芯片设计和制造对铜丝键合工艺影响分析
几种键合引线的详细对比

几种键合引线的详细对比-键合金丝/键合铜线/铝键合线键合金丝, 作为应用最广泛的键合丝来说,在引线键合中存在以下几个方面的问题:1, Au2Al 金属学系统易产生有害的金属间化合物[ ,这些金属间化合物晶格常数不同,力学性能和热性能也不同,反应时会产生物质迁移,从而在交界层形成可见的柯肯德尔空洞( Kirkendall Void) ,使键合处产生空腔,电阻急剧增大,破坏了集成电路的欧姆联结,导电性严重破坏或产生裂缝,易在此引起器件焊点脱开而失效。
2, 金丝的耐热性差,金的再结晶温度较低(150 ℃) ,导致高温强度较低。
球焊时,焊球附近的金丝由于受热而形成再结晶组织,若金丝过硬会造成球颈部折曲;焊球加热时,金丝晶粒粗大化会造成球颈部断裂;3, 金丝还易造成塌丝现象和拖尾现象,严重影响了键合的质量;4, 金丝的价格昂贵,导致封装成本过高。
键合铝线, Al21 %Si 丝作为一种低成本的键合丝受到人们的广泛重视,国内外很多科研单位都在通过改变生产工艺来生产各种替代金丝的Al21 %Si 丝,但仍存在较多问题: 1, 普通Al21 %Si 在球焊时加热易氧化,生成一层硬的氧化膜,此膜阻碍球的形成,而球形的稳定性是Al21 %Si 键合强度的主要特性。
实验证明,金丝球焊在空气中焊点圆度高,Al21 %Si 球焊由于表面氧化的影响,空气中焊点圆度低;2, Al21 %Si 丝的拉伸强度和耐热性不如金丝,容易发生引线下垂和塌丝;3, 同轴Al21 %Si 的性能不稳定,特别是伸长率波动大,同批次产品的性能相差大,且产品的成材率低,表面清洁度差,并较易在键合处经常产生疲劳断裂。
键合铜丝, 早在10 年前,铜丝球焊工艺就作为一种降低成本的方法应用于晶片上的铝焊区金属化。
但在当时行业的标准封装形式为18~40 个引线的塑料双列直插式封装(塑料DIP) ,其焊区间距为150~200μm , 焊球尺为100~125μm ,丝焊的长度很难超过3 mm。
芯片封装键合丝材质和工艺

芯片封装键合丝材质和工艺
芯片封装键合丝是在芯片封装过程中起到连接芯片与封装基板
的作用的关键组件。
键合丝的材质通常是金属线,例如铝线或金线。
这些金属线具有良好的导电性和可塑性,能够满足芯片封装的要求。
在工艺方面,键合丝的制作涉及到一系列步骤,包括线材拉丝、清洗、涂覆、切割和焊接等工艺。
这些工艺步骤需要严格控制温度、
压力和速度等参数,以确保键合丝的质量和稳定性。
从材质角度来看,铝线和金线是常用的键合丝材料。
铝线具有
良好的导电性和可塑性,是一种经济实用的键合丝材料。
而金线由
于其优异的导电性和化学稳定性,在一些高端芯片封装中得到广泛
应用。
选择键合丝材料时需要考虑到芯片封装的具体应用场景和成
本因素。
在工艺方面,键合丝的制作工艺需要高度精密的设备和严格的
操作流程。
包括线材的拉丝工艺、清洗工艺、涂覆工艺、切割工艺
和焊接工艺等。
这些工艺步骤的精准控制对于键合丝的质量和稳定
性至关重要。
同时,工艺参数的优化也能够提高键合丝的可靠性和
生产效率。
综上所述,芯片封装键合丝的材质和工艺是影响芯片封装质量和性能的重要因素。
选择合适的键合丝材料和优化工艺流程能够提高芯片封装的可靠性和稳定性,满足不同应用场景的需求。
铜丝在引线键合技术的发展及其合金的应用

铜丝在引线键合技术的发展及其合金的应用一、简介目前超过90%的集成电路的封装是采用引线键合技术,引线键合,又称线焊。
即用金属细丝将裸芯片电极焊区与电子封装外壳的输入,输出引线或基板上的金属布线焊区连接起来。
