有什么 特定的位置关系?
因为菱形是特殊的平行四边形,所以它除具有 平行四边形的所有性质外,还有平行四边形的所没 有的特殊性质。
菱形的四条边都相等;
菱形的两条对角线互相垂直
平分,每一条对角线平分一组 对角。
证明:∵四边形ABCD是菱形 ∴AD=BC,AB=CD (菱形的对边相等)
又∵AB=BC ∴AB=BC=CD=AD

北师大版九年级上册1.1菱形的性质与判定(第1课时)课件

北师大版九年级上册1.1菱形的性质与判定(第1课时)课件


定理(对角线的性质): 菱形的对角线互相
垂直.
所有对角线互相垂直的四边形的面积都 等于其两条对角线乘积的一半.
教学过程
分层作业

第一层:第4页习题1、2题.


第二层:第4页习题1、2、3、4题.

教学过程
结 束
感谢聆听


定理(对角线的性质): 菱形的对角线互相垂直. 有两条对称轴,它们互相垂直.
将△ABO沿点A到点C的方向平移, 通过上面的折纸活动,我们可以发现:
已知:如图 ,在菱形 ABCD 中,AB = AD,对角线 AC 与 BD 相交于点O.
精 得到△A'B'O'.当点A'与点C重合 定理(边的性质): 菱形的四条边相等. 析 时,点A与点B'之间的距离为 如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.
A
授 (2)AC⊥BD.
B
O
C
D
教学过程
证一证
用菱形纸片折一折,回答下列问题:
你能列举一些这样的性质吗?
菱形的四条边相等,对角线互相垂直.
证明:(1)∵四边形 ABCD 是菱形, 定理(边的性质): 菱形的四条边相等.
通过上面的折纸活动和证明,菱形有如下的性质: (2)菱形中有哪些相等的线段?
新 ∴AB=CD,AD=BC(菱形的对边相等). 定理(边的性质): 菱形的四条边相等.
新 对称图形.

定理(边的性质): 菱形的四条边相等.
定理(对角线的性质): 菱形的对角线互相
垂直.

九年级上册第一章特殊平行四边形

九年级上册第一章特殊平行四边形

1.1 菱形的性质与判定一、教学目标1、掌握菱形的定义和性质2、学会判定菱形3、平行四边形和菱形的区别和联系 二、教学重点与难点1、菱形的性质和判定的熟练掌握2、利用菱形的性质综合解决问题 三、教学过程知识点1菱形的定义 创设情景,引入课题。

1、上图的衣架中有你熟悉的图形吗? 这种平行四边形特殊在哪里?我们称它们为菱形,你能给菱形下一个定义吗?定义: 叫做菱形。

知识点2菱形的性质菱形性质:1. 两条对角线互相垂直平分; 2. 四条边都相等;3. 每条对角线平分一组对角;4. 菱形是一个中心对称图形,也是一个轴对称图形。

5. 菱形的面积计算①利用平行四边形的面积公式. ②菱形面积=21ab .(a 、b 是两条对角线的长度)例1、如图,已知菱形的周长为16cm ,∠ABC=120°,求对角线AC 和BD 的长。

例2、菱形的面积为24cm 2,一条对角线的长为6cm ,则另一条对角线长为____cm ,边长为 cm ,高为_____cm 。

练习:1、菱形的两条对角线长分别为6cm 和8cm ,则菱形的边长是_____,面积是______。

2、菱形的一条对角线与一条边相等,则这个菱形相邻两个内角的度数分别为 .3、菱形两条对角线长分别是16cm 和12cm ,则它的边长是________4、菱形ABCD 的周长是28cm,∠BAD=21∠ABC ,则BD=_________,AC=_______5、菱形两对角线之比为3:4,周长为40cm ,则该菱形的面积是________ ,高为________ 6.如图,在菱形ABCD 中,对角线BD=10,E 点在BD 上,且AE=BE=3,那么这个菱形的边长等于 .知识点3.菱形的判定根据定义我们知道有一组邻边相等的平行四边形是菱形,还有别的判定方法吗? 菱形的判定定理:1、有一组邻边相等的平行四边形是菱形(定义)2、对角线互相垂直的平行四边形是菱形.(根据对角线)3、四条边都相等的四边形是菱形.(根据四条边) 例3. 下列说法正确的是( ) A .对角线相等的平行四边形是菱形 B .有一组邻边相等的平行四边形是菱形 C .对角线相互垂直的四边形是菱形 D .有一个角是直角的平行四边形是菱形例4.如图,在平行四边形ABCD 中,请再添加一个条件,使它成为菱形,则该条件可以是______________.例5.如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 于E ,EF ∥AB 交AD 于F ,试问:四边形ABEF 是什么图形吗?请说明理由。

