一次函数的复习学案

合集下载

一次函数复习教案

一次函数复习教案

一次函数复习教案教案标题:一次函数复习教案教案目标:1. 复习学生对一次函数的基本概念和性质的理解。

2. 帮助学生巩固一次函数的图像、斜率和截距等概念。

3. 引导学生运用一次函数的知识解决实际问题。

教学资源:1. 教材:包含一次函数相关知识的教材章节。

2. 白板、马克笔和擦布。

3. 学生练习册。

4. 计算器(可选)。

教学步骤:引入(5分钟):1. 引导学生回顾一次函数的定义和一次函数的一般形式。

2. 提问学生一次函数的斜率和截距的含义,并解释其在实际问题中的应用。

概念复习(15分钟):1. 提供一些简单的一次函数方程,要求学生计算其斜率和截距,并解释其含义。

2. 给出一些一次函数的图像,要求学生根据图像判断斜率和截距,并解释其含义。

3. 引导学生通过解方程组的方法求解一次函数的交点,并解释其实际意义。

图像绘制(15分钟):1. 提供一些一次函数的方程,要求学生在白板上绘制其图像。

2. 引导学生观察图像的特点,如斜率的正负、截距的位置等,并解释其含义。

3. 让学生自主绘制一些具有特定性质的一次函数图像,例如正斜率、负斜率、零截距等。

应用问题解决(15分钟):1. 提供一些实际问题,要求学生建立相应的一次函数方程,并解决问题。

2. 引导学生分析问题中的关键信息,如斜率代表什么,截距代表什么,并运用相关知识进行解答。

3. 让学生分享他们的解题思路和答案,并进行讨论和纠正。

练习巩固(15分钟):1. 分发练习册,让学生独立完成一些与一次函数相关的练习题。

2. 监督学生的练习过程,及时解答他们的疑问,并给予指导和反馈。

3. 收集学生的练习册,检查他们的答案,并进行讲解和讨论。

总结(5分钟):1. 总结本节课的重点内容和学习收获。

2. 强调一次函数在实际生活中的应用,并激发学生对数学的兴趣和探索欲望。

3. 鼓励学生继续巩固和拓展一次函数的知识,并提供相关的学习资源和参考书目。

教学延伸:1. 鼓励学生在日常生活中寻找和应用一次函数的例子,加深对其实际意义的理解。

第四章一次函数复习课导学案

第四章一次函数复习课导学案

八年级下数学第四章一次函数期末复习课学案(1)一、学习目标:1、知道什么是函数,并能判断某变化过程中两个变量之间的关系是否函数关系;2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数;3、会运用一次函数图像及性质解决简单的问题;4、会用待定系数法确定一次函数的解析式。

二、基本知识点突破:1、函数的概念:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值, 相应地就唯一确定了一个y值,那么y就是_____ 的函数;2、一次函数的概念:若两个变量x,y间的函数关系式可以表示成的形式,则称y 是的一次函数,为自变量,为因变量。

特别地,当b= 时,称y是x 的。

正比例函数是_____________的特殊形式,因此正比例函数都是_______,而一次函数不一定都是_________。

3、判断一个函数是不是一次函数的条件:(1)、的个数;(2)、自变量的。

4、一次函数图像、性质及其解析式的确定:三、整合集训目标1 知道什么是函数,并能判断某变化过程中两个变量之间的的关系是否函数关系已知梯形上底的长为x,下底的长是10,高是6,梯形的面积y随上底x的变化而变化。

(1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?(2)若y是x的函数,试写出y与x之间的函数关系式。

目标2 知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数1.函数:①y=- x ;②y= -1;③y=x2;④y=2x+3x-1;⑤y=x+4;⑥y=3.6x,一次函数有___ __;正比例函数有____________(填序号)。

2.函数y=(2k-1)x+3是一次函数,则k的取值范围是( )A.k≠1 B.k≠-1 C.k≠±1 D.k为任意实数.3.若一次函数y=(1+2k)x+2k-1是正比例函数,则k=_______。