连接过程一般通过加热、加压、超声等能量,借助键合工具“劈刀”实现。
按外加能量形式的不同,引线键合可分为热压键合、超声键合和热超声键合。
按劈刀的不同,可分为楔形键合和球形键合。
引线键合工艺中所用导电丝主要有金丝、铜丝和铝丝,由于金丝价格昂贵、成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。
因此人们一直尝试使用其它金属替代金,由于铜丝价格便宜、成本低、具有较高的导电导热性,并且Cu/Al金属间化合物生长速于Au/Al,不易形成有害的金属间化合物。
近年来,铜丝引线键合日益引起人们的兴趣。
二、铜丝键合的工艺当今,全球的IC制造商普遍采用3种金属互连工艺,即:铜丝与晶片铝金属化层的键合工艺,金丝与晶片铜金属化层的键合工艺以及铜丝与晶片铜金属化层的键合工艺。
近年来第一种工艺用得最为广泛,后两者则是今后的发展方向。
1. 铜丝与晶片铝金属化层的键合工艺近年来,人们对铜丝焊、劈刀材料及新型的合金焊丝进行了一些新的工艺研究,克服了铜易氧化及难以焊接的缺陷。
采用铜丝键合不但使封装成本下降,更主要的是作为互连材料,铜的物理特性优于金。
特别是采用以下’3种新工艺,更能确保铜丝键合的稳定性。
(1)充惰性气体的EFO工艺:常规用于金丝球焊工艺中的EFO是在形成焊球过程中的一种电火花放电。
但对于铜丝球焊来说,在成球的瞬间,放电温度极高,由于剧烈膨胀,气氛瞬时呈真空状态,但这种气氛很快和周围的大气相混合,常造成焊球变形或氧化。
氧化的焊球比那些无氧化层的焊球明显坚硬,而且不易焊接。
新型EFO工艺是在成球过程中增加惰性气体保护功能,即在一个专利悬空管内充入氮气,确保在成球的一瞬间与周围的空气完全隔离,以防止焊球氧化,焊球质量极好,焊接工艺比较完善。
铜线键合工艺

铜线键合工艺
铜线键合工艺是半导体封装中的一个重要过程,主要用于连接芯片和外部世界。
它主要包括以下步骤:
1. 预处理:清洗并烘干芯片和引线框架,以确保良好的电导性和热导性。
2. 定位:将芯片精确地放置在引线框架上,通常使用自动化设备进行。
3. 键合:使用高温、高压和超声波技术,将铜线的一端连接到芯片的电极,另一端连接到引线框架。
这个过程需要非常精确的控制,以避免线断裂或其他问题。
4. 检测:完成键合后,会进行电性测试,以确保连接良好。
5. 清理:最后,将多余的铜线和残渣清理干净,完成整个键合工艺。
铜线键合工艺对于半导体封装至关重要,它直接影响到芯片的性能和可靠性。
探究功率晶体管封装中铜丝键合工艺的可靠性

要的作用,是芯片与铜线之间的连接点,因此键合铝层的质
量直接影响到芯片的输出稳定性。在键合过程中金属球产生
的冲击力力主要由铝层吸收,以此保障焊接后芯片与框架引
脚具有良好的导电性且铝层下的硅片不会被焊球破坏。
铜线在芯片上的焊接如图1所示
图1 铜线在芯片上的焊接
铜线材质较金线材质硬度大,因此想要降低金属球对
作环境温度以及键合压力都有严格的要求。如果在键合过 程中环境温度没有达到金属的熔点,就会导致在键合后无 法得到金属间化合物。
此外,球焊键合的可靠性主要受到焊点的金属间化合 物的生长状态所影响。在键合过程中,焊盘与键合之间形 成一定数量的金属间化合物,但是一旦金属间化合物的数 量过多,就会造成电阻增加,进而导致焊点位置热量增 加。而焊点位置温度上升反而会加快金属间化合物的生长速 度,再次增加电阻。这种恶性循环会导致焊点的失效。因此 金属间化合物对于铜丝键合的可靠性有着关键性的作用。