北师大版初中数学九年级上册第一章知识点

北师大版初中数学九年级上册第一章知识点

九年级第一章特殊的平行四边形一、菱形知识点1:菱形的概念概念:有一组邻边相等的平行四边形叫菱形知识点2:菱形的性质1 面积:①底×高②对角线乘积的一半2 边:四条边相等;对边平行;对边相等3 角:对角相等;邻角互补4 对角线:对角线互相垂直平分,并且每一条对角线平分一组对角5 对称性:轴对称图形 + 中心对称图形知识点3:菱形的判定1 四边形+四条边相等2 平行四边形+一组邻边相等3 平行四边形+对角线互相垂直二、矩形知识点1:矩形的概念概念:有一个角是直角的平行四边形叫做矩形知识点2:矩形的性质1 面积:长×宽2 边:对边平行;对边相等3 角:四个角都是直角;对角相等;邻角互补4 对角线:对角线相等,对角线互相平分5 对称性:轴对称图形 + 中心对称图形6 斜边中线性质:直角三角形斜边上的中线等于斜边的一半知识点3:矩形的判定1 四边形+三个角是直角2 平行四边形+对角线相等三、正方形知识点1:正方形的概念概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形知识点2:正方形的性质1 面积:边长×边长2 边:四条边相等;对边平行;对边相等3 角:四个角都是直角;对角相等;邻角互补4 对角线:对角线相等且互相垂直平分,每一组对角线平分一组对角5 对称性:轴对称图形 + 中心对称图形知识点3:正方形的判定1 从平行四边形出发:平行四边形+一组邻边相等+一个直角2 从矩形出发:矩形+一组邻边相等矩形+对角线互相垂直3 从菱形出发:菱形+一个直角菱形+对角线相等四、中点四边形知识点1:中点四边形的概念概念:顺次链接任意四边形各边中点所组成的四边形叫中点四边形知识点2:常见的中点四边形1 任意四边形的中点四边形是平行四边形2 平行四边形的中点四边形是平行四边形3 矩形的中点四边形是菱形4 菱形得到中点四边形是矩形5 正方形的中点四边形是正方形。

北师版九年级上册数学作业课件(BS) 第一章 特殊平行四边形 菱形的性质与判定 第1课时 菱形的性质

北师版九年级上册数学作业课件(BS) 第一章 特殊平行四边形 菱形的性质与判定 第1课时 菱形的性质

证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA= ∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF, ∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA, ∴△ABF≌△DAE(ASA) (2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∴AF=AE+EF=BF+ EF,∴DE=BF+EF
9.(2020·锦州)如图,在菱形ABCD中,P是对角线AC上一动点,过点 P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24, 则PE+PF的值为( ) B
A.4 B.254 C.6 D.458
10.(广州中考)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0), (-2,0),点D在y轴上,则点C的坐标是_____(-__5_,__4_)_____.
13.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD 于点E,连接EC. (1)求证:AE=EC; (2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置? 说明理由
解 : (1) 连 接 AC.∵BD 是 菱 形 ABCD 的 对 角 线 , ∴ BD 垂 直 平 分 AC , ∴AE=EC (2)点F在线段BC的中点.理由:∵四边形ABCD是菱形, ∴AB=CB.又∵∠ABC=60°,∴△ABC是等边三角形.∴∠BAC= 60°.∵AE = EC , ∴ ∠ EAC = ∠ ECA.∵∠CEF = 60° , ∴ ∠ EAC = 30°,∴AF是△ABC的角平分线.又∵△ABC是等边三角形,∴BF= CF,∴点F在线段BC的中点
知识点二:菱形的边的性质 3.(贵阳中考)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这 个菱形的对角线AC的长是( A ) A.1 cm B.2 cm C.3 cm D.4 cm

