水处理实验报告-混凝实验

合集下载

混凝实验报告总结

混凝实验报告总结

一、实验背景混凝过程是现代城市给水和工业废水处理工艺研究中不可或缺的前置单元操作环节之一。

本实验旨在通过混凝实验,加深对混凝理论的理解,探索最佳混凝工艺条件,提高水处理效果。

二、实验目的1. 了解混凝现象及过程,观察矾花的形成。

2. 了解混凝的净水作用及主要影响因素。

3. 了解助凝剂对混凝效果的影响。

4. 探求水样最佳混凝条件(包括投药种类、投加量、pH值等)。

三、实验原理天然水中存在大量胶体颗粒,使原水产生浑浊。

混凝剂通过压缩双电层、吸附电中和、吸附架桥和沉淀物网捕等机理,使胶体颗粒脱稳,相互碰撞聚集,形成较大的絮体,从而实现净水目的。

四、实验方法1. 实验材料:原水、混凝剂、助凝剂、pH值调节剂、烧杯、搅拌器、pH计等。

2. 实验步骤:(1)取一定量的原水,加入适量的混凝剂,搅拌一定时间;(2)调节pH值,观察矾花形成情况;(3)加入助凝剂,继续搅拌;(4)观察絮体沉降情况,记录相关数据。