金属间化合物的数量增加会提升电阻主要是由于金属 化合物的电阻能力分别高于化合物中的两种金属电阻能 力。此外将两种金属焊接在一起时,其中一种金属会朝着 另一种金属进行快速扩散,而两种金属的扩散速度并不相 同,这就导致在扩散速度较快的金属中出现大量的空位。 而这种空位会表现为在金属上形成很多孔洞。如果进行金 铝键合时,金的扩散速度要高于铝,因此键合之后,金的 一侧会出现大量的空位,形成孔洞。进而导致接触面积减 少,电阻增加。在铜丝键合技术中需要降低这一问题出现 的情况[4]。 3.2 金-铝金属间化合物与铜-铝金属间化合物的对比
金-铝的金属间化合物主要有五种,分别为AlAu、 Al2Au、AlAu2、AlAu4、Al3Au5。这五个金属间化合物形成过 程中其体积变化程度并不相同,电阻率也相对较低。而这 几种材料在高温或者长时间使用之后会有键合强度减少, 材质变脆、在界面位置出现裂缝以及增加电阻等问题。进 而导致设备出现开路或者导电性能降低等情况。此外, AlAu2在使用过程中由于金的扩散速度快,会在焊点位置形 成黑色的环形孔洞,这种情况会导致焊接强度变低,最终 造成器件失效。这也是使用金丝进行金铝热压焊的失效的 原因之一。而铜丝键合的效果与金丝不同,由于铜丝的金 属间化合物生长速度较慢,这就保证在铜丝键合中其电阻 率较小,产生的热量也相对较低,明显的提高了铜丝键合 设备的可靠性。 3.3 金属间化合物的产生效率分析
芯片设计和制造对铜丝键合工艺的影响分析

芯片设计和制造对铜丝键合工艺的影响分析作者:吕劲锋来源:《中国科技纵横》2013年第13期【摘要】以实际案例为基础分析,从三极管芯片设计和制造上解决铜丝键合工艺容易造成芯片弹坑损伤的问题。
【关键词】铜丝键合弹坑芯片结构1 概要在半导体铜丝键合工艺中讨论最多的都是在封装键合领域内讨论如何改进设备,材料和工艺方法去匹配铜丝工艺,提升铜丝工艺的可靠性和实用性,但很少有讨论在芯片设计和制造方面能做多少改进。
本文重点分析芯片设计制造对铜丝工艺的的影响。
从铜丝键合工艺主要的失效分析统计来看,铜丝工艺在铝层弹坑损伤上要比金丝工艺严重得多。
弹坑损伤在封装工艺上总存在工艺宽容度窄,控制难度高的问题,容易影响三极管的良品率和可靠性。
所以改进的目标就定在如何能把芯片键合区设计成能经受住铜丝键合高强度冲击而又不容易发生弹坑损伤或是能够缓冲铜丝键合冲击应力的键合区结构上。
2 键合区铝层的分析键合区铝层是的主要作用是芯片电极的引出,作为芯片与铜线连接的地方,连接的好坏关系到芯片的电参数能否可靠输出。
铝层除了起到连接作用外,在焊线键合当中还起到一个关键的缓冲作用。
因为铝金属硬度比金,铜都低,所以在键合过程中,铝层像一张“海绵垫子”一样铺在材质脆弱的硅片上面,这样当坚硬的铜球快速打在硅片上时,巨大能量和作用力才不能直接接触硅片,而是大部分被铝层吸收消化掉了。
这个过程即完成了铜球与铝层的连接,也保护了易碎的硅片表面基本不受损。
要是想减少铜球对芯片的损伤,增加铝层厚度是最有效最直接的办法。
铝层厚度增加后肯定能吸收更多的能量,起到更好的缓冲作用。
为了确定铝层厚度增量,在原铝层3um厚的基础上用三个型号芯片各做出增量0.5um一档的四种厚度的实验片,分别为3.5um,4um,4.5um,5um。
芯片的型号也是生产中铜丝工艺弹坑出现比较多的BUL4XXA,BUL4XXB和BUL4XXC。
再把几种芯片在同等封装工艺条件下进行铜丝键合对比。
半导体器件键合用铜线 标准

半导体器件键合用铜线标准一、铜线材料半导体器件键合用铜线应采用纯度为99.9%或更高的高纯度电解铜制成。
铜线中的杂质含量应符合相关标准,以确保其优良的导电性能和机械性能。
