高考数学中的概率与统计题详解

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。

对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。

下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。

一、概率题型1、古典概型古典概型是概率中最基础的题型之一。

它的特点是试验结果有限且等可能。

例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。

答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。

然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。

2、几何概型几何概型与古典概型不同,它的试验结果是无限的。

常见的有长度型、面积型、体积型几何概型。

比如,在一个区间内随机取一个数,求满足某个条件的概率。

答题技巧:对于几何概型,关键是要正确确定几何度量。

例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。

然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。

3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。

题目中通常会给出一些条件,让我们计算在这些条件下的概率。

答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。

4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。

答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。

二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。

高考大题规范解答系列(六)——概率与统计

高考大题规范解答系列(六)——概率与统计
第十章 概率(文)
高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A.2.古典概型概率问题 典例2:(全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A.B.C.D.解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p =0.60.75=0.8,故选A.3.几何概型问题典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12C.23 D.34解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB 中,而当他到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率P=101040+=12.选B.4.类似超几何分布的离散型随机变量分布列问题(古典概型求概率)5.类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品.(1)从这10件产品中随机抽取3件,其中次品件数为X ,求X 分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y ,求Y 分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z ,求Z 分布列和期望.分析:第(1)问中,抽取产品的总体N=10,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。

文科高考数学重难点05 概率与统计(解析版)