五、实验结果与分析1. 实验结果表明,混凝剂投加量为7ml时,混凝效果最佳。

在此条件下,矾花形成迅速,沉降速度快,出水浊度低。

2. 最佳pH值为7.63,在此pH值下,混凝剂水解程度高,脱稳效果显著。

3. 助凝剂对混凝效果有一定影响,但其影响相对较小。

在最佳混凝剂投加量和pH值条件下,助凝剂对混凝效果的影响不明显。

六、实验结论1. 本实验验证了混凝剂、pH值和助凝剂对混凝效果的影响,为实际水处理工艺提供了理论依据。

2. 最佳混凝工艺条件为:混凝剂投加量为7ml,pH值为7.63,无需添加助凝剂。

3. 实验结果可为水处理工程提供参考,有助于提高水处理效果。

七、实验不足与展望1. 实验过程中,未对混凝剂种类进行深入研究,今后可对不同混凝剂进行对比实验,探究其适用范围。

2. 实验过程中,未对助凝剂种类和用量进行系统研究,今后可对助凝剂进行优化,提高混凝效果。

3. 实验过程中,未对混凝过程中的水质变化进行详细分析,今后可对混凝过程中水质变化进行跟踪,为优化混凝工艺提供数据支持。

混凝沉淀实验

混凝沉淀实验

混凝沉淀实验混凝沉淀实验是一种重要的水处理方式,可以将水中的悬浮物和有机物等杂质去除,从而使水质得到改善。

本文就混凝沉淀实验进行详细的介绍。

一、实验原理混凝沉淀实验的原理是利用混凝剂与悬浮物或有机物形成絮凝体,然后通过沉淀或过滤的方式将其去除。

混凝剂一般是一些带正电荷基团的高分子化合物,如聚丙烯酰胺、聚电解质等,它们能够吸附水中的负离子和颗粒物,并与之发生化学反应,形成大量的絮凝体。

随着絮凝体的增大,它们的密度也会逐渐增大,最终形成一个沉淀层,从而使水中的悬浮物和有机物得到去除。

二、实验步骤1、制备混凝剂溶液:取一定量的聚丙烯酰胺、硫酸铝钾等混凝剂,依次加入适量的蒸馏水中,搅拌至均匀即可。

2、制备原水:取适量的自来水或污水,在室温下搅拌均匀。

3、加入混凝剂溶液:将混凝剂溶液缓慢加入原水中,同时用玻璃杆轻轻搅拌,使混凝剂和水充分混合。

4、沉淀:等待一段时间,观察水中的悬浮物是否得到沉淀。

如果饱和度较高,可以加入一些碳酸钠调节pH值,促进沉淀的形成。

5、过滤:对于无法沉淀的悬浮物或有机物,可以通过过滤的方式进行去除。

选取一定的滤纸或过滤膜,在上面放置漏斗,将水过滤出去即可。

三、实验注意事项1、混凝剂的种类和用量应根据实际情况进行选择和调节,避免浪费和造成不必要的污染。

2、加入混凝剂时,应缓慢加入,并注意搅拌均匀,以充分发挥其混凝效果。

3、沉淀时,应注意观察沉淀的形成情况,及时调整pH值,促进沉淀的形成。

4、过滤时,选择合适的滤纸或过滤膜,避免粘附和遗漏。

5、实验结束后,应及时清洗实验仪器和工具,以避免留下污染物和影响下次实验。

四、实验结果混凝沉淀实验的结果主要体现在沉淀效果和悬浮物或有机物去除率上,通常采用浊度或残留物质含量等指标进行评价。

沉淀效果越好,悬浮物或有机物去除率也越高,说明混凝沉淀实验的效果越好。

五、实验应用混凝沉淀实验广泛应用于各类水处理工艺中,如自来水厂、废水处理厂、地下水处理等。

它可以有效地去除水中的悬浮物和有机物,降低水中的浊度、COD、BOD等污染指标,从而保障水质安全和环境健康。

混凝实验

混凝实验

混凝实验一.实验目的:确定混凝过程中最佳PH、投药量和实验时间二.实验原理:废水中投加混凝剂后,胶体因参电位降低或消除,破坏了颗粒的稳定状态,这一过程成为脱稳,脱稳的颗粒进一步发生凝聚和絮凝不同的化学药剂能使胶体以不同的方式脱稳、凝聚和絮凝。

按机理,混凝可分为压缩双电层、吸附电中和、吸附架桥、网捕四种。

(1)压缩双电层由胶体粒子的双电层结构可知,负离子的浓度在胶粒表面最大并沿着胶粒表面向外的距离呈递减分布,最终与溶液中离子浓度相等。

当向溶液中投加电解质,使溶液中离子浓度增高,则扩散层厚度将减少。

这过程的实质是加入的负离子与扩散层原有反离子之间的静电斥力把原有部分负离子挤压到吸附层中,从而是扩散层厚度减少。

所以称为压缩双电层作用。

由于扩散层厚度的减小,ξ电位相应降低,因此胶粒间的相互排斥力也减小。

另一方面,由于扩散层减薄,它们相互碰撞的距离减小,因此相互间的吸引力相应变大,使其排斥力与吸引力的合力由斥力为主变为引力为主。

胶体得以迅速凝聚。

(2)吸附电中和作用吸附电中和作用是指胶粒表面对异号离子,异号胶粒或链状高分子带异号电荷的部位有强烈的吸附作用,由于这种吸附作用中和了它的部分或全部电荷,减少了静电斥力,因而容易与其它颗粒接近而相互吸附。

当三价铝盐或铁盐混凝剂量过高,混凝效果反而下降的现象,可以用本机理解释,因为胶粒吸附过多的负离子,使原来的电荷变号,排斥力变大,从而发生了再稳定现象。

(3)吸附架桥桥作用吸附架桥作用主要是指链状高分子聚合物在静电引力、范德华力和氢键力等作用下,通过活性部位与胶粒和细微悬浮物等发生吸附架桥过程。

当三价铝盐和铁盐及其它高分子混凝剂溶于水后,经水解、缩聚反应形成高分子聚合物,具有线形结构。

这类高分子物质可被胶粒强烈吸附。

因其线性长度较大,但它的一端吸附某一胶粒后,另一端可吸附另一胶体粒,在相距较远的两胶粒间进行吸附架桥,使颗粒逐渐变大,形成粗大絮凝体。

(4)沉淀物网捕机理当采用硫酸铝、石灰或氧化铁等高价金属盐类作混凝剂时,如果投加量大得足以迅速沉淀金属氢氧化物(如Al(OH)3、Fe(OH)3)或金属碳酸盐(如CaCO3)时,水中的胶粒和细微悬浮物可被这些沉淀物在形成时作为晶核或吸附质所网捕。

