八年级数学上册二次根式二次根式的除法同步练习1含解析
八年级初二数学二次根式知识点及练习题及解析

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列运算错误的是( ) A= B.=C.)216=D.)223=3.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=4.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .535.当4x =-的值为( )A .1BC .2D .36.如果关于x 的不等式组0,2223x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >则符合条件的所有整数m 的个数是( ). A .5B .4C .3D .27.下列计算正确的是( )A 6=± B.=C.6= D=(a≥0,b≥0)8.下列计算正确的是( )A=B=C4=D3=-9.下列运算正确的是() A=B .(28-=C12=D1=10.与根式1x x--的值相等的是( ) A .x -B .2x x --C .x --D .x -二、填空题11.若m =20161-,则m 3﹣m 2﹣2017m +2015=_____.12.把31a a-根号外的因式移入根号内,得________ 13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.已知函数1x f xx,那么21f _____.15.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 131541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.14+⋅⋅⋅=的解是______.18.已知实数m 、n 、p 满足等式,则p =__________.19.=_______.20.a ,小数部分是b b -=______.三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.解:设x222(35)(35)2(35)(35)x =++-++-,即235354x =++-+,x 2=10 ∴x =10.∵3535++->0,∴3535++-=10. 请利用上述方法,求4747++-的值. 【答案】14 【分析】根据题意给出的解法即可求出答案即可. 【详解】设x =47++47-,两边平方得:x 2=(47+)2+(47-)2+247?47+-, 即x 2=4+7+4﹣7+6, x 2=14 ∴x =±14.∵47++47->0,∴x =14. 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质得出5-x≥0,求出即可. 【详解】|5|5x x ==-=-, ∴5-x≥0, 解得:x≤5,故选D . 【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.C解析:C 【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可. 【详解】解:∵a b =--, ∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =. 故选:C . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数, ∴x >0,y <0. 将x=-y 代入原式得: 原式=()()()()2222313x x x x x x x x +---=--+-. 故选B . 【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.5.A解析:A 【分析】根据分式的运算法则以及二次根式的性质即可求出答案. 【详解】 解:原式2223232323x x x x112323x x将4x =代入得, 原式114234232211131331133331131=.故选:A. 【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.6.C解析:C 【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2. 【详解】 解:解不等式02x m->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2, ∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2, 由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个. 故选:C . 【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.7.D解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确; 根据同类二次根式的性质,可知C 不正确;= (a≥0,b≥0)可知D 正确.故选:D8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案. 【详解】解:A A 错误;B =,故B 正确;C ==C 错误;D 3=,故D 错误;故选:B .【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C 124==,选项C 错误;选项D 1,选项D 错误.综上,符合题意的只有选项B .故选B .【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x 是负数,所以-x x-⋅=- 故选:D .【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x 的符号是负号,这是解题的难点. 二、填空题11.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++.2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为 ()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 18.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.19.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t ≥0,则244t =+8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.20.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a -b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b 1,∴-b 1)=1.故答案为1.三、解答题21.无22.无23.无25.无26.无27.无28.无。
(完整版)八年级二次根式综合练习题及答案解析

填空题1. 有意义的条件是 。
【答案】x ≥4【分析】二次根号内的数必须大于等于零,所以x-4≥0,解得x ≥42. 当__________【答案】-2≤x ≤21【分析】x+2≥0,1-2x ≥0解得x ≥-2,x ≤213. 11m +有意义,则m 的取值范围是 。