二、铜线尺寸铜线的尺寸应符合相关标准,包括直径、线径公差等。
不同规格的铜线应具有相应的尺寸精度和稳定性,以确保键合过程中的准确性和可靠性。
三、铜线表面质量铜线的表面应光滑、平整,无氧化、无油污等。
表面质量的优劣直接影响键合质量和器件性能,因此对铜线的表面质量要求较高。
四、铜线强度铜线应具有一定的强度,以确保在键合过程中能够承受一定的拉力和压力。
强度不足的铜线可能导致键合不良或断裂等问题。
五、铜线耐温性铜线的耐温性能应符合相关标准,能够在一定的温度范围内保持稳定的物理和化学性能。
耐温性能差的铜线可能导致键合失效或器件性能下降。
六、铜线焊接性铜线应具有良好的焊接性能,能够与半导体器件或其他材料进行可靠的焊接。
焊接性能差的铜线可能导致焊接不良或虚焊等问题。
七、铜线导电性作为导电材料,铜线的导电性能至关重要。
铜线的电阻率、电导率等参数应符合相关标准,以确保良好的导电性能和较低的能耗。
八、铜线耐腐蚀性在某些特定应用场景下,铜线可能面临腐蚀问题。
铜线应具有一定的耐腐蚀性,能够抵抗常见的腐蚀介质和环境条件。
耐腐蚀性差的铜线可能影响其使用寿命和可靠性。
综上所述,半导体器件键合用铜线需要满足多个方面的要求,包括材料纯度、尺寸精度、表面质量、强度、耐温性、焊接性、导电性和耐腐蚀性等。
这些要求共同决定了铜线的质量和性能,从而影响半导体器件的性能和可靠性。
因此,在选择和使用半导体器件键合用铜线时,应充分考虑这些因素,确保满足相关标准和实际应用需求。
键合铜线性能及键合性能研究

键合铜线性能及键合性能研究键合铜线性能及键合性能研究摘要:键合铜线是一种广泛应用于电子器件中的材料,其线性能和键合性能对器件的性能和可靠性具有重要影响。
本文通过对键合铜线的性能和键合过程的研究,探讨了键合铜线的特性及其在电子器件中的应用。
关键词:键合铜线,线性能,键合性能,电子器件引言键合铜线是电子器件中常见的一种连接线材料,具有良好的导电性和导热性。
电子器件通常通过键合工艺将导线与器件芯片连接起来,以实现信号传输和电源接驳。
由于键合铜线在器件中的重要作用,其性能和键合性能对器件的性能和可靠性影响巨大。
一、键合铜线的线性能键合铜线的线性能包括电导率、电阻率、电流容量和热传导性能等方面。
1. 电导率:键合铜线具有良好的电导率,可以有效传输电流。
2. 电阻率:键合铜线的电阻率直接影响其导电性能,低电阻率有利于减小线路的功耗。
3. 电流容量:键合铜线的电流容量取决于其横截面积,较大的横截面积可以承受更大的电流。
4. 热传导性能:键合铜线具有良好的热传导性能,能够迅速将热量传导到散热器或其他散热设备。
二、键合铜线的键合性能键合性能是指键合铜线在键合过程中的可焊性、可靠性和可重复性等方面的表现。
1. 可焊性:键合铜线的可焊性是指其在键合过程中与其他材料的焊接牢固程度。
优良的可焊性可以确保键合铜线与器件芯片之间的电气连接可靠。
2. 可靠性:键合铜线的可靠性是指其在使用过程中的稳定性和耐久性。
键合铜线需要能够长时间稳定地传输信号和电流。
3. 可重复性:键合铜线的可重复性是指在大量制造过程中,不同批次的键合铜线的性能保持一致。
良好的可重复性有助于提高生产效率和产品品质。
三、键合铜线的应用键合铜线广泛应用于各类电子器件中,如集成电路、芯片组件、电子封装等。
1. 集成电路:在集成电路中,键合铜线用于连接芯片与封装基座,实现电气连接和信号传输。
2. 芯片组件:键合铜线可用于连接芯片与其他组件,如电源、传感器等,实现芯片功能与外部电路的连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芯片设计和制造对铜丝键合工艺的影响分析