实验二 混凝实验

实验二   混凝实验

实验二混凝实验一、实验目的和意义影响混凝效果的因素有水温,pH值,混凝剂种类、加量以及搅拌速度和时间等。

由于上述诸因素的影响的错综复杂,且非拘一格,所以混凝过程的优化工艺条件通常要用混凝试验来确定。

衡量混凝主要指标是出水浊度和主要污染因子浓度。

实验方案及数据处理常用优选法和正交设计等数理统计法。

(1)通过本实验,熟练掌握应用烧杯试验法确定某待处理水样的混凝剂种类及最佳投药量、最佳pH值范围。

(2)观察矾花形成过程与混凝沉淀结果(3)掌握浊度测定的方法二、实验原理化学混凝法通常用来除去废水中的胶体污染物和细微悬浮物。

所谓化学混凝,是指在废水中投加化学药剂来破坏胶体及细微悬浮物颗粒在水中形成的稳定分散体系,使其聚集为具有明显沉降性能的絮凝体,然后再用重力沉降,过滤,气浮等方法予以分离的单元过程。

这一过程包括凝聚和絮凝两个步骤,二者统称为混凝。

具体地说,凝聚是指在化学药剂作用下使胶体和细微悬浮物脱稳,并在布朗运动作用下,聚集为微絮粒的过程,而絮凝则是指为絮粒在水流紊动作用下,成为絮凝体的过程。

根据混凝过程的GT值要求,在药剂与废水的混合阶段,对搅拌速度和搅拌时间的要求是高速短时;而在反应阶段则要求低速长时。

两个阶段的搅拌转速n(r、p、m)和搅拌时间T由GT=104-105通过计算确定。

一般水处理中,混合阶段的G值约为500~1000秒-1,混合时间为10~30秒,一般不超过2分钟,在反应阶段,G值约为10~100秒-1,停留时间一般为15~30钟。

三、实验设备及仪器1、无级调速六联搅拌机一台(或六台单联搅拌机);2、721型分光光度计3、精密pH试纸;4、50ml注射器5、量筒6、1000ml烧杯,250ml烧杯;7、移液管;8、混凝剂:10g/L 聚合氯化铝〔Al2(OH)m Cl6-m〕;四、实验步骤最佳投药量实验步骤1、测定原水温度、浊度及pH值。

2、量筒量取1000ml水样于1000ml烧杯中,每组6个水样,投加聚合氯化铝。

水处理实验报告-混凝实验

水处理实验报告-混凝实验
根据步骤3得出的形成矾花的最小混凝剂投加量取其13作为1号烧杯的混凝剂投加量取其2倍作为6号烧杯的混凝剂投加量用依次增加相等混凝剂投加量的方法求出25号烧杯的混凝剂投加量把混凝剂分别加号烧杯中
降低或降低不多,胶粒不能相互接触,通过高分子链状物吸附胶粒,一般形成絮凝体。消除或降低胶体颗粒稳定因素的过程叫脱稳。脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花,自投加混凝剂直至形成矾花的过程叫混凝。投加混凝剂的多少,直接影响混凝效果。水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。
2.确定最佳PH值实验步骤
(1)用6只1000ml烧杯,分别取1000ml原水,将盛装有水样的烧杯置于搅拌机平台上。
(2)调节原水PH值,用移液管依次向1号2号3号装有原水的烧杯中,分别加入2.5ml,1.5ml,1.2ml的10% HCL、在向4号5号6号装有原水的烧杯中加入0.2 ml,0.7ml,1.2ml的10% NaOH,用玻璃棒快速搅拌均匀,依次用精密PH仪测各水样PH值,记录在表中。
(5)、启动搅拌机,快速搅拌一分半钟,转速为500r/min 1min,中速搅拌5min,转速约250r/min;慢速搅拌5min,转速约为100r/min。上述搅拌速度可进行适当调整;
(6)、关闭搅拌机,静置沉淀5min,用50mL注射管抽出烧杯中的上清液(共抽3次约100mL)放入200mL烧杯内,立即用浊度仪测定浊度(每杯水样测定2次),并对测定结果进行纪录。
实验
名称
混凝实验
姓名
同组者
实验目的:
1、通过实验学会求一般天然水体最佳混凝条件(包括投药量、PH、水流速度梯度)的基本方法。
2、加深对混凝机理的理解。
实验原理:
混凝阶段所处理的对象主要是水中悬浮物和胶体杂质,是水处理工艺中十分重要的一个环节。水中较大颗粒悬浮物可在自身重力作用下沉降,而胶体颗粒不能靠自然沉降得以去除。胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位。一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。相反,当电位降到零,往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负电的粘土颗粒。胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。水化膜中的水分子与胶粒有固定联系,具有弹性较高的粘度,把这些水分子排挤出去需克服特殊的阻力,这种阻力阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态。若投加混凝结降低ζ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。即使ζ电位没有