【答案】m ≤0且m ≠﹣1【分析】﹣m ≥0解得m ≤0,因为分母不能为零,所以m +1≠0解得m ≠﹣14. 当__________x 是二次根式。
【答案】x 为任意实数【分析】﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
【答案】﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,﹙x -2﹚2【分析】运用两次平方差公式:x 4-9=﹙x 2+3﹚﹙x 2-3﹚=﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,运用完全平方差公式:x 2-22x +2=﹙x -2﹚26. 2x =,则x 的取值范围是 。
【答案】x ≥0【分析】二次根式开根号以后得到的数是正数,所以2x ≥0,解得x ≥07. 2x =-,则x 的取值范围是 。
【答案】x ≤2【分析】二次根式开根号以后得到的数是正数,所以2-x ≥0,解得x ≤28. )1x p 的结果是 。
【答案】1-x【分析】122+-x x =2)1(-x ,因为()21-x ≥0,x <1所以结果为1-x9. 当15x ≤p 5_____________x -=。
【答案】4【分析】因为x ≥1所以()21-x =1-x ,因为x <5所以x -5的绝对值为5-x ,x -1+5-x =410. 把的根号外的因式移到根号内等于 。
【答案】﹣a -【分析】通过a a 1-有意义可以知道a ≤0,a a 1-≤0,所以a a 1-=﹣⎪⎭⎫ ⎝⎛-⨯a a 12=﹣a -11. =成立的条件是 。
二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。
初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
初二数学二次根式基础练习和常考题与简单题(含解析)

初二数学二次根式基础练习和常考题与简单题(含解析)一•选择题(共7小题)1 •若式子.有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M32 •下列二次根式中属于最简二次根式的是()A.三B.产C.上D.3•如果■、. ’•二;,那么X取值范围是()A. X<2B. x v2C. X>2D. x>24. 若1v x v 2,则|—卜:「的值为()A. 2X- 4B.- 2C. 4- 2XD. 25. 下列各式计算正确的是()A.匚+ 二二二B. 4 二-3 二=1C. 2 二X 3 二=6 二D. =十二=36. 若.T订是正整数,最小的整数门是()A. 6B. 3C. 48D. 27. 下列根式中,不能与=合并的是()二.填空题(共7小题)8. 计算"•'的结果是—.V39. _______________________________________________________ 三角形的三边长分别为3、m、5,化简{(卜™)'-心旷对星= _____________________ .10 .若实数a、b、c在数轴的位置,如图所示,则化简:.ii .- [--= ------------ . - -11. __________________________________________________ 若二次根式是最简二次根式,则最小的正整数a= _____________________________ .第2页(共24页)12. 计算:(匚+1)(二-1)= ______13 .已知x、y都是实数,且y= •- 1-' +4,则y X= ____解答题(共26小题) 计算:—_.计算:(占-1)(弋二+1) — (— ) 2+| 1 - :| —( n- 2) °+七.32 - - 先化简,再求值:-亠?亠-亠,其中a=二+1. ,-1 丁 1计算:一^+「(「- _) + -.V2-1当x=wL''」时,求代数式x 2+5x - 6的值. 化简求值::「'七,求歸的值.已知a , b , c 在数轴上如图所示,化简:“丁 - ^+卜,+ . I. I| b0 c-J ------------- 1 ----- 1—>计算3- 9.;.二+3 =(~+不)+ (九上-7)计算:匚+ (- 2013) °-(石)-1+| - 3|二二-」x r +.三.先化简,再求值:(「一+「)宁「,其中a=^+1.aT a 2-2a+La-1已知 a= (*) -1,,c= (2014- n)d=|1-走|,15. 16. 17.18. 19. 20. 21.aI22. (1) (2)23.(1) (2)24. 25.(1) (2)26. 27.14.如果厂〔+ . . — =0,那么第2页(共24页)化简这四个数;把这四个数,通过适当运算后使得结果为2.请列式并写出运算过程.先化简:(2x+1) 2+ (x+2) (x- 2) - 4x (x+1),再求值,其中x=-^p-.£先化简,再求值,其中■■- ;.x+2 x+228•若a 、b 为实数,且b 二•「•+4,求a+b 的值.a+729•计算:(二―二)2-(二+ 二)2. 30. 计算: (1)4 三一叨汁4 .:(2) (- 2.r )J(〒 +3 了 - J) 31. 计算:(1)4- ■ . : - I(2)]汁.| T _ : I ' -•-]32. 计算:(-3) °- =+| 1 -二|+ -.V3+V236. 计算与化简(1),二1_ !一 (2)_ 「 _ .37. (1) 一个正数的平方根是2a - 3与5 -a ,求这个正数.(2)已知x 、y 都是实数,且■ ■-> ■-,求y 的值.38. 若x ,y ,a ,b 满足关系式〒-+ =丄;,二〔丨心 •,试求x , y 的值.39. 已知a, b 为等腰三角形的两条边长,且 a ,b 满足b=「+仁】】+4,求此 三角形的周长. 40.已知 a , b , c ABC 的三边长,且( =+ ) 2=3 (甘二二+!汇+ ■),试说明这个三角形是什么三角形.42•计算:("-1)(甘.:■+〔)—(—一) 2+| 1 -计—(冗―2) 0+ ■:. 33.先化简,,其中x=' ,34.已知:._汁1「.二,工.41.计算:343• (1)计算:Tx - 4X ■ X(1- ") °;2 k2 k2 ’___ (2)先化简,再求值:(_:_- +「)宁,其中a, b满足-■ +|ba2-2ab+ b2a2-ab-1 =°.244•先化简,再求值:---------- ----- ,其中a= =+1.a2-l a-145 .计算:一+ (二-二)+ 匚.V2~l46•计算:5 +•不-「X ;+.〒- =初二数学二次根式基础练习和常考题与简单题(含解析)参考答案与试题解析一•选择题(共7小题)1. (2016?乐亭县一模)若式子::有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 【解答】解:根据二次根式有意义,分式有意义得:x-2>0且x- 3M 0,解得:X>2且X M 3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义. 考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.2. (2015?锦州)下列二次根式中属于最简二次根式的是()A、 B.三C. - D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幕的指数等于或大于2,也不是最简二次根式.3. (2015?维坊模拟)如果.,那么x取值范围是()A. x<2B. x v2C. x>2D. x>2【分析】根据二次根式的被开方数是一个》0的数,可得不等式,解即可.