文科高考数学重难点05  概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。

高考数学二轮复习考点知识与题型专题讲解57---概率与统计的创新问题

高考数学二轮复习考点知识与题型专题讲解57---概率与统计的创新问题

高考数学二轮复习考点知识与题型专题讲解第57讲 概率与统计的创新问题概率与统计问题在近几年的高考中背景取自现实,题型新颖,综合性增强,难度加深,主要考查学生的阅读理解能力和数据分析能力.要从已知数表、题干信息中经过阅读分析判断获取关键信息,搞清各数据、各事件间的关系,建立相应的数学模型求解.考点一 概率和数列的综合例1 某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日礼物,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A 1,A 2,A 3中的一个,每个乙系列盲盒可以开出玩偶B 1,B 2中的一个.(1)记事件E n :一次性购买n 个甲系列盲盒后集齐玩偶A 1,A 2,A 3玩偶;事件F n :一次性购买n 个乙系列盲盒后集齐B 1,B 2玩偶.求概率P (E 5)及P (F 4);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为23,购买乙系列的概率为13;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34,前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为Q n . ①求{Q n }的通项公式;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.解 (1)若一次性购买5个甲系列盲盒,得到玩偶的情况总数为35,集齐A 1,A 2,A 3玩偶,则有两种情况:①其中一个玩偶3个,其他两个玩偶各1个,则有C 13C 35A 22种结果; ②其中两个玩偶各2个,另外一个玩偶1个,则有C 13C 15C 24种结果, 故P (E 5)=C 13C 35A 22+C 13C 15C 2435=60+90243=150243=5081; 若一次性购买4个乙系列盲盒,全部为B 1与全部为B 2的概率相等,均为124,故P (F 4)=1-124-124=78.(2)①由题可知,Q 1=23,当n ≥2时,Q n =14Q n -1+12(1-Q n -1)=12-14Q n -1,则Q n -25=-14⎝⎛⎭⎫Q n -1-25,Q 1-25=415, 即⎩⎨⎧⎭⎬⎫Q n -25是以415为首项,以-14为公比的等比数列.所以Q n -25=415×⎝⎛⎭⎫-14n -1, 即Q n =25+415×⎝⎛⎭⎫-14n -1. ②因为每天购买盲盒的100人都已购买过很多次,所以对于每一个人来说,某一天来购买盲盒时,可看作n →+∞,所以其购买甲系列的概率近似于25,假设用ξ表示一天中购买甲系列盲盒的人数, 则ξ~B ⎝⎛⎭⎫100,25, 所以E (ξ)=100×25=40,即购买甲系列盲盒的人数的均值为40,所以礼品店应准备甲系列盲盒40个,乙系列盲盒60个.规律方法 本题的关键是通过审题,找到第n 次购买与前一次购买之间的联系,从而找到数列的递推关系.跟踪演练1 (2022·青岛模拟)规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回地任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则该轮记为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量X ,求X 的分布列和均值;(2)为验证抽球试验成功的概率不超过12,有1 000名数学爱好者独立地进行该抽球试验,记t 表示成功时抽球试验的轮次数,y 表示对应的人数,部分统计数据如下:求y 关于t 的经验回归方程y ^=b ^t+a ^,并预测成功的总人数(精确到1);(3)证明:122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2<12. 附:经验回归方程系数:b ^=∑i =1n x i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x ;参考数据:∑i =15x 2i =1.46,x =0.46,x 2=0.212(其中x i=1t i ,x =15∑i =15x i ). (1)解 由题知,X 的取值可能为1,2,3, 所以P (X =1)=⎝⎛⎭⎫1C 122=14; P (X =2)=⎣⎡⎦⎤1-⎝⎛⎭⎫1C 122⎝⎛⎭⎫1C 132=112;P (X =3)=⎣⎡⎦⎤1-⎝⎛⎭⎫1C 122⎣⎡⎦⎤1-⎝⎛⎭⎫1C 132=23, 所以X 的分布列为所以E (X )=1×14+2×112+3×23=3+2+2412=2912.