混凝实验报告

混凝实验报告

混凝实验报告实验目的,通过混凝实验,研究混凝剂对水质的净化效果,探讨最佳混凝剂用量及混凝时间,为水处理工程提供科学依据。

实验原理,混凝是指在水中加入混凝剂后,使水中的悬浮物、胶体物质凝聚成较大的絮凝体,便于后续的沉降或过滤。

混凝剂一般为阳离子、阴离子或非离子高分子物质,其作用机理主要有吸附、中和、电中和和凝聚等。

实验材料与方法:材料,实验室自来水、混凝剂(聚合氯化铝)、搅拌器、玻璃容器、pH计、浊度计等。

方法:1. 取一定量自来水倒入玻璃容器中;2. 用搅拌器将水搅拌均匀;3. 用pH计检测水的初始pH值;4. 在搅拌的同时,向水中加入不同剂量的混凝剂;5. 混凝一定时间后停止搅拌,观察絮凝体的生成情况;6. 用浊度计检测水的浊度,记录下实验数据。

实验结果与分析:经过一系列实验,我们得出以下结论:1. 随着混凝剂用量的增加,水中絮凝体的生成量逐渐增加,浊度逐渐降低,水质得到了改善;2. 随着混凝时间的延长,絮凝体的大小逐渐增加,浊度进一步降低,但当混凝时间过长时,絮凝体又会发生分散,浊度会有所上升;3. 初始水质的pH值对混凝效果也有一定影响,一般情况下,pH值在6.5-7.5之间时,混凝效果较好。

结论:混凝实验结果表明,聚合氯化铝作为混凝剂,能够有效地改善水质,提高水的透明度,减少水中的悬浮物和胶体物质。

在实际应用中,应根据水质的不同情况,合理控制混凝剂的用量和混凝时间,以达到最佳的净化效果。

总结:通过本次混凝实验,我们对混凝剂的作用机理和影响因素有了更深入的了解,为今后的水处理工程提供了有益的参考。

同时,也为我们提供了实验操作的经验,为今后的科研工作打下了坚实的基础。

实验报告撰写人,XXX。

日期,XXXX年XX月XX日。

混凝实验报告

混凝实验报告

混凝实验报告混凝实验报告引言:混凝是一种常见的水处理技术,用于去除水中的悬浮物和溶解物,以提高水质。

本实验旨在通过模拟混凝过程,探究不同条件下的混凝效果,并分析其影响因素。

实验材料与方法:1. 实验材料:- 水样:采集自自来水厂的自来水- 混凝剂:聚合氯化铝(PAC)- 混凝剂浓度:0.1 g/L、0.2 g/L、0.3 g/L- 水样pH值调节剂:氢氧化钠(NaOH)、盐酸(HCl)2. 实验方法:- 步骤一:准备三个不同浓度的混凝剂溶液,分别为0.1 g/L、0.2 g/L、0.3g/L。