【解答】解:T」=2- x,x—2w 0,解得x<2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.4. (2016?呼伦贝尔)若1v x v2,则.■.. 的值为()A. 2x —4B.—2C. 4—2xD. 2【分析】已知1v x v2,可判断x —3v0, x—1>0,根据绝对值,二次根式的性质解答. 【解答】解:••• 1vxv 2,•- x—3v 0, x —1 >0, 原式=|x-3|+ ::1'=|x—3|+| x—1|=3 —x+x —1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a>0)的代数式叫做二次根式.当a>0时,■■表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:「=| a| .5. (2015?潜江)下列各式计算正确的是()A.匚+ 二二二B. 4 二—3 二=1C. 2 7x 3 二=6 二D. =* 二=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.好[好二,无法计算,故此选项错误,B4.;t- 3化二「;,故此选项错误,C.2二x 3二=6X 3=18,故此选项错误,故选D.【点评】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.6. (2015?安徽模拟)若"E-是正整数,最小的整数门是()A. 6B. 3C. 48D. 2【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.【解答】解:.冇=4帀,由于.冇是正整数,所以n的最小正整数值是3, 故选B.【点评】此题考查二次根式的定义,解答此题的关键是能够正确的对二次根式进行化简.7. (2015?凉山州)下列根式中,不能与二合并的是()A. B ;C , D--【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、;-2_,本选项不合题意;D、」;二;'「,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二•填空题(共7小题)8. (2015?南京)计算一的结果是5 .【分析】直接利用二次根式的性质化简求出即可.【解答】解:——-=;莎X -=5.V3故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9. (2016?山西模拟)三角形的三边长分别为3、m、5,化简辰费-皿乔= 2m-10 .【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:•••三角形的三边长分别为3、m、5,二2v m v8,•••-:_,「「;=m- 2-(8-m)=2m- 10.故答案为:2m- 10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.故答案为:-a- b.【点评】正确地根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.11. (2016?山西模拟)若二次根式沁…-是最简二次根式,则最小的正整数a=2 .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式/.;.小是最简二次根式,则最小的正整数a=2, 故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个10(2016春?惠山区期末)若实数a、b、c在数轴的位置,如图所示,贝U化简:.,| ■-〔-一= -a-b . - »【分析】先根据数轴上各点的位置判断出a,b的符号及a+c与b-c的符号,再进行计算即可.【解答】解:由数轴可知,c v b v0v a, |a| v|c|,••• a+c v 0,b- c>0,•原式=-(a+c)-(b - c)= - a - b.条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12. (2014?畐州)计算:(「+1)( _- 1)= 1 .【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(匚+1)(二-1)= :「故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.13. (2014?苏州模拟)已知x、y都是实数,且y= J 垃-3+V3-X+4,则y x= 64【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的值代入y x进行计算即可.【解答】解:Ty=.. -<+4,解得x=3,.y=4,••• y x=43=64. 故答案为:64.【点评】本题考查的是二次根式有意义的条件及有理数的乘方,能根据二次根式有意义的条件求出x的值是解答此题的关键.14. (2015春?泰兴市期末)如果除\」+ ==0,那么【分析】先由非负数的性质求得a, b的值,再代入原式化简计算可得答案.【解答】解:•••化-+『—=0,而心0, 》0;• a=1, b=2•原式=1+ _=1+ 7.故本题答案为:1+ ".【点评】本题考查了二次根式的化简,还利用了非负数的性质:若两个非负数的和为0,则这两个数均为0.三.解答题(共26小题)15. (2016?德州校级自主招生)计算:「.丄.-【分析】先根据二次根式的乘除法法则得到原式=二-- 二+2二然后利用二次根式的性质化简后合并即可.【解答】解:原式=山-:二+2 7=4 —空并+2 ■■=4+聲汇【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.16. (2014?张家界)计算:(■—1)(,+1)-(-[)—2+| 1 — : —(n—2)0+匚.【分析】根据零指数幕、负整数指数幕和平方差公式得到原式=5 —1 —9+匚—1-1+2匚,然后合并即可.【解答】解:原式=5 - 1-9+匚-1 - 1+2 -=-7+3 匚.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整数指数幕.通分和约分,本题难度不大.【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3 - 3匚+匚【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则.17. (2016?安徽三模)先化简,再求值:2-T 亠-",其中 a=「+1.【分析】首先把‘ 2节寸1写成 泌',然后约去公因式(a+1),再与后一项式子进行通分化简,最后代值计算. 【解答】解: oa +2N +1 aa 2-l 蔦孑= ___ a_=a+l _ n二-I--I【点评】本题主要考查二次根式的化简求值的知识点, 解答本题的关键是分式的18. (2015?闵行区二模)计算:V2-1卜二(二-二)+ 匚.19. (2015?湖北模拟)当x 二匸「时,求代数式X 2+5X -6的值.【分析】可直接代入求值. 【解答】解:当x 二匸〕时,2x +5x - 6=(L - ) 2+5 (也■■)- 6 =6 - 2 "+5 - - 5- 6 =2%「! ■.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.【分析】本题需先对要求的式子和已知条件进行化简,再把所得的结果代入即可 求出答案. :(a+b) (d~b)3(a+b)-+1; b= \「,./-b '=(血+1?