应用数理统计之判别分析

合集下载

应用概率统计之判别分析

应用概率统计之判别分析
假设m 个总体出现的先验概率分别为: 假设将属于Gi 的样品错判给 Gj 的损失记为C(j|i)。
显然有 C(i|i)=0 ,C(j|i)≥0 。 假设判别规则为: R=(R1, …,Rm )。则根据此规则
的错判概率为:
励志人生 好好学习
• 判别法则R把来自总体Gi 的个体错判给其它总体的 平均损失:
励志人生 好好学习
应用概率统计之判别分 析
励志人生 好好学习
第八章 判别分析
➢ 判别分析的含义:
➢ 根据给定的若干总体的观测资料,构造出一个 判别函数,并由此函数对于某一样品属于哪个总体 做出判断。
➢ 判别分析的主要方法:
➢ 距离判别(Distance Discrimination);
➢ Bayes 判别;Fisher判别等。
定义 x 和总体 G 之间的马氏距离为:
✓ 马氏距离满足距离的三条公理。 ✓ 当V=I 时,马氏距离即为通常的欧式距离。
励志人生 好好学习
若变量之间是相互无关的,则协方差矩阵为对角矩阵
励志人生 好好学习
励志人生 好好学习
二、两个总体的判别分析
1. 两个总体有相同的协方差阵:
❖ 直观的判别准则:
一、Fisher 线性判别函数 假设有m 个总体G1, …,Gm ,xi 表示来自总体Gi 的
样品。对任一给定的方向u, xi 在该方向上的投影为

励志人生 好好学习
在u 方向各总体之间的分离程度——组间离差
励志人生 好好学习
在u方向各总体内部的聚集程度——组内离差
Fisher判别的思想:选择u,B(u)/E(u) 达到最大。
Bayes 判别的基本概念 两个总体的判别 三群以上的判别

北航数理统计大作业2-聚类与判别分析讲解

北航数理统计大作业2-聚类与判别分析讲解

应用数理统计作业二学号:姓名:电话:二〇一四年十二月对NBA球队的聚类分析和判别分析摘要:NBA联盟作为篮球的最高殿堂深受广大球迷的喜爱,联盟的30支球队大家也耳熟能详,本文选取NBA联盟30支球队2013-2014常规赛赛季场均数据。

利用spss软件通过聚类分析对27个地区进行实力类型分类,并利用判断分析对其余3支球队对分类结果进行验证。

可以看出各球队实力类型与赛季实际结果相吻合。

关键词:聚类分析,判别分析,NBA目录1. 引言 (4)2、相关统计基础理论 (5)2.1、聚类分析 (5)2.2,判别分析 (6)3.聚类分析 (7)3.1数据文件 (7)3.2聚类分析过程 (9)3.3 聚类结果分析 (11)4、判别分析 (12)4.1 判别分析过程 (12)4.2判别检验 (17)5、结论 (20)参考文献 (21)致谢 (22)1. 引言1896年,美国第一个篮球组织"全国篮球联盟(简称NBL)"成立,但当时篮球规则还不完善,组织机构也不健全,经过几个赛季后,该组织就名存实亡了。

1946年4月6日,由美国波士顿花园老板沃尔特.阿.布朗发起成立了“美国篮球协会”(简称BAA)。

1949年在布朗的努力下,美国两大篮球组织BAA和NBL合并为“全国篮球协会”(简称NBA)。

NBA季前赛是 NBA各支队伍的热身赛,因为在每个赛季结束后,每支球队在阵容上都有相当大的变化,为了让各队磨合阵容,熟悉各自球队的打法,确定各队新赛季的比赛阵容、同时也能增进队员、教练员之间的沟通,所以在每个赛季开始之前,NBA就举办若干场季前赛,使他们能以比较好的状态投入到漫长的常规赛的比赛当中。

为了扩大NBA在全球的影响,季前赛有约三分之一的球队在美国以外的国家举办。

从总体上看,NBA的赛程安排分为常规赛、季后赛和总决赛。

常规赛采用主客场制,季后赛和总决赛采用七场四胜制的淘汰制。

[31]NBA常规赛从每年的11月的第一个星期二开罗,到次年的4月20日左右结束。

第15讲 判别分析

第15讲 判别分析

0.03 0.09
0.068 0.18
0.22
0.039
0.084 0.066 0.029 0.32
0.012 0.041
0.085 0.076 0.019 0.3
0.01
0.04
0.064 0.072 0.02
0.25
0.028 0.038
0.054 0.065 0.022 0.28
0.021 0.04
距离判别法:首先根据已知分类的数据,分别计算各 类的重心,计算新个体到每类的距离,确定最短的距 离(欧氏距离、马氏距离)。 Fisher判别法:利用已知类别个体的指标构造判别 式(同类差别较小、不同类差别较大),按照判别 式的值判断新个体的类别。 Bayes判别法:计算新给样品属于各总体的条件概率, 比较概率的大小,然后将新样品判归为来自概率最 大的总体。
数学建模与数学实验
第15讲 判别分析
后勤工程学院数学教研室
实验目的
1.了解判别分析的基本内容。 2.掌握用数学软件求解判别问题。
实验内容
1.判别问题引例及基本理论。 2.用数学软件求解判别问题。 3.应用实例 4.实验作业。
一、判别分析概述
判别分析是根据观测到的某些指标对所研究的 对象进行分类的一种多元统计分析方法。
5
35 1 9 1 34 5.00 0.40 1.30
6
37 1 1 3 24 15.10 1.80 1.82
7
29 1 13 1 42 7.40 1.46 1.65
’linear’
即各组的先验分布均为协方差矩阵相同的 p 元正态分布,此时由
‘quadratic’ ‘mahalanobis’
样本得出协方差矩阵的联合估计 二次判别分类,假定各组的先验分布均为 p 元正态分布,但