- 步骤二:取一定量的自来水样,分成三组,每组分别加入相应浓度的混凝剂溶液。

- 步骤三:使用搅拌器将混凝剂与水样充分混合,搅拌时间为5分钟。

- 步骤四:待混凝剂与水样反应完成后,停止搅拌并静置一段时间,观察悬浮物的沉降情况。

- 步骤五:测量不同条件下水样的浊度,并记录结果。

实验结果与分析:在进行实验过程中,观察到不同浓度的混凝剂对水样的混凝效果有显著影响。

通过测量水样的浊度,可以客观地评估混凝效果。

1. 不同混凝剂浓度对混凝效果的影响:在实验中,我们分别使用了0.1 g/L、0.2 g/L和0.3 g/L的混凝剂浓度。

结果显示,随着混凝剂浓度的增加,水样的浊度逐渐降低。

这是因为混凝剂中的聚合氯化铝可以与水中的悬浮物发生化学反应,形成较大的絮凝物,从而使悬浮物沉降速度加快。

2. pH值对混凝效果的影响:pH值是另一个影响混凝效果的重要因素。

在实验中,我们分别使用氢氧化钠和盐酸来调节水样的pH值。

结果显示,在酸性条件下(pH值低于7),混凝效果更好,浊度降低更为明显。

这是因为在酸性条件下,混凝剂与水中的悬浮物更容易发生反应,形成较大的絮凝物。

3. 混凝时间对混凝效果的影响:在实验中,我们观察到混凝剂与水样反应后的静置时间也会对混凝效果产生影响。

随着静置时间的延长,悬浮物的沉降速度逐渐加快,浊度逐渐降低。

这是因为较大的絮凝物在静置过程中会逐渐沉降,从而使水样变得更清澈。

SUSTech水处理工程混凝实验实验报告

SUSTech水处理工程混凝实验实验报告

姓名: ________ 号:小组成员:实验日期: __________ 天气:_____ 实验室温度:_______水处理实验一混凝实验背景:混凝过程是现代城市给水和工业废水处理工艺研究中不可缺少也是最关键的前置单元操作环节之一。

在原水和废水中都存在着数量不等的胶体粒子,如粘土、矿物质、二氧化硅或工业生产中产生的碎屑等,它们悬浮在水中造成水体浑浊,混凝工艺是针对水中的这些物质处理的过程。

混凝可去除的悬浮物颗粒直径范围在:1nm~0.1卩m(有时认为在1卩m)。

通过实验摸索混凝过程各参数的最佳值,对于获得良好的混凝效果至关重要。

实验目的:1•了解混凝的现象及过程,观察矶花的形成;2•了解混凝的净水作用及主要影响因素;3•了解助凝剂对混凝效果的影响;4•探求水样最佳混凝条件(包括投药种类、投药量、pH值、水流速度梯度等)实验原理:天然水体中存在大量的胶体颗粒是水产生浑浊现象的原因之一,胶体的布朗运动、胶体表面的水化作用以及胶体之间的静电斥力,其中胶体间的静电斥力起着主要作用,使得胶体具有分散稳定性。

因此,通过自然沉淀的方法不能去除。

胶体颗粒表面带有一定的电荷,采用电动电位Z (Zeta电位)表示,Z电位的高低决定了胶体颗粒间静电斥力的大小以及影响范围。

天然水体中胶体颗粒的Z 电位约在-30mV以上,向水中投加混凝剂从而提供大量的正离子,能够压缩胶体的双电层结构,使胶体脱稳从而凝结和沉降,通常Z电位降到-15mV时胶体脱稳。

随着Z电位降低,胶体的水化作用也逐渐减弱,混凝剂水解形成的高分子物质在胶粒间起到吸附架桥的作用,提高混凝效果,混凝剂水解后形成的高分子物质也能起到吸附作用,形成絮凝体。

脱稳后的胶粒在一定的水力作用下形成较大的絮凝体,称为矶花,直径较大 密度也较大的矶花容易下沉。

胶体脱稳聚集形成矶花,这一过程需要消耗能量, 水流速度梯度G 值起着主要的作用,它反映了单位时间内单位体积水消耗的能量 的多少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水处理实验报告-混凝实验
降低或降低不多~胶粒不能相互接触~通过高分子链状物吸附胶粒~一般形成广西民族大学水污染控制工程实验报告
2012 年 6 月 10 日絮凝体。

消除或降低胶体颗粒稳定因素的过程叫脱稳。

脱稳后的胶粒~在一定
姓名实验混凝的水利条件下~才能形成较大的絮凝体~俗称矾花~自投加混凝剂直至形成矾
名称实验投加混凝剂的多少~直接影响混凝效果。

水质是千变万化的~最花的过程叫混凝。

同组者
佳的投药量各不相同~必须通过实验方可确定。

实验目的:
在水中投加混凝剂如 A1(SO)、 FeCl后~生成的AI、 Fe的化合物对胶体的脱1、通过实验学会求一般天然水体最佳混凝条件,包括投药量、PH、水流速度梯度,的2433
稳效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响~还受水的 pH 值影响。