【复习】:初中数学九年级上册.菱形(基础)知识讲解+练习

【复习】:初中数学九年级上册.菱形(基础)知识讲解+练习

专项训练年度:菱形(基础)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】【高清课堂特殊的平行四边形(菱形)知识要点】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2015•石景山区一模)如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接EF并延长,交CB的延长线于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=1,求AG的长.【思路点拨】(1)连接AC,再根据菱形的性质得出EG∥BD,根据对边分别平行证明是平行四边形即可.(2)过点A作AH⊥BC,再根据直角三角形的性质和勾股定理解答即可.【答案与解析】(1)证明:连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)解:过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=1,∴AB=AD=2,在Rt△ABH中,∠AHB=90°,∴AH=,BH=1.∴GH=2,在Rt△AGH中,根据勾股定理得,AG=.【总结升华】本题考查了菱形性质,关键是根据菱形的性质和平行四边形的判定以及直角三角形的性质解题.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO= 度.【答案】50;解:在菱形ABCD 中,AB ∥CD ,∴∠CDO=∠AED=50°, CD=CB ,∠BCO=∠DCO , ∴在△BCO 和△DCO 中,,∴△BCO ≌△DCO (SAS ), ∴∠CBO=∠CDO=50°.【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ).A.21B.4C.1D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可. 【答案与解析】解:四边形DECF 是菱形,理由如下: ∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形. ∵ CD 平分∠ACB ,∴ ∠1=∠2 ∵ DF ∥BC , ∴ ∠2=∠3, ∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD是△ABC的角平分线,EF垂直平分AD,分别交AB于E,交AC 于F,则四边形AEDF是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD 于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵CE平分∠ACB,∠BAC=90°,EF⊥BC,∴AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵EF⊥BC,AD⊥BC,∴EF∥AD.∴∠4=∠5.∴∠3=∠5.∴AE=AG.∴EF AG.∴四边形AEFG是平行四边形.又∵AE=AG,∴四边形AEFG是菱形.方法二:∵CE平分∠ACB,∠BAC=90°,EF⊥BC,∴AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵EF⊥BC,AD⊥BC,∴EF∥AD.∴∠4=∠5.∴∠3=∠5.∴AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴AG=FG.∴AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A 点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD∵E、F分别为AB、CD的中点∴DF=12DC,BE=12AB∴DF∥BE.DF=BE∴四边形DEBF为平行四边形∴DE∥BF(2)证明:∵AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵F为边CD的中点.∴BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.【巩固练习】一.选择题1.(2015•潍坊模拟)下列说法中,错误的是()A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直 D. 对角线互相垂直的四边形是菱形2.顺次连结对角线相等的四边形各边中点,所得四边形是( )A.矩形B.平行四边形C.菱形 D.任意四边形3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是( )A.4B.8C.12D.164.