_(竝_¥=2人卜 ::知条件进行化简是本题的关键.21 . ( 2016春?日照期中)已知a ,b ,c 在数轴上如图所示,化简: --I - - -: :,-.a b0 ciiIi =20. (2016春?潮南区期中)化简求值:2 k 2 求-的值.【解答】解:【点评】本题主要考查了二次根式的化简求值, 在解题时要能对要求的式子和已3a+3b【分析】根据数轴abc的位置推出a+bv 0,c- a>0,b+cv 0,根据二次根式的性质和绝对值进行化简得出-a+a+b+c- a- b- c,再合并即可.【解答】解:•••从数轴可知:a v b v O v c,••• a+b v0, c- a>0, b+c v0,••• r—|a+b|+ +| b+c|=-a+a+b+c - a - b - c =-a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出-a+a+b+c-a- b - c.22. (2014春?汉阳区期末)计算(1) 3 . :■: - 9.丄+3 . .:■:(2)(三+不)+ (九上一7)【分析】(1)首先对每一项二次根式进行化简,然后合并同类二次根式即可,(2)首先对每一项二次根式进行化简,然后去掉括号,进行合并同类二次根式即可.【解答】解:(1)原式=12二-3二+6二=15 「;,(2)原式=4 二+2 二+2 二--=6 '+V.:;.【点评】本题主要考查二次根式的化简,合并同类二次根式,关键在于正确的化简二次根式,正确的去括号,认真的进行计算.23. (2014春?兴业县期末)计算:(1)匚+ (-2013) 0-( 1 ) -1+| - 3|(2).丘十二-.1 x y I .•:+. =.【分析】(1)根据零指数幕和负整数指数幕的意义得到原式=3+1 - 2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1 - 2+3=5;(2)原式=…: 1:; -'一.•. i _+2訂」=4 —.卜+2”;.扌叭 =4+ *(i .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指 数幕.24. (2016?仙游县校级模拟)先化简,再求值:(二+)- 一,其中旷1 a -2a+la_1a= T +1.【分析】利用通分、平方差公式等将原式化简为厶,代入a 的值即可得出结论. 【解答】解:原式=(止+ 「 )^■,丹(a -l ) 2 ^-1=6+1)(旷1)+1 ? aT: ?,_ a=..当a=二+1时,原式=丄=二!a-l 3【点评】本题考查了分式的化简求值,解题的关键是将原式化简成-.本题属a -l于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据 求值是关键.(1)化简这四个数;(2)把这四个数,通过适当运算后使得结果为 2.请列式并写出运算过程.25. (2015?杭州模拟)已知a=()c= (2014— n) 0, d=| 1 — "I ,【分析】(1)根据零指数幕和负整数指数幕和分母有理化求解;(2)可列式子为a+b-3c-d,然后把a b、c、d的值代入计算.【解答】解:(1)a=d)-1=3, b= - =匚+1, c=(2014-n °=1, d=| 1 —匚| =匚3 V2-1-1,(2) a+b - 3c- d=3+ 匚+1 - 3X 1 -匚+1=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指数幕.26. (2014?焦作一模)先化简:(2x+1) 2+ (x+2) (x-2)- 4x (x+1),再求值, 其中* -.2【分析】根据整式的运算法则将式子进行化简,再代值计算.【解答】解:原式=4X+4x+1+x2- 4 - 4x2- 4x=«- 3,当厂时,【点评】本题不是很难,但是在合并同类项时要仔细.27. (2010?莱芜)先化简,再求值:二;:',其中弓.孟* u 矗T £【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x-2看作一个整体.【解答】解:原式=三',:,一—…x+2 x+2=X2-16X X+2.■ - '■ ■:=::■: - ■ ■:-=■ ■:=-(x+4),当时,原式= 一■■=_■ = :■:.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解; 第15页(共24页)除法要统一为乘法运算.28. (2016春?澄城县期末)若a、b为实数,且b二-二+4,求a+b的值.【分析】根据二次根式有意义的条件列出方程,分别求出a、b的值,计算即可. 【解答】解:由题意得,a2- 1 >0, 1-a2>0, 解得,a=± 1,则b=4,••• a+b=3或5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.29. (2016春?闵行区期末)计算:(「- -)2-(「+ _)2.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3 - 2 7+2 - 3 -2「- 2=-4 '■.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.30. (2016春?定州市期中)计算:(1) 4 ~+ . ■-口- +4 ■:(2)(- 2 .h) J (于+3」-7)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算. 【解答】解:(1)原式=4 ~+3 :-2 ~+4 -=7 +2 :;(2)原式=4X 12-(5 二+ 二-4 二)第仃页(共24页)=48宁(2 二)=8【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.31. (2015春?黔南州期末)计算:(“ ":•…ii - 〔 •丄:(2) 「汁「「T 一 〕 「一— 【分析】(1)先化简,再进一步去掉括号计算即可;(2)利用二次根式的性质化简,平方差公式计算,再进一步合并即可.【解答】解:(1)原式=2「+• - + 7 2 4=3 一-二 4(2)原式=3 - 1 - 3 - 1+ 二+1=':-1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.【解答】解::::- ::=1 - 3 二 + 匚-1 +=-3 ■+ ■:+ ■— ■:,=-2 =、.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质, 在进行此类运 32. (2011?上海)计算: (-3) 0- =+| 1 -匚|+ 1V3+\/2【分析】观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可.算时一般先把二次根式化为最简二次根式的形式后再运算.其中 x= , y=27. 2【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后 把x , y 的值代入求解.【解答】解:原式=(6.「+3 7T ) ;+6.「)=9 二—6 二当 x= , y=27 时, 2=---【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【分析】本题需先对a 的值和要求的式子进行化简,然后把a 的值代入化简以后 的式子即可求出结果.a v 1,33. (2015春?