基本方法。

如果pH值过低(小于4)~则混凝剂水解受到限制~其化合物中很少有高分子物质存在~2、加深对混凝机理的理解。

絮凝作用较差。

如果pH值过高(大于9—10)~它们就会出现溶解现象~生成带负电荷实验原理:
的络合离子~也不能很好地发挥絮凝作用。

混凝阶段所处理的对象主要是水中悬浮物和胶体杂质~是水处理工艺中十分重要的
投加了混凝剂的水中~胶体颗粒脱稳后相互聚结~逐渐变成大的絮凝体~这时~一个环节。

水中较大颗粒悬浮物可在自身重力作用下沉降~而胶体颗粒不能靠自然沉降
水流速度梯度G值的大小起着主要的作用。

得以去除。

胶体表面的电荷值常用电动电位ξ表示~又称为Zeta电位。

一般天然水中的胶体
颗粒的Zeta电位约在-30mV以上~投加混凝剂之后~只要该电位降到-15mV左右即可得到较好的实验步骤及装臵图:
混凝效果。

相反~当电位降到零~往往不是最佳混凝状态。

因为水中的胶体颗粒主要是带负1.最佳投药量实验步骤
电的粘土颗粒。

胶体间存在着静电斥力~胶粒的布朗运动~胶粒表面的水化作用~使胶,1,、用6个1000mL的烧杯~分别取1000mL原水~放臵在实验搅拌机平台上, 粒具有分散稳定性~三者中以静电斥力影响最大~若向水中投加混凝剂能提供大量的正,2,、确定原水特征~即测定原水水样混浊度、 pH值、温度。

离子~能加速胶体的凝结和沉降。

水化膜中的水分子与胶粒有固定联系~具有弹性较高,3,、确定形成矾花所用的最小混凝剂量。

,混凝剂A、B,方法是通过慢速搅拌烧杯的粘度~把这些水分子排挤出去需克服特殊的阻力~这种阻力阻碍胶粒直接接触。

有些中200mL原水~并每次增加1mL混凝剂的投加量~逐滴滴入200mL原水杯中直到出现水化膜的存在决定于双电层状态。

若投加混凝结降低ζ电位~有可能是水化作用减弱~矾花为止。

这时的混凝剂量作为形成矾花的最小投加量, 混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。

即使ζ电位没
有 ,4,、确定实验时的混凝剂投加量。

根据步骤3得出的形成矾花的最小混凝剂投加量~
取其1,3作为1号烧杯的混凝剂投加量~取其2倍作为6号烧杯的混凝剂投加量~用
依次增加相等混凝剂投加量的方法求出2—5号烧杯的混凝剂投加量~把混凝剂分别加
入到1—6号烧杯中。

,5,、启动搅拌机~快速搅拌一分半钟~转速为500r/min 1min~中速搅拌
5min~转速,2,启动搅拌机快速搅拌半分钟~转速500r/min。

随即把其余3个烧杯移到别的
约250r/min;慢速搅拌5min~转速约为100r/min。

上述搅拌速度可进行适当调整, 搅拌机上~1号烧杯继续以500r/min转速搅拌10min。

其他烧杯分别用
100r/min、,6,、关闭搅拌机~静臵沉淀5min~用50mL注射管抽出烧杯中的上清液(共抽3次约100mL)200r/min、300r/min搅拌10min。

放入200mL烧杯内~立即用浊度仪测定浊度(每杯水样测定2次)~并对测定结果进行纪录。

,3,关闭搅拌机~静臵5min~分别用50mL注射管抽出烧杯中的上清液(共抽3次约
100mL)放入200mL烧杯内~立即用浊度仪测定浊度(每杯水样测定2次)~并对测定结果进
行纪录。

2.确定最佳PH值实验步骤
,1,用6只1000ml烧杯~分别取1000ml原水~将盛装有水样的烧杯臵于搅拌机
平台上。

,2,调节原水PH值~用移液管依次向1号2号3号装有原水的烧杯中~分别加实验装臵图: 入2.5ml,1.5ml,1.2ml的10% HCL、在向4号5号6号装有原水的烧杯中加入0.2 ml,0.7ml,1.2ml的10% NaOH, 用玻璃棒快速搅拌均匀~依次用精密PH仪测各水
样PH值~记录在表中。

,3,用移液管依次向装有原水烧杯中加入相同剂量混凝剂~投加剂量由1中得出
最佳投加量确定。

,4,启动搅拌机~快速搅拌半分钟~转速约500r/min.中速搅拌5min~转速约为
250r/min;慢速搅拌5min~转速约为100r/min.
,5,停止搅拌静臵10min,用注射针筒从搅拌端口取样100ml上清液放入200ml 1—电机,2—烧杯,3—搅拌机,4—传动齿轮烧杯中。