目标3 会运用一次函数图像及性质解决简单的问题1 . 正比例函数y=k x,若y随x的增大而减小,则k______。

一次函数复习导学案

一次函数复习导学案

一次函数的复习(一)【学习目标】1.会画一次函数的图像,掌握它的性质2.会求一次函数图像与坐标轴的交点3.会根据图像利用待定系数法求解析式以及看图像解决问题。

【学习重难点】利用一次函数的图象和性质解题【课前自习】1.一次函数的一般形式是___________________________正比例函数的一般形式是________________________,2.画一次函数图像有三步:_______、________、________.3.已知一次函数y=2x+2,(1)比例系数K=_____,b=________(2) 在给出的直角坐标系中画出它的图像。

(3)从图像中可以看出它与 x 轴的交点坐标为______与y 轴的交点坐标为___________思考:你能找到求图像与坐标轴交点的方法吗?_______________________________________________(4)利用图像求出当22≤-x π时,y 的范围为________(5) 利用图像求出不等式022φ+x 的解为___________.若点P(b-1,b+1)在其上,求b 的值。

4. 已知一次函数)4()22(m x m y -+-=(m 为常数)(1)、当m 满足什么条件时,一次函数经过原点。

______________(2)、当m 满足什么条件时,y 随x 的增大而减小. _________________ 你还能提出什么问题来求m 的范围。

5.已知某一次函数图像如图所示,求出它的解析式。

思考:你认为第2,3题都用到了什么数学方法?______________.已知一次函数y = kx + b 关系满足下表(x 为自变量), x…-2 -1 0 1 2 y …12 9 6 3 0则由表格可以看到,当x______时,0φb kx +在这一题中,我还可以知道:增减性,两点之间的距离,与坐标轴围成的三角形的面积,o 到直线的距离,通过平移过原点。

一次函数全章复习学案

一次函数全章复习学案

第14章 一次函数复习知识梳理针对练习: 1.函数1y x =-x 的取值范围是 。

2、一个矩形的周长为6,一条边长为x,另一条边长为y,则用x 表示y 的函数表达式为_______________。

自变量x 的取值范围是 。

知识点击:1.函数自变量取值范围应从 方面考虑。

2.写函数表达式时,要区分自变量和函数。

针对练习:用描点法画函数y=2x 和y=2x+1和y=2x-1的图像 (1)列表:x -2 -1 0 1 2 y= 2x y= 2x+1 y= 2x-1(2)描点画图:用描点法画函数y=-2x 和y=-2x+1和y=-2x-1的图像(1)列表: x -2 -1 0 1 2 y= -2x y= -2x+1 y= -2x-1(2)描点画图: ◆考点链接:1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2.一次函数y kx b =+的图象与性质 k 、b 的符号k >0b >0k >0 b <0k <0 b >0k <0b <0针对练习:1.若函数9)3(2-++=a x a y 是正比例函数,则______=a , 图像过______象限. 2.当x<0时,函数y=-2x 的图象在第( )象限。

(A )一 (B )二 (C )三 (D )四3. 一次函数y=-2x+3的图像不经过的象限是( ). A 第一象限 B 第二象限 C 第三象限 D 第四象限 4.下列函数中,y 随x 的增大而减小的有( ) ①12+-=x y ② x y -=6③ 31xy +-= ④ x y )21(-=A.1个B.2个C.3个D.4个5.已知一次函数y=kx+2,当x=5时y 的值为4,求k 值.6.已知直线y=kx+b 经过点(-4,9)和点(6,3),求k 、b 值.7.已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。

北师大版 八年级上册 课题:《一次函数》复习课学案

北师大版 八年级上册 课题:《一次函数》复习课学案

复习《一次函数》学案九( )班 姓名 学号【导学目标】1、理解一次函数的定义,会画一次函数图象,求一次函数的关系式。

2、结合表达式、图象、表格理解一次函数(正比例函数)的性质。

3、用一次函数解决实际问题系。

【导学过程】一、课前部分:核对P31“试一试”答案 二、课内部分:考点一:定义:形如ykxb (,k b 为常数,k ≠0)的形式,则称y 是x 的一次函数;当0b时,则y 是x 的正比例函数。