封开县期中)先化简,再求值 丁34. (2003?济南)已知:)-第仃页(共24页)=—2 —:.【点评】本题主要考查了二次根式的化简求值,在解题时要能灵活应用二次根式化简的方法是本题的关键.35. (2015秋?哈尔滨校级月考)计算】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.【解答】解:原式=二壯 b=2a.【点评】本题考查了二次根式的性质,二次根式的乘除的应用,主要考查学生的 计算和化简能力.36. (2012?深圳模拟)计算与化简(1) 乙〉].厂:(2) -「儿【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再合并同类二次根式即可.=「 2::;2 一岳•(2) 原式=2a 2 =+3a?5a 二x 3a 二 2 -3 一、 【解答】解:(1)原式=((2)根据二次根式的被开方数是非负数,列出关于x的不等式组,然后解得x值,从而求得y值;最后将它们代入所求的代数式求值即可.【解答】解:(1)设该正数为x.则由题可知2a- 3+5 - a=0,解得a二—2,所以2a- 3=- 7,所以x=49,即所求的正数是49;(2)根据题意,得x_3^0解得x=3,••• y=4;.•. y x=43=64,即y x=64.【点评】此题主要考查了平方根的性质,注意如果一个数的平方等于A,那么这个数就叫做A的平方根,也叫做A的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.38. 若x, y, a, b满足关系式心T+ 一-巳—m x "-:,试求x, y的值.【分析】由a+b- 2014》0, 2014-( a+b)>0,所以a+b=2014.再利用两个根式的和等于0,即每一个被开方数等于0.【解答】解:依题意,得a+b- 2014》0, 2014-( a+b)》0,解得a+b=2014.所以二一■:+、.U =0,3x- 6=0, 2y- 7=0,x=2, y=.【点评】考查了二次根式的意义和性质.概念:式子-(a》0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.39. (2014春?黄梅县校级期中)已知a, b为等腰三角形的两条边长,且a, b 第20页(共24页)满足b= - 1+ :一+4,求此二角形的周长.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:•••.—,、.:有意义,--a=3,b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.40. (2013秋?川汇区校级月考)已知a, b,c ABC的三边长,且(:+幕+ 一)2=3 (V込初二辰),试说明这个三角形是什么三角形.【分析】先利用完全平方公式展开后合并得到a+b+c-.亍-丁- =o,再利用配方法得到(1-”;.北)2+ (”;.北-)2+ (-I - )2=0,然后根据非负数的性质得到灵-血=0,血-讥=0,灵-叭=0,所以a=b=c.【解答】解:•(空和+心+ )2=3 (叮'),a+b+c+2、匕:+2 了:+2 丨—3 .-1- 3 : - 3 :'L ;=0,a+b+c- 1’- 心:- 门:=0,2a+2b+2c- 2 -1 ■ - 2 -■ —2门:=0,••( 1-“:「.;)2+ (',-吋二)2+ (1-悩二)2=0,•••灵-麻=0,亦-讥=0,讥-讥=0,• a=b=c,•这个三角形为等边三角形.【点评】本题考查了二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.41. (2016?德州校级自主招生)计算- "-''::.=4—遽 ci +2' -,y 1;'.=4+*(匚. 【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各 二次根式化为最简二次根式,然后进行二次根式的加减运算.42. (2014?张家界)计算:(山—1) (*二+1)-(-二)2+| 1-灯:—( n — 2) 30+ ".【分析】根据零指数幕、负整数指数幕和平方差公式得到原式 =5 — 1 — 9+匚—1 —1+2匚,然后合并即可.【解答】解:原式=5- 1 — 9+ ~— 1 — 1+2 -=—7+3 _.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整 数指数幕. 43. (2014?荆门)(1)计算: 丁X 〒-4X X ( 1—二)°;2.2 k 2 ________________________________________(2)先化简,再求值:(”+「)- ,其中a ,b 满足 +|b a -2ab+b 2 "a a -ab—二 | =0. 【分析】(1)根据二次根式的乘法法则和零指数幕的意义得到原式X - X 仁2匚-.,然后合并即可; 4(2)先把分子和分母因式分解和除法运算化为乘法运算, 再计算括号内的运算,【分析】先根据二次根式的乘除法法则得到原式 :+2 ,然后利 用二次根式的性质化简后合并即可.然后约分得到原式=「,再根据非负数的性质得到a+仁0, b—二=0,解得a=—1,b b=二,然后把a和b的值代入计算即可.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、非负 数的性质和分式的化简求值.44. (2016?安徽三模)先化简,再求值:-亠‘亠-:,其中a=「+1.a 2-l H2 2 【分析】首先把自+严+1写成 £辛) 然后约去公因式(a+1),再与后一 项式子进行通分化简,最后代值计算.2【解答】解:亠_'一 _ ,32-1 旷 1= ____ a:.I ; U.:...=曰+1 a=2匚-匚-4X - 4(2)原式=[:"''- (a-b)=(丁一: — ')?a-b a-b=\- ?oA-_i-b-」L : ? I.:a ] ?3(自-b)a-b b 2 =- 一,T .丨 +| b - ;|=0,••• a+1=0, b - =0,解得 a= - 1, b= ■:,当 a=- 1,【解答】解:(1)原式= b=「时,【点评】本题主要考查二次根式的化简求值的知识点,解答本题的关键是分式的 通分和约分,本题难度不大. 45. (2015?闵行区二模)计算: 一二(二-7) + 匚. V2-1 【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3-3匚+匚 =4 -':. 【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则. Y5 2 V4 Y5 【分析】先二次根式化为最简二次根和根据二次根式的乘除法得到原式 =:+ :- 丨+3灯.宀"=2 - - 1+3,然后合并即可.=2 _- 1+3=2 _+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后进行二次根式的加减运算.,31且【点评】本题考查了二次根式的混合运算,二次根式的化简是解此题的关键.37. (2009春?岳阳校级期末)(1) 一个正数的平方根是2a - 3与5 - a ,求这个 正数. (2)已知x 、y 都是实数,且 八门,求y "的值.【分析】(1)因为一个正数x 的平方根有两个,且互为相反数,由此即可得到关 于a 方程,解方程即可得a 的值,然后代入求x ;46. (2015春?石林县期末)计算: V4 5【解答】/。
北师大版八年级数学上册2.7二次根式计算专题( 含答案解析)