(2)解 令x i =1t i,则y ^=b ^x +a ^,由题知∑i =15x i y i =315,y =90,所以b ^=∑i =15x i y i -5x y ∑i =15x 2i -5x2=315-5×0.46×901.46-5×0.212=1080.4=270,所以a ^=90-270×0.46=-34.2,y ^=270x -34.2,故所求的经验回归方程为y ^=270t-34.2, 所以估计t =6时,y ≈11; 估计t =7时,y ≈4; 估计t ≥8时,y <0,预测成功的总人数为450+11+4=465. (3)证明 由题知,在前n 轮就成功的概率为P =122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2,又因为在前n 轮没有成功的概率为 1-P =⎝⎛⎭⎫1-122×⎝⎛⎭⎫1-132×…×⎣⎡⎦⎤1-1(n +1)2 =⎝⎛⎭⎫1-12⎝⎛⎭⎫1+12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1+13×…×⎝⎛⎭⎫1-1n ×⎝⎛⎭⎫1+1n ×⎝⎛⎭⎫1-1n +1×⎝⎛⎭⎫1+1n +1 =12×32×23×43×…×n -1n ×n +1n ×n n +1×n +2n +1=n +22n +2=12(2n +2)+12n +2=12+12n +2>12, 故122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2<12.考点二 概率和函数的综合例2(2022·九江模拟)瑞昌剪纸被列入第二批国家级非物质文化遗产名录.为了弘扬中国优秀的传统文化,某校将举办一次剪纸比赛,共进行5轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛中,参赛者在30分钟内完成规定作品和创意作品各2幅,若有不少于3幅作品入选,将获得“巧手奖”.5轮比赛中,至少获得4次“巧手奖”的同学将进入决赛.某同学经历多次模拟训练,指导老师从训练作品中随机抽取规定作品和创意作品各5幅,其中有4幅规定作品和3幅创意作品符合入选标准.(1)从这10幅训练作品中,随机抽取规定作品和创意作品各2幅,试预测该同学在一轮比赛中获“巧手奖”的概率;(2)以上述两类作品各自入选的频率作为该同学参赛时每幅作品入选的概率.经指导老师对该同学进行赛前强化训练,规定作品和创意作品入选的概率共提高了110,以获得“巧手奖”的次数均值为参考,试预测该同学能否进入决赛? 解 (1)由题可知,所有可能的情况如下, ①规定作品入选1幅,创意作品入选2幅的概率P 1=C 14C 23C 11C 25C 25=325,②规定作品入选2幅,创意作品入选1幅的概率P 2=C 24C 13C 12C 25C 25=925,③规定作品入选2幅,创意作品入选2幅的概率P 3=C 24C 23C 25C 25=950,故所求概率P =325+925+950=3350.(2)设强化训练后,规定作品入选的概率为p 1,创意作品入选的概率为p 2, 则p 1+p 2=45+35+110=32,由已知可得,强化训练后该同学某一轮可获得“巧手奖”的概率为P =C 12p 1(1-p 1)·C 22p 22+C 22p 21·C 12p 2(1-p 2)+C 22p 21·C 22p 22=2p 1p 2(p 1+p 2)-3(p 1p 2)2=3p 1p 2-3(p 1p 2)2, ∵p 1+p 2=32,且p 1≥45,p 2≥35,即32-p 2≥45,32-p 1≥35, 即p 2≤710,p 1≤910,故可得45≤p 1≤910,35≤p 2≤710,p 1p 2=p 1⎝⎛⎭⎫32-p 1=-⎝⎛⎭⎫p 1-342+916, ∴p 1p 2∈⎣⎡⎦⎤2750,1425, 令p 1p 2=t ,则P (t )=-3t 2+3t =-3⎝⎛⎭⎫t -122+34在⎣⎡⎦⎤2750,1425上单调递减, ∴P (t )≤P ⎝⎛⎭⎫2750=-3×⎝⎛⎭⎫2502+34<34.∵该同学在5轮比赛中获得“巧手奖”的次数X ~B (5,P ), ∴E (X )=5P <5×34=154<4,故该同学没有希望进入决赛.易错提醒 构造函数求最值时,要注意变量的选取,以及变量自身的隐含条件对变量范围的限制. 跟踪演练2 (2022·新余模拟)学习强国中有两项竞赛答题活动,一项为“双人对战”,另一项为“四人赛”.活动规则如下:一天内参与“双人对战”活动,仅首局比赛可获得积分,获胜得2分,失败得1分;一天内参与“四人赛”活动,仅前两局比赛可获得积分,首局获胜得3分,次局获胜得2分,失败均得1分.已知李明参加“双人对战”活动时,每局比赛获胜的概率为12;参加“四人赛”活动(每天两局)时,第一局和第二局比赛获胜的概率分别为p ,13.李明周一到周五每天都参加了“双人对战”活动和“四人赛”活动(每天两局),各局比赛互不影响. (1)求李明这5天参加“双人对战”活动的总得分X 的分布列和均值;(2)设李明在这5天的“四人赛”活动(每天两局)中,恰有3天每天得分不低于3分的概率为f (p ).求p 为何值时,f (p )取得最大值. 解 (1)X 可取5,6,7,8,9,10, P (X =5)=C 05×⎝⎛⎭⎫125=132, P (X =6)=C 15×12×⎝⎛⎭⎫124=532, P (X =7)=C 25×⎝⎛⎭⎫122×⎝⎛⎭⎫123=516, P (X =8)=C 35×⎝⎛⎭⎫123×⎝⎛⎭⎫122=516, P (X =9)=C 45×⎝⎛⎭⎫124×12=532,P (X =10)=C 55×⎝⎛⎭⎫125=132, 分布列为所以E (X )=5×132+6×532+7×516+8×516+9×532+10×132=7.5(分).