【摘要】以实际案例为基础分析,从三极管芯片设计和制造上解决铜丝键合工艺容易造成芯片弹坑损伤的问题。
【关键词】铜丝键合弹坑芯片结构
1 概要
在半导体铜丝键合工艺中讨论最多的都是在封装键合领域内讨
论如何改进设备,材料和工艺方法去匹配铜丝工艺,提升铜丝工艺的可靠性和实用性,但很少有讨论在芯片设计和制造方面能做多少改进。
本文重点分析芯片设计制造对铜丝工艺的的影响。
从铜丝键合工艺主要的失效分析统计来看,铜丝工艺在铝层弹坑损伤上要比金丝工艺严重得多。
弹坑损伤在封装工艺上总存在工艺宽容度窄,控制难度高的问题,容易影响三极管的良品率和可靠性。
所以改进的目标就定在如何能把芯片键合区设计成能经受住铜丝
键合高强度冲击而又不容易发生弹坑损伤或是能够缓冲铜丝键合
冲击应力的键合区结构上。
2 键合区铝层的分析
键合区铝层是的主要作用是芯片电极的引出,作为芯片与铜线连接的地方,连接的好坏关系到芯片的电参数能否可靠输出。
铝层除了起到连接作用外,在焊线键合当中还起到一个关键的缓冲作用。
因为铝金属硬度比金,铜都低,所以在键合过程中,铝层像一张“海绵垫子”一样铺在材质脆弱的硅片上面,这样当坚硬的铜球快速打在硅片上时,巨大能量和作用力才不能直接接触硅片,而是大部分
被铝层吸收消化掉了。
这个过程即完成了铜球与铝层的连接,也保护了易碎的硅片表面基本不受损。
要是想减少铜球对芯片的损伤,增加铝层厚度是最有效最直接的办法。
铝层厚度增加后肯定能吸收更多的能量,起到更好的缓冲作用。
为了确定铝层厚度增量,在原铝层3um厚的基础上用三个型号芯片各做出增量0.5um一档的四种厚度的实验片,分别为3.5um,4um,4.5um,5um。
芯片的型号也是生产中铜丝工艺弹坑出现比较多的bul4xxa,bul4xxb和bul4xxc。
再把几种芯片在同等封装工艺条件下进行铜丝键合对比。
判断的方法是看在设备的最小允许工艺条件下哪一个铝层厚度的芯片弹坑出现的比例最少或是没有。
分3组试验,每组各型号厚度样品各20个(如图1,2,3)。
综合三组试验的结构来看,铝层的增加的确能降低芯片弹坑的产生数量,不同型号的芯片抵抗弹坑的能力有不一样,所以会存在差异,但是总的趋势是一致的。
3 键合铝层表面状态的分析
芯片铝层的表面状态主要是指键合区铝层的光滑和粗糙程度,通俗叫法为粗糙度,用可测量的表达就是铝层表面的反射率。
反射率是通过仪器测量铝层表面对光束的反射能力,表面光滑反射的光就多,反射率就大,反之表面粗糙反射光就少,反射率就小。
由于芯片制造工艺控制的差异,还有就是芯片设计的差异,在铝层表面会出现如图1的这种差异。
a图属于铝层粗糙度很高的状态,它的反射率测试是38;b图属于粗糙度中等的状态,它的反射率测试是98;
c图属于粗糙度最低的状态,表面接近镜面,它的反射率测试是233。
从三幅图片直观的看出,同一款芯片的铝层表面状态差异还是非常大的。
为了确认这三种状态的芯片铝层抗铜丝键合冲击的能力,也和前面的实验一样,在同等条件下做弹坑试验。
试验结果得出,图1-c的铝层状态在各种芯片上的表现都要优于其他两种状态的铝层,抗铜丝球冲击的能力明显更强。
找出了更适合铜丝工艺的芯片铝层表面状态,需要从机理上分析原因。
铝层反射率高,说明它的铝层表面更光滑,图2是在显微镜下放大100倍后的铝层表面状况,2-a图为反射率低的铝层,可以看到表面铝层的颗粒比较大,突起也比较多,像平整但不齐的“沙地”;而2-b图为反射率高的铝层,可以看到表面铝层的颗粒要比2-a图的细腻很多,也看不到明显的突起,呈现出铝金属的银白色光泽。