北师大版八年级数学上册2.7二次根式计算专题1.计算:(1))3127(12+- (2)()()6618332÷-+- 【答案】(1)334- (2)2【解析】试题分析:(1==(2312=-= 考点:实数运算点评:本题难度较低,主要考查学生对平方根实数运算知识点的掌握。
要求学生牢固掌握解题技巧。
2.(÷【答案】1【解析】试题分析:(-=(32⨯⨯1= 考点:二次根式的化简和计算点评:本题考查二次根式的化简和计算,关键是二次根式的化简,掌握二次根式的除法法则,本题难度不大3.计算(每小题4分,共8分)(1(2)【答案】【解析】试题分析:原式=-+2)原式+考点:实数的运算点评:实数运算常用的公式:(1)2(0)a a =≥(2,a =(30,0)a b =≥≥(40,0)a b=≥≥.4.计算:(1) (2)(3+ (4)14【答案】(1),(2),(3)194-13,(4【解析】本题考查二次根式的加减法.根据二次根式的加减法法则进行计算解:(1)原式= 2)原式=-(3)原式= 24+= 4(4)原式3-25.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--. 【答案】22. 【解析】试题分析:根据二次根式的运算法则计算即可.-==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.==⎝.考点:二次根式计算.9.计算:()0+1π错误!未找到引用源。
.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+【答案】323223+.【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+.考点:二次根式的化简.11.计算:(1)(2)()02014120143π----【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,绝对值4个考点分别进行计算,试题解析:(1(2)()20141201431133π---=--+=-考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算:212)31()23)(23(0+---+【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.(1==+试题解析:解:原式=2123+--=2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】试题分析:0(2013)|+-+-1=+1=. 考点:二次根式化简.14.计算:⎛÷ ⎝2+ 【答案】5【解析】试题分析:解:原式13⎛=÷ ⎝153== 考点:实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
(完整版)二次根式专题练习(含答案).doc
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。
数学二次根式知识点及练习题及解析(1)
一、选择题1.如果0,0a b <<,且6a b -=,则22a b -的值是( ) A .6 B .6- C .6或6- D .无法确定2.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x > B .3x ≥ C .3x ≤D .x 是非负数 3.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .64.下列二次根式中,是最简二次根式的是( )A .15B .8C .13D .265.下列计算正确的是( )A .93=±B .8220-=C .532-=D .2(5)5-=-6.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( )A .1B .2C .3D .43 7.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a8.下列各式成立的是( ) A ()222- B ()255-=- C 2x x D ()266-=- 9.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.下列各组二次根式中,能合并的一组是( )A 1a +1a -B 3和13C 2a b 2abD 318二、填空题11.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.12.)230m m --≤,若整数a 满足52m a +=a =__________.13.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.14.方程14(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______. 15.把1a a-的根号外的因式移到根号内等于? 16.若a 、b 为实数,且b =2211a a -+-+4,则a+b =_____. 17.已知x =51-,y =51+,则x 2+xy +y 2的值为______. 18.化简(322)(322)+-的结果为_________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.1123124231372831-+- 533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】1123124231372831-+-=48132331)32(337228+⨯⨯⨯=46233132337533121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算:(18322(2))((25225382+-+. 【答案】(1)52【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2=023.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b c p ++= (1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S ==(2)222222211[()]24a b a S c b +-=- =222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =--- ∵2a b c p ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >,∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.计算:10099+【答案】910【解析】 【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】10099++10099+++=9912233499100-+-+-++-=1100-=1110-=910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
八年级上册数学-二次根式及经典习题及答案
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.二次根式21.1 二次根式:1. 有意义的条件是 。
八年级数学上册二次根式练习题