(2)设一天得分不低于3分为事件A ,则P (A )=1-(1-p )⎝⎛⎭⎫1-13=1-23(1-p )=2p +13, 则恰有3天每天得分不低于3分的概率f (p )=C 35⎝⎛⎭⎫2p +133·⎝⎛⎭⎫1-2p +132=40243(2p +1)3(1-p )2,0<p <1, 则f ′(p )=40243×6(2p +1)2(1-p )2-40243×2(2p +1)3(1-p )=40243(2p +1)2(1-p )(4-10p ),当0<p <25时,f ′(p )>0;当25<p <1时,f ′(p )<0, 所以函数f (p )在⎝⎛⎭⎫0,25上单调递增,在⎝⎛⎭⎫25,1上单调递减, 所以当p =25时,f (p )取得最大值.专题强化练1.(2022·湖北八市联考)2022年2月6日,中国女足在两球落后的情况下,以3∶2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战6∶5惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有12的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和均值;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为p n ,易知p 1=1,p 2=0. ①试证明⎩⎨⎧⎭⎬⎫p n -14为等比数列;②设第n 次传球之前,球在乙脚下的概率为q n ,比较p 10与q 10的大小. (1)解 依题意可得,门将每次可以扑出点球的概率为p =13×13×3×12=16,门将在前三次扑出点球的个数X 可能的取值为0,1,2,3,易知X ~B ⎝⎛⎭⎫3,16, P (X =k )=C k 3×⎝⎛⎭⎫16k ×⎝⎛⎭⎫563-k ,k =0,1,2,3. 则X 的分布列为E (X )=3×16=12.(2)①证明 第n 次传球之前球在甲脚下的概率为p n ,则当n ≥2时,第(n -1)次传球之前,球在甲脚下的概率为p n -1,第(n -1)次传球之前,球不在甲脚下的概率为1-p n -1,则p n =p n -1·0+(1-p n -1)·13=-13p n -1+13,从而p n -14=-13⎝⎛⎭⎫p n -1-14, 又p 1-14=34,∴⎩⎨⎧⎭⎬⎫p n -14是以34为首项,-13为公比的等比数列.②解 由①可知p n =34⎝⎛⎭⎫-13n -1+14, p 10=34×⎝⎛⎭⎫-139+14<14, q 10=13(1-p 10)>14,故p 10<q 10.2.某网络购物平台每年11月11日举行“双十一”购物节,当天有多项优惠活动,深受广大消费者喜爱.(1)已知该网络购物平台近5年“双十一”购物节当天成交额如下表:求成交额y (百亿元)与时间变量x (记2018年为x =1,2019年为x =2,…依此类推)的经验回归方程,并预测2023年该平台“双十一”购物节当天的成交额(百亿元);(2)在2023年“双十一”购物节前,某同学的爸爸、妈妈计划在该网络购物平台上分别参加A ,B 两店各一个订单的“秒杀”抢购,若该同学的爸爸、妈妈在A ,B 两店订单“秒杀”成功的概率分别为p ,q ,记该同学的爸爸和妈妈抢购到的订单总数量为X . ①求X 的分布列及E (X );②已知每个订单由k (k ≥2,k ∈N *)件商品W 构成,记该同学的爸爸和妈妈抢购到的商品W 总数量为Y ,假设p =7sin πk 4k -πk 2,q =sinπk4k,求E (Y )取最大值时正整数k 的值.附:经验回归方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .解 (1)由已知可得x =1+2+3+4+55=3,y =9+12+17+21+275=17.2,∑i =15x i y i =1×9+2×12+3×17+4×21+5×27=303, ∑i =15x 2i =12+22+32+42+52=55, 所以b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=303-5×3×17.255-5×32=4510=4.5, 所以a ^=y -b ^x =17.2-4.5×3=3.7,所以y ^=b ^x +a ^=4.5x +3.7,当x =6时,y ^=4.5×6+3.7=30.7(百亿元),所以预测2023年该平台“双十一”购物节当天的成交额为30.7百亿元.(2)①由题意知,X 的可能取值为0,1,2,P (X =0)=(1-p )(1-q )=1-p -q +pq ,P (X =1)=(1-p )q +(1-q )p =p +q -2pq ,P (X =2)=pq ,所以X 的分布列为E (X )=p +q -2pq +2pq =p +q .②因为Y =kX ,所以E (Y )=kE (X )=k (p +q )=k ⎝ ⎛⎭⎪⎫7sin πk 4k -πk 2+sin πk 4k =2sin πk -πk, 令t =1k ∈⎝⎛⎦⎤0,12,设f (t )=2sin πt -πt ,则E (Y )=f (t ), 因为f ′(t )=2πcos πt -π=2π⎝⎛⎭⎫cos πt -12,且πt ∈⎝⎛⎦⎤0,π2,所以当t ∈⎝⎛⎭⎫0,13时,f ′(t )>0,所以f (t )在区间⎝⎛⎭⎫0,13上单调递增;当t ∈⎝⎛⎭⎫13,12时,f ′(t )<0,所以f (t )在区间⎝⎛⎭⎫13,12上单调递减,所以当t =13,即k =3时,f (t )取得最大值,且f (t )max =f ⎝⎛⎭⎫13=3-π3(百亿元), 所以E (Y )取最大值时,k 的值为3.。