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40°B.50°C.80°D.100°6.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.1B. 2C. 2D. 3二.填空题7.已知菱形的周长为40cm,两个相邻角度数之比为1∶2,则较长对角线的长为______cm.8.(2015•南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为 .9. 已知菱形ABCD两对角线AC =8cm, BD =6cm, 则菱形的高为________.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是____cm.11. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_____.12.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为_______.三.解答题13.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB +PE的最小值是3,求AB的值.14.如图,在平行四边形ABCD中,E、F分别为边AB,CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.15(2015春•泰安校级期中)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C 作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【答案与解析】一.选择题 1.【答案】D ; 2.【答案】C ; 3.【答案】D ;【解析】BC =2EF =4,周长等于4BC =16. 4.【答案】B ;【解析】∵∠BCD=120°,∴∠B=60°,又∵ABCD 是菱形,∴BA=BC ,∴△ABC 是等边三角形,故可得△ABC 的周长=3AB=15.5.【答案】C ;【解析】∵四边形ABCD 是菱形,∴∠BAC =12∠BAD ,CB ∥AD ,∵∠BAC =50°,∴∠BAD =100°,∵CB ∥AD ,∴∠ABC +∠BAD =180°,∴∠ABC =180°-100°=80°.6.【答案】D ;【解析】∠DAF =∠FAO =∠OAE =30°,所以2BE =CE =AE ,3BE =3,BC BE =3. 二.填空题7.【答案】【解析】由题意,菱形相邻内角为60°和120°,较长对角线为=8.【答案】1:;【解析】如图,设AC ,BD 相较于点O ,∵菱形ABCD 的周长为8cm , ∴AB=BC=2cm , ∵高AE 长为cm ,∴BE==1(cm ),∴CE=BE=1cm , ∴AC=AB=2cm , ∵OA=1cm ,AC ⊥BD , ∴OB==(cm ),∴BD=2OB=2cm ,∴AC :BD=1:.9.【答案】245cm ; 【解析】菱形的边长为5,面积为168242⨯⨯= ,则高为245cm .10.【答案】4;【解析】在菱形ABCD 中,BD 是∠ABC 的平分线,∵PE ⊥AB 于点E ,PE =4cm ,∴点P 到BC 的距离=PE =4cm .11.【答案】60;【解析】因为菱形的对角线互相垂直及互相平分就可以在Rt △AOB 中利用勾股定理求出OB =12,BD =2OB =24,DE =2OC =10,BE =2BC =26,△BDE 的周长为60.12.【答案】(3,4);【解析】过B 点作BD ⊥OA 于D ,过C 点作CE ⊥OA 于E ,BD =4,OA =x ,AD =8-x ,()22284x x =-+,解得5x =,所以OE =AD =8-5=3,C 点坐标为(3,4).三.解答题13.【解析】解:∵∠ABC =120°∴∠BCD =∠BAD =60°;∵菱形ABCD 中, AB =AD∴△ABD 是等边三角形;又∵E 是AB 边的中点, B 关于AC 的对称点是D ,DE ⊥AB连接DE ,DE 与AC 交于P ,PB =PD ;DE 的长就是PB +PE 的最小值3;设AE =x ,AD =2x ,DE ==1x =,AB =22x =.14.【解析】四边形BFDE 是菱形,证明:∵AD ⊥BD ,∴△ABD 是直角三角形,且AB 是斜边,∵E 为AB 的中点,∴DE =12AB =BE ,∵四边形ABCD 是平行四边形,∴DC ∥AB ,DC =AB ,∵F 为DC 中点,E 为AB 中点,∴DF =12DC ,BE =12AB ,∴DF =BE ,DF ∥BE ,∴四边形DFBE 是平行四边形,∵DE =EB ,∴四边形BFDE 是菱形.15.【解析】证明:∵∠ABC=90°,BD 为AC 的中线,∴BD=AC ,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.。