八年级数学上册二次根式练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.当x =__________________.2a 的取值范围是___________.3.判断一个式子是二次根式的方法(1)含有二次根号“______ ”.(2)被开方数是_________.二者缺一不可.4在实数范围内有意义,则实数x 的取值范围是___________.5x 的取值范围___________.6.已知三角形的三边长分别为a 、b 、c ||c a b --=________.7.已知一个正数x 的两个平方根分别是1a +和27a -,则=a ______,正数x =______.二、单选题8a b =成立,且b >0,则a 取值范围是( )A .a <0B .a>0C .0a ≥D .0a ≤9.已知xy >0,化简二次根式- )AB C .D .102()x y +,则y x -的值为( )A .1-B .1C .2D .311.已知a 满足2021a a -=,则22021a -的值为( )A .0B .1C .2021D .2022三、解答题1211x +在实数范围内有意义,请确定x 的取值范围.13.计算:14.一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?15.已知1x-的算术平方根是2,112y-的立方根是1-,求代数式x y+的平方根.参考答案:1. 6 0【分析】根据被开方数为非负数可得.【详解】∵当0a =0)a ≥的最小值为0,∵当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.2.a ≥-4【分析】根据二次根式有意义的条件可得2a +8≥0,再解不等式即可.【详解】解:由题意得:2a +8≥0,解得:a ≥-4,故答案为:a ≥-4.【点睛】此题主要考查了二次根式的意义.关键是二次根式中的被开方数必须是非负数,否则二次根式无意义.3. 非负数(正数或0)【分析】根据二次根式的定义回答即可.【详解】解:判断一个式子是二次根式的方法是:(1)含有二次根号.(2)被开方数是非负数.二者缺一不可.a ≥0)的代数式叫做二次根式.4.x ≥8【分析】根据二次根式有意义的条件,可得x -8≥0,然后进行计算即可解答.【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.0)a ≥是解题的关键.5.2x ≥-且1x ≠【分析】根据二次根式有意义的条件和分式有意义的条件,求解即可.【详解】解:根据二次根式有意义,分式有意义得:20x +≥且10x -≠,解得:2x ≥-且1x ≠.故答案为:2x ≥-且1x ≠【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式有意义:被开方数是非负数,难度不大.6.2a【分析】根据三角形的三边关系可得三角形两边之和大于第三边可得a -b +c >0,a -b -c <0,然后再根据二次根式的性质和绝对值的意义进行化简即可.【详解】∵三角形的三边长分别为a 、b 、c ,∵a +c >b ,a +b >c ,∵a -b +c >0, c -a -b <0,||()()2c a b a c b c a b a --=+----=,故答案为:2a .【点睛】此题主要考查了三角形的三边关系,二次根式的性质,绝对值的意义等知识,解决问题的关键是熟练掌握三角形两边之和大于第三边.7. 2 9【分析】根据一个正数的平方根互为相反数可得出a 的值,继而得出这个正数.【详解】解:由题意得,a +1+2a -7=0,解得:a =2,则这个数2219x =+=().故答案为:∵2;∵9.【点睛】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握一个正数的平方根互为相反数.8.A00a >,则0a ->,即可求解.【详解】解:0≥a b =成立,且b >0,0a >,0a a ∴-->,0a ∴<.【点睛】本题考查了二次根式的非负性,根据二次根式的性质化简,掌握二次根式的双重非负性是解题的关键.9.B【分析】根据二沉池根式有意义的条件求出2x y -≥0,求出x 、y 的范围,再根据二根式的性质进行化简即可. 【详解】解:由二次根式有意义的条件可得20x y ->, ∵xy >0,∵x <0,y <0,∵-=故选:B .【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.10.C【分析】2()x y =+结合二次根式有意义的条件可得1,x =- 再求解1,y =再代入代数式求值即可.【详解】解: 2()x y =+, 1010x x 解得:1,x =-210,y解得:1,y =11 2.y x故选C 【点睛】本题考查的是二次根式有意义的条件,利用平方根的含义解方程,代数式的值,掌握“二次根式有意义的条件”是解本题的关键.11.D【分析】根据二次根式有意义的条件得到a 的取值范围,根据a 的取值范围去绝对值,化简即可得出答案.【详解】解:由题意知:20220a -≥,解得:2022a ≥,∵ 20210<-a ,∵2021a a -,∵2021a a -=2021=,∵ 220222021a -=,即220212022-=a .故选:D【点睛】本题考查了二次根式有意义的条件,出现二次根式中有未知数的题,想到二次根式有意义是解题的关键.12.32x ≥-且1x ≠- 【分析】根据二次根式的被开方数是非负数,分式的分母不等于零,即可求解.【详解】解:依题意得:23010x x +⎧⎨+≠⎩, 解得32x -,且1x ≠-. 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,解题的关键是掌握二次根式有意义的条件.13.(1)(2)6(3)127【分析】(1)根据二次根式的性质以及乘法法则计算即可;(2)根据二次根式的性质以及乘法运算法则计算即可;(3)根据二次根式的性质以及除法运算法则计算即可.(1)===(2)==;6(3)==÷12712=.7【点睛】本题主要考查了二次根式的乘法和除法运算以及二次根式的性质,熟练掌握二次根式的性质,是解题的关键.14.(1)22x x y x+-++(125832)m(2)铺地砖的总费用为8000元【分析】(1)利用长方形和正方形的面积公式分别表示出四个图形的面积,再相加即可;(2)利用代数式分别表示出两部分阴影面积之和,将x=6,y=2代入计算得出阴影部分的面积,再乘以铺地砖每平方米的平均费用为80元,即可得出结论.(1)解:图形的面积为:x2+4x+3y+8(x+4﹣y)=x2+4x+3y+8x+32﹣8y=(x2+12x﹣5y+32)m2;(2)解:阴影部分的面积为:x2+8(x+4﹣y),当x=6,y=2时,阴影部分的面积为:62+8(6+4﹣2)=36+64=100(m2).∵铺地砖每平方米的平均费用为80元,∵铺地砖的总费用为:100×80=8000(元).答:铺地砖的总费用为8000元.【点睛】本题主要考查了列代数式,求代数式的值、整式的加减,利用图示数据表示出相应的长方形的边长是解题的关键.15.【分析】根据算术平方根和立方根的定义求出x ,y 的值,求出x y +,再求它的平方根即可.【详解】解:1x -的算术平方根是2,112y -的立方根是1-, 14x ∴-=,1112y -=-, 5x ∴=,0y =,5x y ∴+=,x y ∴+的平方根为答:x y +的平方根为【点睛】本题考查了平方根,算术平方根,立方根,掌握一个正数的平方根有2个是解题的关键,不要漏解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.x<1 且 x≠0
B.x>0 且 x≠1 )
3 2 3 1 11 3
4.下列各式计算正确的是( A.