同时用浊度仪测定剩余水样的浊度~平行测2次~记录表中。

3.确定最佳水流速度实验步骤
,1,按照最佳pH实验和最佳投药量实验所得出的最佳混凝pH和投药量~分别向
4个烧杯中装有1000mL水样的烧杯中加入相同剂量的盐酸HCL(或氢氧化钠NaOH)
和混凝剂~臵于实验搅拌平台上。

数据记录与处理:
表5-3 最佳pH实验记录
第二小组姓名表5-2 最佳投药量实验纪录原水水温 30.6 ? 浊度 -5.20 度 pH 5.18 使用混凝剂种类、浓度硫酸铝 10g/L
第二小组姓名
水样编号 1 2 3 4 5 6 原水水温 30.6 ? 浊度 -5.20 度 pH 5.18 使用混凝剂种类、浓度硫酸铝 10g/L
HCL投加量,mg/L, 2.5 1.5 1.2 0 0 0
NaOH投加量,mg/L, 0 0 0 0 0.2 0.7 水样编号 1 2 3 4 5 6
pH 3.36 3.42 3.47 5.18 5.80 6.19 混凝剂投加量
21 23 25 27 29 31 凝剂加注量,mg/L, 25 25 25 25 25 25 ,mg/L,
1 -5.1
2 -4.94 -4.9
3 -1.66 -2.71 -3.56 1 -0.30 -1.56 0.35 -2.3
4 -0.28 -1.2
5 沉淀水浊度
2 -5.02 -4.89 -5.04 -1.62 -2.92 -3.44 沉淀水浊度 2 -0.27 -1.71 -0.10 -2.68 -0.42 -1.65 度(NTU)
平均 -5.07 -4.925 -4.985 -1.64 -2.815 -3.50 度(NTU) 平均
-0.285 -1.635 0.125 -2.51 -0.35 -1.45 1 快速搅拌 0.5 ,min, 转速
511 ,r/min,
备注 2 中速搅拌 4.5 ,min, 转速 257 ,r/min, 1 快速搅拌 0.25 ,min, 转速 512 ,r/min,
3 慢速搅拌 5 ,min, 转速 107 ,r/min, 备注 2 中速搅拌 5 ,min, 转速
266 ,r/min,
3 慢速搅拌 5 ,min, 转速 110 ,r/min,
图5-3 pH与浊度的关系图:
图5-2 混凝剂投加量与浊度关系图:
实验分析及结论:
,1,由表5-2及图5-2可知~当混凝剂投加量为25mg/L时混凝效果最好。

表5-4 混凝阶段最佳水流速度实验记录 ,2,由表5-3及图5-3可知~当水样pH为5.18时混凝效果最好。

第二小组姓名 ,3,由表5-4及图5-4可知~当混凝阶段水流速度为200r/min时混凝效果最好。

原水水温 30.6 ? 浊度 -5.20 度pH 5.18 使用混凝剂种类、浓度硫酸铝 10g/L
结论:通过实验得出最佳混凝的条件为混凝剂,硫酸铝 10g/L,投加量为25mg/L ~
水样编号 1 2 3 4 水中pH为5.18~水流速度为200r/min。

水样Ph 5.18 5.18 5.18 5.18
混凝剂加注量,mg/L, 25 25 25 25
速度,r/min, 512 513 515 495 快速搅
注意事项: 拌时间,min, 0.5 0.5 0.5 0.5
速度,r/min, 404 302 104 205 中速搅拌 ,1,在最佳投药量、最佳pH实验中~向各烧杯加药剂时尽量同时投加~避免因时间,min, 9 9 9 9 沉淀水浊1 0.21 -0.11 -0.64 1.24 时间间隔较长各水样加药后反应时间长短相差太大而导致混凝效果悬殊。

2 0.20 -0.14 -0.70 1.22 度/度
,2,在最佳pH实验中~用来测定pH的水样~仍倒入原烧杯中。

平均 0.205 -0.125 -0.67 1.23 (NTU)
,3,在测定沉淀水的浊度~用注射针筒抽吸清液时~不要搅动底部沉淀物~并尽
图5-4 混凝阶段水流速度与浊度的关系图:
量减少各烧杯的抽吸时间。

相关文档
最新文档