高考数学概率统计解答题专题

高考数学概率统计解答题专题

高考数学概率统计解答题专题一、归类解析题型一:离散型随机变量的期望与方差【解题指导】离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率的对应.【例】某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示.已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)求上表中的a,b值;(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);(3)求η的分布列及期望E(η).【变式训练】某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列及期望.题型二:概率与统计的综合应用【解题指导】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【例】某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个? 【变式训练】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获得利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的期望. 题型三:概率与统计案例的综合应用【解题指导】 概率与统计案例的综合应用常涉及相互独立事件同时发生的概率、频率分布直方图的识别与应用、数字特征、独立性检验等基础知识,考查学生的阅读理解能力、数据处理能力、运算求解能力及应用意识.【例】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次 2次 3次 4次 5次 6次及以上总计 男 10 8 7 3 2 15 45 女 5 4 6 4 6 30 55 总计1512137845100(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X ,求X 的分布列及期望. 附公式及表如下:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828【变式训练】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料是否可以认为“体育迷”与性别有关?非体育迷体育迷合计 男 女 10 55 合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.10 0.05 0.01 k 02.7063.8416.635二、专题突破训练1.为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:优秀 非优秀 合计 男生 15 35 50 女生 30 40 70 合计4575120(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关?(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组.现从这6人中随机抽取2人到校外宣传,求到校外宣传的同学中男生人数X 的分布列和期望. 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.2(1)求出y关于x的回归直线方程y=b x+a,并在坐标系中画出回归直线;(2)试预测加工10个零件需要的时间.3.为了评估天气对某市运动会的影响,制定相应预案,该市气象局通过对最近50多年气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图所示).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X,求X的期望和方差(精确到0.01).4.某婴幼儿游泳馆为了吸引顾客,推出优惠活动,即对首次消费的顾客按80元收费,并注册成为会员,对会员消费的不同次数给予相应的优惠,标准如下:假设每位顾客游泳1(1)估计该游泳馆1位会员至少消费2次的概率;(2)某会员消费4次,求这4次消费中,游泳馆获得的平均利润;(3)假设每个会员最多消费4次,以事件发生的频率作为相应事件发生的概率,从该游泳馆的会员中随机抽取2位,记游泳馆从这2位会员的消费中获得的平均利润之差的绝对值为X,求X的分布列和期望E(X).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学中的概率与统计题详解概率与统计是高考数学中的重要内容之一,涉及概率、统计两个部分。

概率是研究随机事件发生的可能性,统计则是根据观察到的现象,对总体进行推断。

在高考中,概率与统计题往往需要运用一定的公式
和推理能力来解答。

下面将详细介绍高考中常见的概率与统计题,并
提供相关的解题技巧。

一、概率题
概率题常见于高考数学中,考察学生对随机事件和概率的理解与计
算能力。

下面将从基本定义、计算公式和常见类型等方面对概率题进
行详解。

1.基本定义
概率是事件发生的可能性大小的度量,用一个介于0和1之间的数
表示。

当事件不可能发生时,概率为0;当事件一定发生时,概率为1。

2.计算公式
(1)事件A的概率:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。

(2)互斥事件的概率:P(A或B) = P(A) + P(B)。

(3)独立事件的概率:P(A和B) = P(A) × P(B)。

3.常见类型
(1)选择题:将概率题与其他数学知识相结合,如求百分比、比例等。

解题时应根据题目给出的条件,利用计算公式进行计算。

(2)排列组合问题:对于不同颜色、大小、形状的球,求取满足某个
条件的组合数。

解题时应根据题目所给条件,使用排列组合公式进行
计算。

(3)事件的复合:求两个或多个事件复合后的概率。

解题时应根据题
目所给条件,利用计算公式进行计算。

二、统计题
统计题常见于高考数学中,考察学生对收集、整理和分析数据的能力,以及对统计方法的应用。

下面将从数据收集与整理、统计指标和
抽样调查等方面对统计题进行详解。

1.数据收集与整理
统计题要求学生根据给定的数据进行分析和计算。

在实际情境中,
常见的数据收集方法有观察、问卷调查、实验等。

解题时应根据题目
所给的数据,进行整理和清晰的分类。

2.统计指标
统计指标是对统计数据进行度量和描述的指标。

常见的统计指标有
均值、中位数、众数、标准差等。

解题时应根据题目所要求的统计指标,运用相应的公式进行计算。

3.抽样调查
抽样调查是通过对小样本的调查,来推断总体特征的方法。

常见的抽样方法有随机抽样、分层抽样、系统抽样等。

解题时应根据题目给定的抽样方法,运用相应的公式进行计算。

总结:概率与统计题在高考数学中具有一定的难度,要求学生掌握基本概念、计算公式和解题方法。

通过理解和分析题目条件,灵活运用相应的数学知识,可以提高解题的准确性和效率。

希望本文的详解和相关解题技巧能对广大考生在高考数学中的概率与统计题解题有所帮助。

相关文档
最新文档