菱形的判定及知识点归纳

菱形的判定及知识点归纳

菱形的判定及知识点归纳菱形是几何学中一种特殊的四边形,它具有特殊的性质和判定方法。

在本文中,我们将介绍菱形的定义、性质以及判定方法,并对相关知识点进行归纳总结。

一、菱形的定义菱形是一种四边形,它的四条边相等且相互垂直。

换句话说,四条边长度相等并且对角线相互垂直。

二、菱形的性质1. 对角线互相垂直:菱形的两条对角线相互垂直,即对角线之间的夹角为90度。

2. 对角线相等:菱形的两条对角线相等,即对角线长度相等。

3. 边相等:菱形的四条边都相等,即四边长度均相等。

4. 对角线平分角:菱形的两条对角线平分菱形的内角,即每条对角线平分相应的两个内角。

5. 对角线角平分线:菱形的每条对角线都是相应内角的角平分线。

6. 内角和:菱形的内角和为360度,即四个内角的和等于360度。

三、菱形的判定方法1. 判定菱形的方法一:判定四边形的四条边长度相等,即任意两条边长相等。

2. 判定菱形的方法二:判定四边形的对角线相等并且垂直,即对角线长度相等且对角线之间的夹角为90度。

四、菱形的相关知识点归纳1. 正方形是一种特殊的菱形:正方形是一种四边形,也是一种菱形,其四条边相等且相互垂直。

2. 菱形的对角线长度关系:菱形的对角线长度相等,即对角线AB= 对角线CD。

3. 菱形的边长关系:菱形的四条边相等,即AB = BC = CD = DA。

4. 菱形的内角关系:菱形的每个内角为90度,四个内角的和为360度。

5. 菱形的内角平分线关系:菱形的每条对角线都是相应内角的角平分线。

总结:菱形是一种四边形,具有四条边相等、对角线相等且相互垂直的性质。

菱形的判定方法主要包括四边形边长相等和对角线相等且垂直两种情况。

菱形还有一些特殊的性质和定理,如对角线长度关系、边长关系、内角关系以及内角平分线关系等。

熟练掌握菱形的定义、性质和判定方法,对于几何学的学习和问题解决具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形
【学习目标】
1. 理解菱形的概念.
2. 掌握菱形的性质定理及判定定理.
【要点梳理】
要点一、菱形的定义
有一组邻边相等的平行四边形叫做菱形.
要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.
要点二、菱形的性质
菱形除了具有平行四边形的一切性质外,还有一些特殊性质:
1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称
中心.
要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.
(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;
另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).
实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘
积的一半.
(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.
要点三、菱形的判定
菱形的判定方法有三种:
1.定义:有一组邻边相等的平行四边形是菱形.
2.对角线互相垂直的平行四边形是菱形.
3.四条边相等的四边形是菱形.
要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.
【典型例题】
类型一、菱形的性质
1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.
【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AE F为等边三角形,从而∠AEF =60°.
【答案与解析】
解:连接AC.
∵ 四边形ABCD是菱形,
∴ AB=BC,∠ACB=∠ACF.
又∵ ∠B=60°,
∴ △ABC是等边三角形.
∴ ∠BAC=∠ACB=60°,AB=AC.
∴ ∠ACF=∠B=60°.
又∵ ∠EAF=∠BAC=60°
∴ ∠BAE=∠CAF.
∴ △ABE≌△ACF.
∴ AE=AF.
∴ △AEF为等边三角形.
∴ ∠AEF=60°.
又∵ ∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,
∴ ∠CEF=18°.
【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.
2、如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()
A.1 B.2 C.3 D.4
【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.
【答案】C.
【解析】
解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时
EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选:C.
【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.
举一反三:
【变式】(2015春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB 的中点,如果EO=2,求四边形ABCD的周长.
【答案】
解:∵四边形ABCD为菱形,
∴BO=DO,即O为BD的中点,
又∵E是AB的中点,
∴EO是△ABD的中位线,
∴AD=2EO=2×2=4,
∴菱形ABCD的周长=4AD=4×4=16.
类型二、菱形的判定
3、如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t (s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)当t为多少时,四边形ACFE是菱形.
【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;
(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.
【答案与解析】
(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
在△ADE和△CDF中,

∴△ADE≌△CDF(AAS);
(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,
则此时的时间t=6÷1=6(s).
故答案为:6s.
【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.
举一反三:
【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.
⑴求四边形AQMP的周长;
⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
【答案】
解:(1)∵MQ∥AP,MP∥AQ,
∴四边形AQMP是平行四边形
∴QM=AP
又∵AB=AC,MP∥AQ,
∴∠2=∠C,△PMC是等腰三角形,PM=PC
∴QM+PM=AP+PC=AC=a
∴四边形AQMP的周长为2a
(2)M位于BC的中点时,四边形AQMP为菱形.
∵M位于BC的中点时,易证△QBM与△PCM全等,
∴QM=PM,
∴四边形AQMP为菱形
类型三、菱形的综合应用
4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.
(1)当点E、F分别在边BC、CD上时,求CE+CF的值.
(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.
【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.
【答案与解析】
解:(1)连接AC.
在菱形ABCD中,BC=AB=4,AB∥CD.
∵ ∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.
∴ ∠ACF=60°,即∠ACF=∠B.
∵ ∠EAF=60°,∠BAC=60°,
∴ ∠BAE=∠CAF.
∴ △ABE≌△ACF(ASA),
∴ BE=CF.
∴ CE+CF=CE+BE=BC=4.
(2)CE-CF=4.连接AC如图所示.
∵ ∠BAC=∠EAF=60°,
∴ ∠EAB=∠FAC.
∵ ∠ABC=∠ACD=60°,
∴ ∠ABE=∠ACF=120°.
∵ AB=AC,
∴ △ABE≌△ACF(ASA),
∴ BE=CF.
∴ CE-CF=CE-BE=BC=4.
【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.。

相关文档
最新文档