例:当k = 时,函数28(3)5k yk x是关于x 的一次函数.考点二:画一次函数图象(直线)。

例题:作函数y=x -1图像。

x 0 y 0小结:画一次函数的图像,需列出2个点的表,一般来说,取x=0,或y=0时对应的点不仅计算简单,画图时也较为方便。

考点三:求一次函数的表达式。

(待定系数法)如图所示:一次函数的图象经过A 、B 两点,求该直线的关系式。

解:设一次函数为y kx b ,把A ( , )、B( , )代入, 得考点四:一次函数与坐标轴的交点:一次函数ykx b 与y 轴的交点为(0, );与x 轴的交点为( ,0 )。

例:一次函数为2y x =+与y 轴的交点A 为(0, ),与x 轴的交点B 为( ,0 ),△ABO 的面积是 。

考点五:一次函数ykxb 的性质:k >0时,y 随x 的增大而 ,图象必经过 象限;k <0时,y 随x 的增大而 ,图象必经过 象限。

b 表示函数与y 轴的交点位置。

1、按要求画一次函数ykx b 草图:(1)、k >0 (2)、k >0 (3)、k <0 (4)、k <0 (5)、k >0b >0 b =0 b >0 b <0 b <02、一次函数32+-=x y 的图象经过第 象限。

3、一次函数13-+=m x y 的图象经过第一、二、三象限,则m 的取值范围是 。

4、如图若为一次函数332y x =-+的图象,当0y <时,x 的取值范围是 . (1)不等式0323>+-x 的解集是_________ (2)不等式0323<+-x 的解集是_________考点六:一次函数的应用例:学习课本32页考点五例题。

中考复习--一次函数复习学案

中考复习--一次函数复习学案

中考复习--一次函数复习学案【知识梳理】1. 一次函数的意义及其图象和性质(1)一次函数:若两个变量x、y间的关系式可以表示成 (k、b为常数,k ≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b 时,称y是x的正比例函数.(2)一次函数的图象:一次函数y=kx+b的图象是经过点( , ),( ,)的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,(3)一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而;当k<0时,y的值随x值的增大而.(4)直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.①kk>⎫⇔⎬>⎭直线经过第象限(直线不经过第象限);②kk>⎫⇔⎬<⎭直线经过第象限(直线不经过第象限);③kk<⎫⇔⎬>⎭直线经过第象限(直线不经过第象限);④kk<⎫⇔⎬<⎭直线经过第象限(直线不经过第象限);2. 一次函数表达式的求法(1)待定系数法:先设出解析式,再根据条件列方程或方程组求出未知系数,从而写出这个解析式的方法,叫做待定系数法,其中的未知系数也称为待定系数。

(2)用待定系数法求出函数解析式的一般步骤:①;②得到关于待定系数的方程或方程组;③从而写出函数的表达式。

(3)一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。

【典例解析】1.在函数y=-2x+3中当自变量x满足______时,图象在第一象限.2.已知一次函数y=(3a+2)x-(4-b),求字母a、b为何值时:(1)y随x的增大而增大;(2)图象不经过第一象限;(3)图象经过原点;(4)图象平行于直线y=-4x+3;(5)图象与y轴交点在x轴下方.3.杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:(1)买进每份0.2元,卖出每份0.3元;(2)一个月内(以30天计)有20天每天可以卖出200份,其余10天每天只能卖出120份;(3)一个月内,每天从报社买进的报纸数必须相同,当天卖不掉的报纸,以每份0.1元退给报社.①填下表:②设每天从报社买进该种晚报x 份(120≤x ≤200 )时,月利润为y 元,试求出y 与x 之间的函数表达式,并求月利润的最大值.4.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用后,那么服药后2小时血液中含药量最高,达每毫升6微克,(1微克=10-3毫克),接着逐步衰减,10小时时血液中含量为每毫升3微克,每毫升血液中含药量y (微克)随时间x (小时)的变化如图所示。

一次函数复习课教案

一次函数复习课教案

一次函数复习课(1)教学目标1.理解一次函数概念;能用“待定系数法”确定一次函数解析式;2.会画一次函数图像,并借助图像理解一次函数的性质;能以运动的观点来了解两条平行直线的表达式之间的关系;3.会应用数形结合的方法处理有关一次方程、一次不等式的问题。