从光学原理来看,2-a图颗粒大的铝层由于表面凹凸不平,光线射到表面发生漫反射,从上面直射的光会向四面八方散射,从显微镜上看要暗一点;2-b图颗粒细,能组成统一光滑的平面,直射的光线在它表面发生镜面反射,从显微镜看光线就很充足会亮一点。
由于铝层是通过金属进行高温蒸发制作上去的,在同等条件下,颗粒小的铝层结合得会更紧密,铝金属的质地就更坚实。
所以从这里分析看,致密的铝层之所以耐冲击能力要强一些,主要靠的就是致密的铝层对铜丝球的冲击力提供了更为可靠的缓冲,而疏松的铝层
抵御冲击的能力要差。
为了证实铝层致密性的差异,从键合原理分析,致密的铝层应该和铜球的键合会更紧密。
为了验证假设的结果,还做了致密铝层和疏松铝层的焊球剪切力对比。
在同一条件下对比结果如下(如表4):试验的假设明显成立,所以致密的铝层不仅有很强的抗铜丝冲击的能力,而且还能提高铜丝球的键合强度。
4 铝层下介质材料的分析
在试验过程中发现一个现象,就是有部分型号的芯片有弹坑损伤总出现在发射极压焊区一边的现象。
从这个现象判读,芯片两个压焊区直接存在着某个方面的差异。
用出现这个现象最明显的芯片bul4xxb来对比。
在统计的100个发生弹坑的样本中,发射级e区有弹坑的为96%,基极b区有弹坑的为4%,绝大部分弹坑都发生在芯片的发射级e区上。
从表象上分析能说明基极比发射极更耐冲击。
通过解剖芯片发现,铝层下的发射极和基极的介质材料是不一样的,发射极基底材料为二氧化硅,而基极的基底材料为硅。
从有此类设计的芯片中都发现了在同一冲击力下二氧化硅材质容易产生
弹坑的的现象可以说明,硅基底要比二氧化硅基底更硬。
分析完这两者之间的差异后,设计芯片版图时两个键合区下的介质层都设计成硅材料的结构,这在设计方法上是完全可行的。
5 发射极二极管的版图分析
由于大部分发射极有二极管设计的芯片存在着较高比例的弹坑
损伤失效,这最后的问题就需要分析发射极上的二极管结构了。
带二极管系列的这类芯片,从失效的情况来看,大部分弹坑发生的地方也都是二极管所在的发射极上,所以失效的因素肯定和二极管结构相关。
从生产线上统计,弹坑最严重的产品为bul4xxc这个产品,即使在铝层已经加厚到5um厚的情况下,还会有4%的弹坑失效存在,而同样是二极管系列的芯片bul2xxd在铝层厚度4um的情况下只有2.3%的弹坑失效。
如图3-a为bul4xxc,3-b为bul2xxd 左边的键合区就是三极管的发射极,里面都有一个长方形的结构,这就是二极管结构。
总结了二极管弹坑位置的图像发现,容易发生弹坑的区域还是有特点的。
从图4中可以发现产生弹坑的区域总是在键合区内有线条的图形上,a图和b图都在二极管的边线上,c图上面的坏点则压到了一个圆形的引线孔上,而下面没有压到的焊点则没有损坏。
用koh溶液把芯片铝层去掉后观察发现,方条形的二极管和圆孔的引线孔都是用光刻刻出来的窗口,刻出来的窗口与二氧化硅层有1.2um的高度差,也就是说两者之间存在一个阶梯状的台阶。
铜球压在台阶上容易造成弹坑损伤。
综上分析,键合区里任何结构的台阶设计,只要铜球压点压在这样的台阶上,受力点就不在一个平面上,强大的冲击力完全作用到台阶的上沿,接触面积变小,压强增大,致使台阶上沿承受不了而产生裂纹,细小的裂纹很容易沿着硅片的解理面裂开,在最终的压力下形成弹坑。
最后解决的方式就是版图设计时把二极管宽度尺寸扩大,能容下相应尺寸的铜球既可。
6 结语
如此经过这一系列的键合区铝层结构的调整,找出了增强芯片铝层抗冲击力的设计方法,基本解决了铜丝键合的弹坑损伤问题。
减轻了铜丝工艺在封装键合时工艺宽容度窄的问题,提升了铜丝工艺的可靠性和市场竞争力。