48 3 3 6 6 3 16 2 2
B.
C.
2 D. 54a b 9 ab 6a
5.把
1 化成最简二次根式为( 32
B.
1 32 32
). ·
1 2 8 1 2 4
A. 32 32 6.已知 a A.a=b 二、填空题· ·
48 48 3 2 3 11 3 3 3 16 4 ,故 A 项不正确; 3 ,故 B 项不 11 3 11 3 11 11 11 3 3
正确;
3 6 6 2 54a 2 b 54a 2 b 3 6 ,故 C 项正确; 3 ab ,故 D 项不正确. 3 2 6a 6 3 6a
1 4 3 …… 4 3
从计算结果中找出规 律 ,并利用这一规律计算
1 1 1 1 … 3 2 4 3 2013 2012 2 1
2013 1 的值.
3
参考答案 1.B 解析 A 中的 9 ,C 中的 20 的被开方数都含能开得尽方的因数,D 中 0.3 的被开方数是小数, 所以 A,C,D 都不是最简二次根式,只有 B 中的 7 是最简二次根式.
二次根式的除法、
一、选择题· 1.下列各式是最简二次根式的是( ) · A. 9 B. 7 C. 20 D. 0.3
2.下列计算中,正确的是() A. 16 4 C. B. D.
3 2 3 2
2 1 2 3 6
3.
1 x 1 x 成立的条件是( x x
). C.0<x≤1 D.0<x<1
9.如果一个三角形的面积为 12 ,一边长为 3 ,那么这边上的髙为
.
1
三、解答题· · 10.化简:(1)
16 ; 25 7 (2) 2 ; 9
(3)
24 ; 3
(4) 5 75 2 125 ;
11.计算:(1)
b a3 ab ; b a
(2) 12 xy
2 y; 3
(3)
ab ab
2 1 1 1 ______;(6) 4 ______;(7) x 4 3 x 2 ______;(8) ______. 3 2 2 3
8.计算下列各式,使得结果的分母中不含有二次根式: (1)
1 5 _______(2) 2 2 x _________(3) __________(4) __________ x 2 3 5y
C.
D.
3 1, b
2 ,则 a 与 b 的关系为( 3 1
C.a=-b
). D.ab=-1
B.ab=1
7. 把下列各式化成最简二次根式: (1) 12 ______;(2) 18 x ______;(3) 48 x 5 y 3 ______;(4)
y ______; x
(5)
12.试探究 a 2、 ( a ) 2 与 a 之间的关系.
13.计算: (1) 48 6 ; (2) 27 10 8 ·
3 3
3 (3) 4a b
a · 4b
(4)
72a 2b 6b
a 0
14.计算:
2 3 3 1 b ab5 a b a 2 3 a
5.C. 6.A. 7.(1) 2 3 ; (2) 3 2 x ; (3) 4 x y 3 xy ;
2
(4)
xy ; x
(5)
6 ; 3
(6)
3 2 ; 2
(7) x x 2 3 ;
(8)
30 . 6
8. (1)
x 5y 5 2x 6 ; (2) x ; (3) ; ( 4) 5 5y 6
9.4 解析根据三角形的面积公式得这边上的高为 2 12 3 2 12 3 2 2 4 .
2 2 2 2 1 2 24 6 24 6 4 2 ,所 以 C 错误,因为 6 4 2 ,所以 D 正确. 3 6 3
2.D 解 析 因 为 16 42 4 , 所 以 A 错 误 , 因 为
3
3 2
6 ,所以 B 错误,因为 2
3.C. 4.C 解析
15. 先将
x2 x 化简,然后选一个你喜欢的 x 的值,代入后,求式子的值. 3 x2 x 2x2
16.根据爱因斯坦的相对论,当地面上经过 1 秒 钟时,宇宙飞船内只经过 1 秒. c 公式内的 v 是指宇宙飞船的速度,c 是指光速(约 30 万千米/秒) ,假定有一对亲兄弟,哥哥 23 岁,弟弟 20 岁,哥哥 乘着以光速 0. 98 倍的速度飞行的宇宙飞船进行了 5 年宇宙旅行后回来了. 这个 5 年是指地面上的 5 年,所以弟弟的年龄为 25 岁,可是哥哥的年龄在这段时间里只长了一岁, 只有 24 岁,就这样,宇宙旅行后弟弟比哥哥反而大了 1 岁,请你用以上公式验证一下这个结论.
10 9 8 20 2 ; 3
a a 3 (3 ) 4a3b 4b 4a b 4b
11. (1)
ab ; (2)3 3 x ; (3) a b. b
2 2 2
12.当 a≥0 时, a ( a ) a ;当 a<0 时, a a ,而 ( a ) 2 无意义. 13.解:(1) 48 6 48 6 8 2 2 ;
3 3 3 3 1 27 (2) 27 10 8 10 8
v
2
17.(探究题)观察下列各式,通过分母有理化把不是最简二次根式的化成最简二次根式.
1 2 1
1
2 1
2 1
2 1
2 1 2 1; 2 1
2
1 3 2
1
3 2
3 2
3 2
3 2 3 2. 3 2
同理可得