4.通过复习进一步领会方程思想、数形结合思想、运动变化的唯物辩证观点,提升数学修养,提高解决问题的能力。

教学重点及难点重点:一次函数图像与性质;难点:学会运用图像与性质建立一次函数的模型。

复习过程:一.知识点“扫描”1.一次函数的概念、定义域、待定系数法、正比例函数、常值函数2.一次函数的图像、直线的平移、与一元一次方程(不等式)的关系3.一次函数的性质4.一次函数的应用二.出错点“杀毒”1.判断下列函数是否一次函数⑴()⑵()⑶()⑷()⑸()⑹()2.(组)函数的自变量的取值范围是____________.(B组)已知等腰三角形的周长为12,设它的腰长为x,底边长为y,那么y关于x的解析式是_____________ ,并指出函数的定义域_______________ Array 3.①画一次函数的图像②画一次函数的图像③再画一次函数的图像(通过画图像,加深对一次函数性质以及图像平移的认识。

)4.(组)如果函数的图像一定经过第二象限,则m的取值范围是()A.m>0B.m≥0C.m<0D.m≤0(B 组)如果函数的图像一定不经过第二象限,则m的取值范围是()A.m >0B.m≥0C.m <0D.m≤0(B 组)如果关于x 的函数y=(mx-2)x+m (m2)的图像不经过第三象限,求m 的取值范围 5.(组)直线,当x 时,y >2.(组)若直线y=4x+2上的点不在x 轴上方,求x 的取值范围 (B 组)一次函数的图像如图所示,则由图像可知关于x 的方程kx+b=0的解为,当x <0时,y 6.(组)若直线经过点(2,1),求b 的值。

(组)如图,该直线是某函数的图像,求这个函数的解析式;并求(B 组)一次函数与直线y=2x平行,且与反比例函数交于点(a ,1),求这个一次函数的解析式。

一次函数复习教案(精品)

一次函数复习教案(精品)