数理统计11判别分析课件

数理统计11判别分析课件
(2)自反性: D( X ,Y ) D(Y , X ); (3)三角不等式:对任意三个点 X ,Y及 Z 有
D( X , Z ) D( X ,Y ) D(Y , Z ).
2、两个总体的判别
设有两个总体为 G1和G2,对于给定的样品 X , 需要判断它来自哪个总体?
判别规则: 当 D2( X ,G1 ) D2( X ,G2 ) 时, 判定 X G1;否则判定 X G2。
f2( x) f2( x)
在实际使用Bayes判别法时,并不需要求出 集合 R1, 而只要将需判别的样品 X 代入
C12q1 f1( x) C21q2 f2 ( x) 若该不等式成立,则判定 X G1; 否则,判定 X G2 .
如果总体 G1和G2 分别服从协方差阵相同的
正态分布 N p (1,V )和N p (2 ,V ), 则Bayes判别
在实际应用中,参数 1, 2 及V 往往是未知的,
此时需要根据收集到的样本资料对参数作出估 计,然后将其相应的估计值代入线性判别函数 W ( X ) 中不再赘述。
(三) 多个总体的判别
设有 m 个总体 G1,G2 ,,Gm,其概率密度分 别为 f1( x), f2( x),, fm ( x), 且各个总体Gi出现 的先验概率为q1,q2 ,,qm , 错判造成的损失为 Cij C( j / i)(i, j 1,2,, m).
Y
1 n2 Yk
n2 k1
Vˆ1
1 n1 1 S1
1 n1 n1 1 k1 ( X k
X
)( X k
X )T
Vˆ2
n2
1
1
S2
1 n2
n2
1
(Yk
k 1
Y

判别分析的基本原理

判别分析的基本原理

判别分析的基本原理和模型一、判别分析概述 (一)什么是判别分析判别分析是多元统计中用于判别样品所属类型的一种统计分析方法,是一种在已知研究对象用某种方法已经分成若干类的情况下,确定新的样品属于哪一类的多元统计分析方法。

判别分析方法处理问题时,通常要给出用来衡量新样品与各已知组别的接近程度的指标,即判别函数,同时也指定一种判别准则,借以判定新样品的归属。

所谓判别准则是用于衡量新样品与各已知组别接近程度的理论依据和方法准则。

常用的有,距离准则、Fisher 准则、贝叶斯准则等。

判别准则可以是统计性的,如决定新样品所属类别时用到数理统计的显著性检验,也可以是确定性的,如决定样品归属时,只考虑判别函数值的大小。

判别函数是指基于一定的判别准则计算出的用于衡量新样品与各已知组别接近程度的函数式或描述指标。

(二)判别分析的种类按照判别组数划分有两组判别分析和多组判别分析;按照区分不同总体的所用数学模型来分有线性判别分析和非线性判别分析;按照处理变量的方法不同有逐步判别、序贯判别等;按照判别准则来分有距离准则、费舍准则与贝叶斯判别准则。

二、判别分析方法 (一)距离判别法1.基本思想:首先根据已知分类的数据,分别计算各类的重心,即分组(类)均值,距离判别准则是对于任给一新样品的观测值,若它与第i 类的重心距离最近,就认为它来自第i 类。

因此,距离判别法又称为最邻近方法(nearest neighbor method )。

距离判别法对各类总体的分布没有特定的要求,适用于任意分布的资料。

2.两组距离判别两组距离判别的基本原理。

设有两组总体B A G G 和,相应抽出样品个数为21,n n ,n n n =+)(21,每个样品观测p 个指标得观测数据如下,总体A G 的样本数据为:()()()()()()()()()A x A x A x A x A x A x A x A x A x p n n n p p 111212222111211该总体的样本指标平均值为:()()()A x A x A x p 21,总体B G 的样本数据为:()()()()()()()()()B x B x B x B x B x B x B x B x B x p n n n p p 222212222111211该总体的样本指标平均值为:()()()B x B x B x p 21,现任取一个新样品X ,实测指标数值为X =(p x x x ,,,21 ),要求判断X 属于哪一类?首先计算样品X 与A G 、B G 两类的距离,分别记为()A G X D ,、()B G X D ,,然后按照距离最近准则判别归类,即样品距离哪一类最近就判为哪一类;如果样品距离两类的距离相同,则暂不归类。

应用统计学-第四章判别分析

应用统计学-第四章判别分析

1
误判率P(2/1)=0.3085
∑1≠∑2时,非线性判别函数
d 2 (x, G1 ) (x μ1 ) ' Σ1 1 (x μ1 )
d 2 (x, G 2 ) (x μ 2 ) ' Σ 1 (x μ 2 ) 2 W(x) d 2 (x, G 2 ) d 2 (x, G1 ) (x μ 2 ) Σ (x μ 2 ) (x μ1 ) Σ (x μ1 )
d 2 (x, G1 ) (x μ1 ) ' Σ 1 (x μ1 )
可以证明:
d 2 (x, G 2 ) (x μ 2 ) ' Σ 1 (x μ 2 )
d 2 (x, G2 ) d 2 (x, G1 ) (x μ 2 )' Σ -1 (x - μ 2 ) - (x μ 1 )' Σ -1 (x - μ 1 )
误判问题
– 肝功指标高就一定是肝炎病人吗?
误判率Misclassification (1-D case)
两总体单指标的判别分析,假设正态分布,等方差
判别规则 转氨酶 非患者 肝炎 患者
非典?
?
Best - In What Sense?
Minimizes probability of misclassification Maximizes posterior probability of correct classification
判别得分 critical value c2<c1, x∈G1
c3<c1, x∈G2
投资料如下:
x(1) (0.5,0.0)', x( 2) 1.82 0.91 (0.5,0.0)', 0.91 1.45

第五章 判别分析

第五章 判别分析

n a
H
n b
yi(a )y(a )2
yk(b )y(b )2组点内的判离别散函度数
i 1
k 1
1na
m
y(a) na
yi(a) cjxj(a)
i1
j1
y(b)n1bkn b1yi(b)jm 1cjxj(b)7
费歇尔准则: 使Q 达到最大、H 达到最小。
它的含义是: Q达到最大,表明 两组判别函数点的中 心距最大;H达到最 小,判别函数点的分 布最集中。满足以上 条件的判别函数可最 大限度地把A和B区 分开(如图所示)。
i, j = 1 ,2 ,…,m ; N = n1 + n2 +…+nG
由此,式(5-5)可以近似写为: 17
fg(X ) (2 S 1 )1 m /2 /2ex 1 2 p (X X g)TS 1 (X X g) (5-6)
把上式和Pg (Pg≈qg = n g /N)代入式(5-4)得: E g ( X ) q g f g ( X )( , g 1 ,2 , ,G )
章判别分析
§1两总体判别分析 §2多总体判别分析 §3逐步判别分析 §4应用算例简介
1
❖引言
地学领域内有很多属于归类判别的问题,如:储 层是否含油、岩样属于什么沉积相 、生油岩处于 什么演化阶段等,从定量角度看,它们都是对个体 进行归类判别的问题。
为叙述方便,将个体称为样品,个体所属的类称 为总体。在此基础上给出判别分析的一般概念:
判别分析:根据已知的G个总体中取出的G组样品 的观测值,建立总体与样品变量之间定量关系(判 别函数),并据此判别未知类属样品类别的一种多 元统计分析方法。
2
设ag(g=1,2,…,G)表示 G 个总体,每个总体中分 别有ng个样品,每个样品有m个变量。

《应用多元统计分析》第04章-判别分析

《应用多元统计分析》第04章-判别分析
量。通过反复迭代,最终构建最优的判别函数。
04
判别分析的实例与演示
数据来源与预处理
数据来源
判别分析所使用的数据通常来源于实际研究或调查,这些数据可能涉及到多个 变量和观测样本。
数据预处理
在应用判别分析之前,需要对数据进行预处理,包括数据清洗、缺失值处理、 异常值检测与处理、数据标准化等步骤,以确保数据的质量和可靠性。
2. 建立判别模型
选择合适的变量,并进行数据清理和预处 理,包括缺失值处理、异常值检测与处理 等。
选择合适的判别分析方法,如线性判别分析 (LDA)或二次判别分析(QDA),并利用 已知分类的数据来估计判别函数。
3. 模型评估
4. 应用模型
使用诸如混淆矩阵、准确率、召回率等指 标来评估模型的性能,并可能进行交叉验 证。
目的
通过建立判别函数,使得不同类别之 间的差异尽可能大,而同一类别内的 差异尽可能小。
判别分析与聚类分析的区别
01
判别分析基于已知分类数据, 目标是建立预测分类的规则; 而聚类分析则是将未知分类的 数据进行归类。
02
判别分析要求对各变量之间的 相关性进行建模,而聚类分析 则更注重数据之间的距离或相 似性。
总结词
两总体判别分析是一种基本的判别分析方法,用于根据已知分类的数据集构建判别函数,从而对新数据进行分类。
详细描述
两总体判别分析通常用于解决二分类问题,其基本思想是通过选择一组特征变量,使得不同类别的样本在这组变 量上的均值差异最大,同时使同类样本之间的离散度最小。判别函数通常采用线性或非线性形式,通过最小化分 类错误率来构建。
对特征选择敏感
判别分析的特征选择可能对结果 影响较大,如果选择不合适的特 征,可能会导致分类效果不佳。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档