授课学科 数 学 授课班级授课时间 课题 一次函数(复习学案)课型复习课学习目标: 学习重难点:【学习流程】知识点一:函数与函数图象 1、下列关系式中,y 是x 的函数的是①2y x =+ ②y x = ③2y x = ④y x = ⑤2y x=⑥21y x =+2、下列各图给出了变量x 与y 之间的函数是 ( )3、在函数211x y x x -=++-中,自变量x 的取值范围是 知识点二:正比例函数1、已知自变量为x 的函数2y mx m =+-是正比例函数,则m=______,•该函数的解析式为2、若函数21(1)m y m x -=+是一条经过原点的直线,则m=3、在函数15y x =-的自变量中任意取两个点12,x x ,若12x x >,则对应的函数值12,y y 的大小关系是1y __ _ 2y 知识点三:一次函数的图象及性质1、已知一次函数(2)(2)y k x k =-++,若它的图象经过原点,则k =_____;若y 随x 的增大而增大,则k ________.备 注xyoAxyoB xyoD xyoC2、一次函数y mx n =+的图象如图,则下面正确的是( )A 、0,0m n <<B 、0,0m n <>C 、0,0m n >>D 、0,0m n ><3、函数(1)(43)y m x m =+--的图象在第一、二、四象限,则m 的取值范围是( ) A 、34m < B 、314m -<< C 、1m <- D 、1m >-4、一次函数(0)y kx k k =-<的图象大致是( )A B C D5、若一次函数y kx b =-满足0kb <,且函数值随x 的减小而增大,则它的大致图象是图中的( )A 、B 、C 、D 、6、两个一次函数y ax b =+和y bx a =+在同一坐标系中的图象大致是( )A B C D 7、已知一次函数1(1)3k y k x -=-+,且y 随x 的增大而减小,则k = .其图象位于 象限8、已知直线11y k x b =+与22y k x b =+的交点为(-5,-8),则方程组1122k x y b k x y b -=-⎧⎨-=-⎩的解是________. 9、一次函数(0)y kx b k =+≠的图象如右图, 当0y >时,x 的取值范围是10、如图,已知函数2y x b =+与函数3y kx =-的图象交于点P ,则不等式32kx x b -<+的解集是11、在平面直角坐标系中,点0是坐标原点,过点A (1,2)的直线y kx b =+ 与x 轴交于点B ,且S △AOB =4,则k =综合训练1、已知一次函数(63)(4)y m x n =++- ①求,m n 分别是为何值时,y 随x 的增大而减小②求,m n 分别是为何值时,函数与y 轴的交点在x 轴下方 ③求,m n 分别是为何值时,函数图象经过原点④当m=1,n=-2时,求这个一次函数的图象与两条坐标轴的交点2.已知3y +和21x -成正比例,且2x =时,1y =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、学习目标 增强对一次函数性质、图象的理解和综合运用能力
二、重点、难点
教学重点:一次函数性质、图象运用
教学难点:一次函数性质、图象运用
三、学习方法
自主学习为主,合作学习为辅
四、知识结构
(一)温故知新
变量: ; 常量: ; 1:在函数3b-2a=1中,常量是 ,变量是 ,若a 是b 的函数,则其表达式是 .
2、 自变量, 函数. 函数值.
2、下列关系式中,y 不是x 的函数的是( )
A. 1
2y x = B. 22y x = C. 0)y x =≥ D. 0)y x =≥
例3、下列图中,不表示某一函数图象的是( )
A B C D
3、一次函数y=kx+b(k ≠0,k,b 为常数)
当k>0,y 随x 的增大而增大;当k<0,y 随x 的增大而减小
当k>0,b>0时图象经过 象限;当k<0,b>0时图象经过 象限
当k>0,b<0时图象经过 象限;当k<0,b<0时图象经过 象限
(二)典型例题
例1. 直线23y x =-+与x 轴交于点A ,直线3y x =-与x 轴交于点B ,且两直线的交点为点C,求△ABC 的面积
例2、已知函数26
y x
=--.
(1)求当4
x=-时y的值,当x2
y=-时x的值;
(2)画出函数的图像;
(3)如果y的取值范围是-4≤x≤2,求x的取值范围.
五、技能训练
一、选择
1.下列说法不正确的是()
A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就不是一次函数
2.已知一次函数y=2x+a与y=-x+b的图象都经过点A(-2,0)且与y轴分别交于B,C两点,则△ABC的面积为()
A.4 B.5 C.6 D.7
3.一次函数y=x-1的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
4.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()
A.y随x的增大而减小B.y随x的增大而增大
C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小
D.不论x如何变化,y不变
5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()
A.m<0 B.m>0 C.
1
2
m<D.
1
2
m>
6.结合正比例函数y=4x的图象回答:当x>1时,y的取值范围是()A.y=1 B.1≤y<4 C.y=4 D.y>4
7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的交点和直线
1
3
2
y x
=--与y轴
的交点相同,那么一次函数的解析式是()
A.y=-4x-3 B.y=-4x+3 C.y=4x-3 D.y=4x+3
二、填空
1.一次函数y=2x-3与y轴的交点坐标是.
2.如果正比例函数的图象经过点(2,1) ,那么这个函数解析式是.3.如果直线y=2x+m不经过第二象限,那么实数m的取值范围是.4.一次函数y=kx+b的图象经过点P(1,0) 和点Q(0,1)两点,则k=,b=.
5.正比例函数的图象与直线
2
4
3
y x
=-+平行,则该正比例函数的解析式为.
6.若一次函数y1=kx-b的图象经过第一、三、四象限,则一次函数y2=bx+k的图象经过

象限.
7.一次函数y=2x-3与x轴交点坐标为;与y轴的交点坐标为;图象经过象限,y随x的增大而.
8.已知一次函数
1
2
2
y x
=-+,当x时,y=0;当x时,y>0.
9.当x= 时,函数
5
1517
2
y x y x
=+=+
与的值相等.这个函数值为
10.一次函数的图象过点(-1,2),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式。

11.过点(0,2)且与直线y=-x平行的一条直线是.
12.甲车速度为20米/秒,乙车速度为25 米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式是,自变量取值范围是
13、已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S。

(1)求S关于x的函数解析式;
(2)求x的取值范围;
(3)求S=12时P点坐标;
(4)画出函数S的图象。

六、收获反思。

相关文档
最新文档